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At the International Symposium/Workshop on Geometric Study of
Foliations in November 1993, there was an evening seminar on a
recent preprint by Krystyna Kuperberg, proving:

Theorem Let M be a closed, orientable 3-manifold. Then M
admits a C∞ non-vanishing vector field whose flow φt has
no periodic orbits.

• Krystyna Kuperberg, A smooth counterexample to the Seifert
conjecture, Ann. of Math. (2), 140:723–732, 1994.

The result seemed to appear miraculously out of the aether.

Ana Rechtman and I investigate these flows in our manuscript:

• H. & R., The dynamics of generic Kuperberg flows,
Astérisque, Vol. 377, 2016; 250 pages.
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Wilson Plug
Kuperberg’s proof introduced a very clever construction of an
aperiodic “plug” for flows on 3-manifolds, to cut open periodic
orbits. The construction of plugs has a history.

Wilson’s fundamental idea in 1966 was the construction of a plug
which trapped content, and all trapped orbits have limit set a
periodic orbit contained in the plug. The result of repeatedly
inserting this plug is a flow with at most two periodic orbits.
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Schweitzer Plug

Paul Schweitzer in 1974 had two deep insights. In the Wilson Plug:

• Each periodic circle can be replaced by a Denjoy minimal set for
a flow on a punctured 2-torus;

• the new minimal set does not have to be in a planar flow, but
may be contained in a surface flow which embeds in R3.
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Theorem: [Schweitzer, 1974] Every homotopy class of
non-singular vector fields on a closed 3-manifold M contains a
C 1-vector field with no closed orbits.

An alternate embedding of the Denjoy minimal set in R3 was later
used by Jenny Harrison in a very difficult proof to show the same
result for C 2-flows.

• J.C. Harrison, C 2 counterexamples to the Seifert conjecture,
Topology, 27:249–278, 1988.

So, the reaction to Krystyna’s short paper, proving ever so much
more, was pure astonishment.
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Kuperberg’s “Big Idea”

Shigenori Matsumoto’s summary:

We therefore must demolish the two closed orbits in the Wilson
Plug beforehand. But producing a new plug will take us back to the
starting line. The idea of Kuperberg is to let closed orbits demolish
themselves. We set up a trap within enemy lines and watch them
settle their dispute while we take no active part.

(transl. by Kiki Hudson Arai)
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Modified Wilson Plug W

Consider the rectangle R × S1 with the vector field ~W = ~W1 + f f
dθ

f is asymmetric in z and ~W1 = g f
dz is vertical.

The two periodic orbits are now unstable.
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Deform the modified Wilson Plug to have a pair of “horns”
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Insert the horns with a twist and a bend, matching the flow lines
on the boundaries, to obtain Kuperberg Plug K

Embed so that the Reeb cylinder {r = 2} is tangent to itself.

That’s it. The resulting flow is aperiodic!
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Close up view of the lower embedding σ1
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The insertion map as it appears in the face E1

Radius Inequality:

For all x ′ = (r ′, θ′,−2) ∈ Li , let x = (r , θ, z) = σεi (r ′, θ′,−2) ∈ Li ,
then r < r ′ unless x ′ = (2, θi ,−2) and then r = 2.



Introduction Questions Lamination Shape Pseudogroups Horseshoes

Three subsequent papers explored the properties of these flows:

• Étienne Ghys, Construction de champs de vecteurs sans orbite périodique
(d’après Krystyna Kuperberg), Séminaire Bourbaki, Vol. 1993/94, Exp. No.
785, Astérisque, 227: 283–307, 1995.

• Shigenori Matsumoto, K.M. Kuperberg’s C∞ counterexample to the Seifert
conjecture, Sūgaku, Mathematical Society of Japan, Vol. 47:38–45, 1995.
Translation: Sugaku Expositions, A.M.S., Vol. 11:39–49, 1998.

• Greg & Krystyna Kuperberg, Generalized counterexamples to the Seifert
conjecture, Ann. of Math. (2), 144:239–268,, 1996.



Introduction Questions Lamination Shape Pseudogroups Horseshoes

These papers also studied the dynamics of Kuperberg flows:

Theorem (Ghys, Matsumoto, 1995) The Kuperberg flow has a
unique minimal set Z ⊂ M.

Theorem (Matsumoto, 1995) The Kuperberg flow has an
open set W of wandering points whose forward orbits limit to the
unique minimal set.

There cannot be an invariant measure equivalent to Lebesgue.

