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Abstract

We give a brief introduction to each of the three themes: Foliations,
Fractals and Cohomology. By cohomology, we mean in particular the
Cheeger-Simons classes of vector bundles.

The goal of the talk will be to show how the combination of the three
subjects leads to new questions about dynamics, and the “wild”
topological sets that naturally arise in dynamical systems.

This leads to a new understanding of one of the “mysterious” results of
foliation theory, the so-called Bott-Heitsch Theorem which dates from
1972. This new understanding raises as many questions as it answers.
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Definition of foliation
A foliation F of dimension p on a manifold Mm is a decomposition into
“uniform layers” – the leaves – which are immersed submanifolds of
codimension q: there is an open covering of M by coordinate charts so
that the leaves are mapped into linear planes of dimension p, and the
transition function preserves these planes.

A leaf of F is a connected component of the manifold M in the “fine”
topology induced by charts.
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A natural example

As first seen in a seminar at Rice University, Spring 1972.
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Examples in 2-dimensions
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Foliations by surfaces

Reeb Foliation of the solid torus
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Fundamental problems

Problem: “Classify” the foliations on a given manifold M

Two classification schemes have been developed since 1970:
using either “homotopy properties” or “dynamical properties”.

Question: How are the homotopy and cohomology invariants of a
foliation related to its dynamical behavior?

These are long-term research topics, dating from the 1970’s.

See “Classifying foliations”, to appear in Proceedings of Rio de Janeiro
Conference in 2007, Foliations, Topology and Geometry, Contemp. Math.,
American Math. Soc., 2009. Or, download from website.
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Foliation dynamics

A continuous dynamical system on a compact manifold M is a flow
ϕ : M × R→ M, where the orbit Lx = {ϕt(x) = ϕ(x , t) | t ∈ R} is
thought of as the time trajectory of the point x ∈ M. The trajectories
of the points of M are necessarily points, circles or lines immersed in
M, and the study of their aggregate and statistical behavior is the
subject of ergodic theory for flows.

In foliation dynamics, we replace the concept of time-ordered
trajectories with multi-dimensional futures for points. The study of
the dynamics of F asks for properties of the limiting and statistical
behavior of the collection of its leaves.
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Limit sets

A basic property of a dynamical system is to ask for the sets where the
orbits accumulate. These are called limit sets.

Let ϕt : M → M be a flow on a compact manifold M, and x ∈ M, then

ωx(ϕ) =
∞⋂

n=1

{ϕt(x) | t ≥ n}

is a compact set which is a union of flow lines for ϕ.

x is recurrent if x ∈ ωx(ϕ).

Circle is only recurrent orbit
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A leaf L ⊂ M of a foliation F inherits a quasi-isometry class of
Riemannian metric from TM, and a metric topology.

The limit set of the leaf Lx through x is

ωx(F) =
⋂

Y⊂Lx
Y compact

Lx − Y

Lx is recurrent if x ∈ ω(Lx) ⇒ Lx ⊂ ω(Lx).

Boundary torus is only recurrent leaf
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Minimal sets

A closed subset Z ⊂ M is minimal if

• Z is a union of leaves,
• each leaf L ⊂ Z is dense

Z minimal ⇒ ωx(Lx) = Z for all x ∈ Z

The study of the minimal sets for a foliation is the first approximation to
understanding foliation dynamics.

For a minimal set, ask about its shape, and the dynamics of the foliation
restricted to it.
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Shape of minimal sets

For each x ∈ Z , there is an open neighborhood Ux ⊂ Z

Ux
∼= (−1, 1)p × K

where K ⊂ Rq is a closed. If K is not finite, then K is perfect.

If K has no interior points, then Z is called exceptional.

For F codimension q = 1, Z exceptional ⇔ K is a Cantor set.

