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Flows in 2 dimensions

A planar vector field assigns to each point in some open domain
U ⊂ R2 a vector: for x ∈ U, x 7→ ~V (x) ∈ R2.
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The flow of a vector field ~V (x) on U is a path σ : (−ε, ε)→ U
such that

σ′(t) =
d

dt
σ(t) = ~V (σ(t)) for all − ε < t < ε

This is a local solution of the first-order differential equation
x ′(t) = ~V (x(t)). A solution is global if the local solution is defined
for all −∞ < t <∞.

Problem: What are the global solutions of a given equation, and
how do their orbits behave as time tends to ∞?

Global solutions are usually not defined, unless we impose more
conditions.

For example, assume that ~V (x) is defined on a closed space, so the
solutions cannot escape.
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Here are two flows on the closed manifold T2



Introduction Plugs Chaos

Poincaré-Bendixon Theorem, 1901: Suppose that ~V is a
non-vanishing C 1-vector field on T2. Then either each global
solution accumulates on some embedded circles in T2, or (in the
C 2 case) each global solution accumulates on all of T2.

Poincaré-Hopf Theorem, 1885,1926: The only closed
2-manifold that admits a non-vanishing vector field is T2.

If we drop the requirement that the vector field is non-vanishing,
then every closed surface admits a vector field that vanishes at
most a finite number of points, where the number is the Euler
characteristic of the surface. The Poincaré-Bendixon Theorem also
applies in this case, but the description of the asymptotic solutions
are more complicated, as they have Morse-Smale dynamics.
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Flows in 3 dimensions

A 3-dimensional vector field assigns to each point in some open
domain U ⊂ R3 a vector: for x ∈ U, x 7→ ~V (x) ∈ R3.

The asymptotic behavior of the solution curves in this case defy
abstract description, unless severe restrictions are placed on the
vector field – for example, that they are Hamiltonian.

Perhaps the most famous example is the the Lorenz Attractor,
introduced by Edward Lorenz in 1963, as a simplified mathematical
model for atmospheric convection:
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Equations for the Lorenz dynamical system in R3

dx

dt
= σ · (y − x)

dy

dt
= x · (ρ− z)− y

dz

dt
= x · y − β · z

where σ, ρ, β are system parameters.

In the 1970’s computer time became sufficiently inexpensive, so
that computer models of the solutions could be made during the
evenings when mainframe computers were made available to staff.

This led to a big surprise:
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Typical solution of the Lorenz differential equations in R3
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There are many variants of the Lorenz type systems in R3.

For example, the Dequan-Li system is given by

dx

dt
= α · (y − x) + δ · x · y

dy

dt
= ρ · x + ζ · y − x · z

dz

dt
= β · z + x · y − ε · x2

where α, β, δ, ρ, ζ, are system parameters.
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A solution of the Dequan-Li system
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Model of the Dequan-Li Attractor by the artist “Istvan”



Introduction Plugs Chaos

How to mathematically study such dynamical systems?

Introduce a Poincaré cross-section to the flow: a surface Σ ⊂ R3

transverse to the orbits of the flow, and study the behavior of the
return points of the flow to the surface.

This generates a 2-dimensional dynamical system F : Σ′ → Σ
where Σ′ ⊂ Σ is an open subset whose points return to the section
under the flow.

Definition: A point is non-wandering if its future and past orbits
return infinitely often to a neighborhood of the point.

Ω ⊂ Σ′ denotes the set of all non-wandering points for the system.

Main Problem: Describe the non-wandering set Ω.
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The 2-dimensional model for the Lorenz Attractor is the Hénon
dynamical system:

The recursive definition of points in an orbit are given by
(xn+1, yn+1) = F (xn, yn)

xn+1 = 1− a · x2
n + b · yn

yn+1 = xn

where a, b are system parameters.
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Hénon Attractor is the planar model for the Lorenz Attractor
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What is the non-wandering set Ω for this system?

It is a horseshoe dynamical system, for appropriate choices of the
parameters a, b
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From 1970 till present, the study of the chaotic dynamics of flows,
especially in 3-dimensions, is a principle focus of research in
dynamics. Thousands of papers written on this topic.