Theorem (A. Katok, 1980) Let M be a closed, orientable
3-manifold. Then an aperiodic flow φt on M has zero entropy.
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The other “clue” to the dynamics of Kuperberg flows, was given
by the computer model of Bruno Sévennec of the intersection of
the unique minimal set with a cross section. Very mysterious!
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Problem: Describe the geometric properties of the unique minimal
set Z. For example, when is the minimal set 1-dimensional? Or, is
it always 2-dimensional, and then what is the growth type of the
path connected components of the minimal set?

Problem: Describe the topological shape of the unique minimal
set Z. Does Z have stable shape? Is the shape of Z movable, a
notion introduced by Karol Borsuk.

• On movable compacta, Fund. Math., 66:137–146, 1969.
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Karol Borsuk

Karol Borsuk (May 8, 1905 – January 24, 1982) was a Polish mathematician.
His main interest was topology.

Borsuk introduced the theory of absolute retracts (AR’s) and absolute
neighborhood retracts (ANR’s), and the cohomotopy groups, later called
Borsuk-Spanier cohomotopy groups. He also founded the so-called Shape
theory. He has constructed various beautiful examples of topological spaces,
e.g. an acyclic, 3-dimensional continuum which admits a fixed point free
homeomorphism onto itself; also 2-dimensional, contractible polyhedra which
have no free edge. His topological and geometric conjectures and themes
stimulated research for more than half a century.

Borsuk received his master’s degree and doctorate from Warsaw University in
1927 and 1930, respectively; his Ph.D. thesis advisor was Stefan Mazurkiewicz.
He was a member of the Polish Academy of Sciences from 1952. Borsuk’s
students included Samuel Eilenberg, Jan Jaworowski, Krystyna Kuperberg,
W lodzimierz Kuperberg, and Andrzej Trybulec.

https : //en.wikipedia.org/wiki/Karol Borsuk
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Problem: Describe the geometric properties of the unique minimal
set Z. For example, when is the minimal set 1-dimensional? Or, is
it always 2-dimensional, and then what is the growth type of the
path connected components of the minimal set?

Problem: Describe the topological shape of the unique minimal
set Z. Does Z have stable shape? Is the shape of Z movable?

Problem: Why does a Kuperberg flow have zero entropy? For
example, can one calculate the growth rates of ε-separated sets for
the flow?

Problem: What are the dynamical properties of the flows which
are smooth perturbations of a Kuperberg flow? These are called
“Derived from Kuperberg” flows, or DK flows.
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The question of the shape properties of the unique minimal set Z
was suggested by Alex Clark, and was the motivation for the study
by Ana Rechtman and myself, starting in 2010, of the dynamical
properties of Kuperberg flows. What we discovered about the
shape properties of this minimal set, it would have made Borsuk
proud of Krystyna’s mathematical legacy!

The first observation of our work was that there are many
variations on the Kuperberg construction. A flow is generic if it is
actually like its illustrations. That is to say, all choices are assumed
to be not too pathological.
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There are two types of generic conditions.

Generic 1: Consider the rectangle R = [1, 3]× [−2, 2], with a
vertical vector field ~W1 = g f

dz where g(r , z) vanishes at (2,−1)
and (2,+1). We require that g vanish to second order with
positive definite Jacobian at these two points.

Then the Wilson field on W = R× S1 is ~W = ~W1 + f f
dθ where f

is asymmetric in z , and vanishes near the boundary.

Generic 2: These are conditions on the insertion maps
σi : Di → Di . We require that the r -coordinate of the image
depends quadratically on the θ-coordinate of the domain, for values
of r near r = 2. Much stronger than the basic radius inequality.
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Let Φt be a generic Kuperberg flow on a plug K.

Theorem (H & R, 2015) The unique minimal set Z for the flow
is a 2-dimensional lamination “with dense boundary” and Z equals
the non-wandering set of Φt .

Theorem (H & R, 2015) The flow Φt has positive “slow
entropy”, for exponent α = 1/2.

Thus, a generic Kuperberg flow almost has positive entropy.

Theorem (H & R, 2015) The minimal set Z has unstable shape;
but may be moveable.

This implies that it is wildly embedded in R3.

Problem: How do the dynamical properties of the non-generic
Kuperberg flows differ from those of the generic flows?
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We also considered “Derived from Kuperberg” constructions,
which deform a generic Kuperberg flow Φt = Φ0

t on a plug K.