For F codimension q ≥ 2, the possibilities for K include:

• Compact submanifolds of Rq

• Fractals defined by Iterated Function Systems
• Julia sets of Rational Polynomials & Holomorphic Dynamics
• Limit sets of Schottky Groups

Each of these categories of “wild topology” for K is more complicated
than we can hope to fully understand.
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Wild Topology, I

Fractal Tree
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Wild Topology, II

Limit set of Schottky Group
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Wild Topology, III

Sierpinski Pyramid
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Infinite constructions

Common to all of these examples is a finite set of defining data for K :

• Compact connected set X ⊂ Rq, where K ⊂ X

• Open sets U1, . . . ,Uk with X ⊂ U1 ∪ · · · ∪ Uk

• smooth weak-contractions ϕi : Ui → Uj where j = ν(i)

Theorem: K is characterized by K =
k⋃

i=1

ϕi (Ui ∩ K )

Proof: The data defines a contraction mapping on the space M of
compact subsets of Rq such that K is the unique fixed point.

Moran (1946) → Hutchinson (1981) → Dekking (1982) → Hata (1985).

The foliation F is defined by the suspension of extensions ϕ̃i : Sq → Sq.

K appears as a slice of a minimal set Z of F by a transverse submanifold.
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Wild Topology, IV
Solenoids occur very naturally in the dynamics of Hamiltonian flows and
diffeomorphisms. [Bob Williams (1967,1974), many others...]

Cantor Set → Solenoid

The leaves of F give a “twist” to the points of K . Because it is also a
foliation, there is also a “twist” imparted to every open neighborhood of K .

We want to measure this twist with cohomology.
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A construction

Solenoids are traditionally associated with dynamics of flows. But they are
also part of the dynamics of foliations.

Theorem: [Clark & Hurder (2008)] For n ≥ 1 and q ≥ 2n, there exists
commuting diffeomorphisms ϕi : Sq → Sq, 1 ≤ i ≤ n, so that the
suspension of the induced action Zn on Sq yields a smooth foliation F
with solenoidal minimal set S, such that:

• The leaves of F restricted to S are all isometric to Rn.

• The action of Zn on the Cantor set K = S ∩ Sq has a unique invariant
probability measure.

• Periodic domains of the action of Zn on Sq contained in every open
neighborhood of K .

• K is a “p-adic” completion of Zn.
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The standard construction makes use of infinitely repeated iteration of
embeddings, disks inside of disks:

First stage of inductive construction

At each stage of the iteration:
• Keep a center disk Dq

ε′ on which the action is a rotation about center
• View actions of Zn as deformations of finite representations into SO(q)
• View process as sequence of inductive surgeries on suspended foliations

See “Solenoidal minimal sets for foliations”, Clark & Hurder 2008
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Local invariants

In our construction, we force the existence of periodic disks for the action
of the group Zn. Periodic orbits are important in classical dynamics!

Every open neighborhood of the minimal Cantor set K for the Zn action
has infinitely many essential local actions of finite groups whose orders
tends to infinity.

This has to be useful!

Exploiting this information about the dynamics of neighborhoods of fractal
minimal sets, takes us down a well-trodden path, but in a new direction for
the study of fractals.

Steven Hurder (UIC) Foliations, fractals, cohomology February 19, 2009 20 / 33



Local invariants

In our construction, we force the existence of periodic disks for the action
of the group Zn. Periodic orbits are important in classical dynamics!

Every open neighborhood of the minimal Cantor set K for the Zn action
has infinitely many essential local actions of finite groups whose orders
tends to infinity. This has to be useful!

Exploiting this information about the dynamics of neighborhoods of fractal
minimal sets, takes us down a well-trodden path, but in a new direction for
the study of fractals.

Steven Hurder (UIC) Foliations, fractals, cohomology February 19, 2009 20 / 33



Local invariants

In our construction, we force the existence of periodic disks for the action
of the group Zn. Periodic orbits are important in classical dynamics!

Every open neighborhood of the minimal Cantor set K for the Zn action
has infinitely many essential local actions of finite groups whose orders
tends to infinity. This has to be useful!

Exploiting this information about the dynamics of neighborhoods of fractal
minimal sets, takes us down a well-trodden path, but in a new direction for
the study of fractals.

Steven Hurder (UIC) Foliations, fractals, cohomology February 19, 2009 20 / 33



Shape invariants

Z ⊂ M a minimal set of F always has a “neighborhood system”

K ⊂ · · ·Ui ⊂ · · · ⊂ U1 , K =
∞⋂
i=1

Ui

where the Ui are open. The system defines the shape of K .

Each Ui inherits a foliation F | Ui .

At each point x ∈ Ui there is a germ of holonomy of the leaf Lx . This
defines a groupoid ΓF|Ui

with morphisms given by germs of local
diffeomorphisms of Rq.