For an introduction to this approach to dynamics, see the work:

Henk Broer & Floris Takens, Dynamical systems and chaos,
Applied Mathematical Sciences, Vol. 172. Springer, 2011.

Broer and Takens were the doctoral thesis advisors for Olga Lukina.
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If you can’t say something precise, conjecture something general:

Weak Palis Conjecture: M compact manifold, then every
non-singular C 1-flow on M is either C 1-close to a

• Morse-Smale (gradient) flow, or

• flow which has a cross-section that exhibits horseshoe dynamics.

J. Palis, On Open questions leading to a global perspective in
dynamics, Nonlinearity, 21, 2008.

This is a very Deep and Hard problem in Dynamical Systems.
It present the dream of the dynamicist mathematicians.

A proof of the WPC was posted to the arXiv by Qianying Xiao and
Zuohuan Zheng last summer: arXiv:1507.07781
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Aperiodic flows

In 1950 Herbert Seifert posed the:

Question: Does every non-singular vector field on the 3-sphere S3

have a periodic orbit?

The extension of this question to all closed 3-manifolds came to be
known as the “Seifert Conjecture”.

It is known that the types of maps in the Palis Conjecture all have
periodic orbits, so this question is asking, what else can happen
with non-singular flows on 3-manifolds?
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Theorems: On any closed 3-manifold M,

• Wesley Wilson (Annals of Mathematics 1966)
There exists a C∞-flow with only a finite number of periodic orbits.

• Paul Schweitzer, SJ (Annals of Mathematics 1974)
There exists a C 1-flow with no periodic orbits.

• Jenny Harrison (Topology 1988)
There exists a C 2-flow with no periodic orbits.

• Krystyna Kuperberg (Annals of Mathematics 1994)
There exists a C∞-flow with no periodic orbits.
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Expositions of the proof of Kuperberg’s celebrated result can be
found in these sources, in increasingly greater detail:

• K. Kuperberg, A smooth counterexample to the Seifert
conjecture, Ann. of Math. (2), 140:723–732, 1994.

• É. Ghys, Construction de champs de vecteurs sans orbite
périodique (d’après Krystyna Kuperberg), Séminaire Bourbaki, Vol.
1993/94, Exp. No. 785, Astérisque, 227: 283–307, 1995.

• S. Hurder & A. Rechtman, The dynamics of generic Kuperberg
flows, Astérisque, Vol. 377 (216), 250 pages.



Introduction Plugs Chaos

What we know of the dynamics of the Kuperberg flows:

Theorem (A. Katok, 1980) Let M be a closed, orientable
3-manifold. Then an aperiodic flow φt on M has entropy zero.

Theorem (Ghys, Matsumoto, 1995) The Kuperberg flow has a
unique minimal set M ⊂ M.

Theorem (Hurder & Rechtman, 2015) Let Φt be a generic
Kuperberg flow on a plug K. Then the non-wandering set Ω for
the flow is equal to its unique minimal set M, which is a
2-dimensional lamination “with boundary”.

Moreover, the flow restricted to M has non-zero “slow entropy”,
for exponent α = 1/2.

So, a generic Kuperberg flow almost has positive entropy.
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Question: Where do the Kuperberg flows sit in the scheme of the
Weak Palis Conjecture?

Theorem 1: Let Φt be a Kuperberg flow on a plug K. Then there
is a C∞-family of flows Φε

t on K, for −1 < ε ≤ 0, with Φ0
t = Φt ,

such that each flow Φε
t is “partially Morse-Smale” and so has

entropy 0.

Theorem 2: Let Φt be a Kuperberg flow on a plug K. Then there
is a C∞-family of flows Φε

t on K, for 0 ≤ ε < a, with Φ0
t = Φt ,

such that each flow Φε
t is chaotic with positive entropy.

Conclusion: The generic Kuperberg flows lie at the boundary of
chaos (entropy > 0) and the boundary of tame dynamics.