More accurately, F | Ui defines a Topos whose models are transversal
submanifolds to F in Ui . See “Classifying Toposes and Foliations”, by Ieke
Moerdijk, Ann. Inst. Fourier (1991).
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Classifying spaces

“Milnor join” construction ⇒ classifying space BG of a Lie group G

Generalized by [Haefliger (1970), Segal (1975)] to a classifying space for a
groupoid Γ. The space BΓ ≡ ‖Γ‖ is the “semi-simplicial fat realization” of
the groupoid Γ.

In general, the space BΓ is as obscure as the nomenclature suggests.

Most well-known: the “universal classifying space” of codimension-q
foliations, BΓq introduced by [Haefliger (1970)]. The objects of Γq are
points of Rq, and morphisms are germs of local diffeomorphisms of Rq.

The foliation F on M has a well-defined homotopy class hF : M → BΓq.

For any open set U ⊂ M, the restriction F | U defines a groupoid ΓU|F .

There is a natural map of its realization BΓU|F → BΓq.
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Exotic cohomology

A neighborhood system of a minimal set Z ⊂ M yields directed system of
spaces {BΓUi+1|F → BΓUi |F}

∞
i=1.

Theorem: Each minimal set Z of F has a well-defined space of
cohomology invariants

H∗(Z ,F) ≡ lim
→
{H∗(BΓUi |F )→ H∗(BΓUi+1|F )}

Example: Suppose that Z is a periodic orbit of a flow, defined by the
suspension of an effective Γ = Z/pZ-action on a disk D2 fixing the origin,
then

H(Z ,F ; Z/pZ) = H∗(BΓ; Z/pZ) ∼= (Z/pZ)[e1]

is a polynomial ring generated by the Euler class e1 of degree 2. This is
just the “Borel construction” for the finite group action. See also Heitsch
& Hurder, “Coarse cohomology for families”, Illinois J. Math (2001).

Steven Hurder (UIC) Foliations, fractals, cohomology February 19, 2009 23 / 33



Application

Each open neighborhood Ui of the minimal set Z yields is a natural map
BΓUi |F → BΓq, hence an induced map of the limit space

hZ : Ẑ ≡ lim
←
{BΓUi+1|F → BΓUi |F} −→ BΓq

Theorem: [Hurder (2008)] Let S be the solenoidal minimal set above.
Then the homotopy class of the induced map hS : Ŝ → BΓq is non-trivial:

h∗S : H4`−1(BΓq; R)→ H4`−1(S,F ; R) is non-trivial for ` > q/2

Proof: The Cheeger-Simons classes derived from H∗(BSO(q); R) are in
the image of h∗S .

The “cycle” hS : Ŝ → BΓq is determined by a finite set of holonomy maps
{ϕ1, . . . , ϕn} obtained from the generators of the action of Zn. It realizes
the inverse limit of the Bott-Heitsch torsion classes for finite flat bundles.
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Cheeger-Simons invariants – elliptic invariants

Suppose A ∈ GL(R2) is rotation by θ radians in plane. Set

ê(A) = θ/2π mod (1) ∈ R/Z

Form vector bundle E→ S1 by “suspension construction”

E = R× R2/(t + 1,~x) ∼ (t, ϕ(~x))→ R/Z = S1

There is a foliation Fϕ of E, foliated as follows:

Fact: ê(A) is the first “Cheeger-Simons invariant” for Fϕ.
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Fact: ê(A) is the first “Cheeger-Simons invariant” for Fϕ.

Steven Hurder (UIC) Foliations, fractals, cohomology February 19, 2009 25 / 33



Cheeger-Simons classes

Let p : E→ M be an oriented R2m-vector bundle over manifold M.

νE : M → BΓ+
2m → BSO(2m) is the classifying map for EF .

For example, m = 1 then BSO(2) ∼= S∞/S1.