• S. Hurder & A. Rechtman, Aperiodic flows at the boundary of
chaos, arXiv:1603.07877, March 2016.
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Definition: A plug is a 3-manifold with boundary of the form
P = D × [−1, 1] with D a compact surface with boundary. P is
endowed with a non-vanishing vector field ~X , such that:

• ~X is vertical in a neighborhood of ∂P, that is ~X = d
dz . Thus ~X

is inward transverse along D × {−1} and outward transverse along
D × {1}, and parallel to the rest of ∂P.

• There is at least one point p ∈ D × {−1} whose positive orbit is
trapped in P.

• If the orbit of q ∈ D × {−1} is not trapped then its orbit
intersects D × {1} in the facing point.

• There is an embedding of P into R3 preserving the vertical
direction.
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Basic Plug - does nothing
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Modified Wilson Plug W (sort of Morse-Smale)

Consider the rectangle R × S1 with the vector field ~W = ~W1 + f f
dθ

f is asymmetric in z and ~W1 = g f
dz is vertical.
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Grow horns and embed them to obtain Kuperberg Plug K,
matching the flow lines on the boundaries.

Embed so that the Reeb cylinder {r = 2} is tangent to itself.
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The insertion map as it appears in the face E1

Radius Inequality:

For all x ′ = (r ′, θ′,−2) ∈ Li , let x = (r , θ, z) = σεi (r ′, θ′,−2) ∈ Li ,
then r < r ′ unless x ′ = (2, θi ,−2) and then r = 2.
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Parametrized Radius Inequality: For all x ′ = (r ′, θ′,−2) ∈ Li , let
x = (r , θ, z) = σεi (r ′, θ′,−2) ∈ Li , then r < r ′ + ε unless
x ′ = (2, θi ,−2) and then r = 2 + ε.

The modified radius inequality for the cases ε < 0 and ε > 0:
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How to study the dynamics of Kuperberg flows Φε
t?

Method 1 – Have Jos Ley make computer graphic models for the
flow Φt(R) of the core cylinder
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Method 2 – Introduce a cross-section R0 to the flow, then compare
the dynamics of the flow Φ0

t with that of the Poincaré return map
to the flow. But there are many subtleties to this method, as there
is no actual cross-section to the flow which is transversal.

Return map of a flow Φε
t induces a smooth pseudogroup GΦε on R0

Critical difficulty: There is not always a direct relation between
the continuous dynamics of the flow Φε

t and the discrete dynamics
of the action of the pseudogroup GΦε .
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The section R0 ⊂ K used to define pseudogroup GΦε .

The flow of Φε
t is tangent to R0 along the center plane {z = 0}, so

the action of the pseudogroup has singularities along this line.
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We consider two maps with domain in R0

• ψ which is the return map of the Wilson flow Ψt

• φε1 which is the return map of the Kuperberg flow Φe
t for orbits

that go through the entry region E1

Form the pseudogroup they generate Ĝε = 〈ψ, φε1〉.

Proposition: The restriction of Ĝε to the region {r > 2} ∩ R0 is a
sub-pseudogroup of GΦε
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Action of Ĝ0 = 〈ψ, φε1〉 on the line r = 2 for ε = 0.

This looks like a ping-pong game, except that the play action is
too slow to generate entropy.
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Action of Ĝε = 〈ψ, φε1〉 on the line r = 2 for ε > 0.

The dynamics of this action is actually too complicated to draw
precisely, or calculate with.
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Instead, we define a compact region U0 ⊂ R0 which is mapped to
itself by the map ϕ = ψk ◦ φε1 for k sufficiently large.
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The images of the powers ϕ` of the map the map ϕ form a
δ-separated set for the action of the pseudogroup Ĝε.
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We then show that for ε > 0 well-chosen with respect to the choice
of k above, the restriction of the map ϕ to U0 is defined by the
return map of Φe

t and hence Φe
t has positive entropy.

• For ε > 0, the dynamics of the map Φε
t is chaotic, but making

calculations of entropy for example, is only possible for well-chosen
embeddings. We have no intuition, for example, of how to describe
the nonwandering set for the flows Φε

t . That is, the behavior of the
chaotic orbits. We just know that some of them follow the folding
map trajectories of the horseshoe dynamics.

Conclusion: The study of the dynamics for flows in 3-space is
difficult, and mostly incomplete – but fascinating!
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Thank you for your attention!
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