H∗(BSO(2m); R) is generated as algebra by:

e ∈ H2m(BSO(2m); R) − The Euler Class
p` ∈ H4`(BSO(2m); R) − The Pontrjagin Classes

Set e(E) = ν∗E(e) ∈ H2m(M; R) and p`(E) = ν∗E(p`) ∈ H4`(M; R)

Consider the Bockstein maps:

· · · → H∗−1(M; R/Z)→ H∗(M; Z)→ H∗(M; R)→ · · ·

C ∈ ker{H∗(M; Z)→ H∗(M; R)}, “preimage” Ĉ ∈ H∗−1(M; R/Z)
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Steven Hurder (UIC) Foliations, fractals, cohomology February 19, 2009 26 / 33



Let J = (j1 ≤ j2 ≤ · · · ≤ jk) and set pJ = pj1pj2 · · · pjk .

|J| = j1 + · · · jk and then deg pJ = 4|J|.

In the case where E has a foliation F transverse to the fibers, and
C = pJ(E) with |J| > m, we have:

Bott Vanishing Theorem: [1970] If E has a foliation F transverse to the
fibers of p : E→ M, then

ν∗E : H∗(BSO(2m); R)→ H∗(M; R) is trivial for ∗ > 2q = 4m.

The Bott Vanishing Theorem implies there exists pre-images

p̂J(E) ∈ H4|J|−1(M; R/Z). If E is a trivial bundle, then these “Bockstein
classes” lift to the Cheeger-Simons classes for F :

T (pJ) ∈ H4|J|−1(M; R)

T (em) ∈ H2m−1(M; R)
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Generalized winding numbers

For m = 1, F foliation transverse to D2-bundle E→ M, then have

T (e`1) ∈ H2`−1(M; R) , ` > 2

Each class T (e`1) is a “generalized winding invariant” for the holonomy of
the foliation F on the fibers of E→ M.

For m > 1, F foliation transverse to D2m-bundle E→ M, then for each
p ∈ H∗(BSO(2m); Z) there is a “generalized non-commutative winding
invariant”

T (p) ∈ H∗−1(M; R) , ∗ > 4m
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Heitsch Thesis (1970)

Theorem: The Bott Vanishing Theorem is false for Z coefficients!

Example, continued: Let (Z/pZ)m act on D2m via rotations
{ϕ1, . . . , ϕm} with period p on each of the m-factors of D2.

Form the suspension flat bundle

E = S∞ × D2m/ϕ

Then the composition

ν∗E : H∗(BSO(2m); Z/pZ)→ H∗(BΓ+
2m; Z/pZ)→ H∗(E; Z/pZ)

is injective. Let p →∞.
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Cheeger-Simons classes and solenoids

Question: How can these higher dimensional classes Cheeger-Simons
classes be non-zero for a solenoid defined by a flow on a 3-manifold?

Answer: Follow the idea of the Borel construction, that a fixed-point for a
group action is not really a point; in homotopy theory, it is BGx where Gx

is the isotropy subgroup of the fixed-point x .

For a solenoid S defined by an action of G = Zn on Dq, and an open
neighborhood S ⊂ U, the realization BΓU|F contains a copy of a Borel
space BGx for each fixed point x ∈ U with finite group action germ. That
is, the neighborhood of S in the foliated manifold M contains all the
ingredients needed for the Heitsch proof. In the limit, we obtain R-valued
Cheeger-Simons classes supported on the limit Ŝ, which is a new object:

Ŝ is a semi-simplical measured lamination equipped with a foliated
microbundle structure, carrying non-trivial cohomology classes of BΓq.
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Shape Cycles

Definition: A shape cycle for BΓq is a foliated lamination L equipped
with a foliated microbundle ν → L such that the classifying map
h∗L : H∗(BΓq; R)→ H∗(L,F ; R) is non-trivial for some ∗ > 0.

Typical “shape cycle”
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Remarks

• New procedure for obtaining foliated cycles in BΓq.

Previous results were constructions in 1970’s of minimal foliations on
compact manifolds, for which some of the Cheeger-Simons classes are
non-trivial in the ranges of degrees 2q + 1 ≤ ∗ ≤ 2q + q2.

• The “shape cycles” which are used to detect this new homotopy
structure are derived from the simplest type of wild constructions, the
solenoids defined via an infinite sequence of finite coverings of Tn. The
embedding into a foliation is a key part of the data.

Question: Do the analogous “shape cycles” obtained from Julia sets of
holomorphic dynamics yield non-trivial cycles, for a similar construction
with the classifying spaces of complex analytic groupoids? [Asuke, Ghys]
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