Theorem (H & R, 2016) There is a C∞-family of flows Φε
t on K,

for −1 < ε ≤ 0, with Φ0
t = Φt , such that each flow Φε

t has
two periodic orbits, and all orbits are properly embedded.

Theorem (H & R, 2016) There is a C∞-family of flows Φε
t on K,

for 0 ≤ ε < a, with Φ0
t = Φt , such that each flow Φε

t admits
countably many families of “horseshoes” with dense periodic
orbits, and so has positive entropy.

Conclusion: The generic Kuperberg flows lie at the boundary of
chaos (entropy > 0) and the boundary of tame dynamics.
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There is still much about the dynamics of Derived from Kuperberg
flows that we still don’t understand.

• H. & R., Aperiodic flows at the boundary of chaos,
arXiv:1603.07877.

• H. & R., Perspectives on Kuperberg flows, arXiv:1607.00731.

For the rest of this talk, will try to explain why the Kuperberg
flows have unstable minimal sets, and what this means for the
dynamical properties of these flows.
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The hidden dynamics of Kuperberg flows

Define the closed subsets of W = [1, 3]× S1 × [−2, 2] ∼= R× S1

Di = σi (Di ) for i = 1, 2 are solid 3-disks embedded in W.

W′ ≡ W− {D1 ∪ D2} , Ŵ ≡ W− {D1 ∪ D2} .

C ≡ {r = 2} [Full Cylinder]

R ≡ {(2, θ, z) | −1 ≤ z ≤ 1} [Reeb Cylinder]

R′ ≡ R ∩ Ŵ [Notched Reeb Cylinder]

Oi ≡ {(2, θ, (−1)i )}, i = 1, 2 [Periodic Orbits]

O1 is the lower boundary circle of the Reeb cylinder R,
O2 is the upper boundary circle.
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The image τ(R′) ⊂ K
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Consider the K-orbit of the image τ(R′) ⊂ K and its closure

M0 ≡ {Φt(τ(R′)) | −∞ < t <∞} , M ≡ M0 ⊂ K .

Then Oi ∩ Ŵ ⊂ R′ hence the minimal set Z ⊂M.

The non-wandering set of Φt in K is denoted Ω.

Theorem: Let Φt be a generic Kuperberg flow, then Z = Ω = M.

Theorem: For a generic Kuperberg flow, the space M has the
structure of a zippered lamination with 2-dimensional leaves.

Proof: The closures of the boundary orbits of M0 are dense in M.
Hence, the boundary of each leaf of M is dense in itself.
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Definition: Let Z ⊂ X be a continuum embedded in a metric
space X . A shape approximation of Z is a sequence
U = {U` | ` = 1, 2, . . .} satisfying the conditions:

1. each U` is an open neighborhood of Z in X which is
homotopy equivalent to a compact polyhedron;

2. U`+1 ⊂ U` for ` ≥ 1, and their closures satisfy
⋂
`≥1

U` = Z.

Proposition: The shape of Z is equal to the shape of M0.

Shape homotopy groups:

π̂1(Z, x∗) ≡ lim←− {π1(U`+1, x∗)→ π1(U`, x∗)}

Strategy: Use “almost closed paths” in M0 to calculate π̂1(Z, x∗).
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Problem: Give an explicit description of the embedded space M0.

This is done in the Astérisque volume. The key observation is that
M0 is an infinite union of propellers at increasing levels. We give a
sequence of illustrations to suggest how this works.

Finite propeller = flow of entry arc γ in region r > 2
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Infinite propeller with infinite sequence of notches to which finite
propellers are attached.
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The surface M0 is embedded in K, where each propeller wraps
around the Reeb cylinder τ(R′).
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An approximate cycle is an “almost closed” path with endpoints
sufficiently close. This yields a class in π̂1(Z, x∗) by “translating

the loop out to infinity in open neighborhoods of M0”.
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Need a systematic method to label the classes that arise from
almost closed paths in M0. Idea: Introduce a section R0 ⊂ K to
the flow Φt and study the intersections of M0 ∩ R0.

The return map to the section defines a pseudogroup GΦ
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The flow of Φt is tangent to R0 along the center plane {z = 0}, so
the action of the pseudogroup has singularities along this line.

Critical difficulty: There is not always a direct relation between
the continuous dynamics of the flow Φt and the discrete dynamics
of the action of the pseudogroup GΦ.

None the less, the introduction of the Kuperberg pseudogroup GΦ

is a fundamental tool for the study of the dynamics of the flow Φt .

The semi-group formed by the generators of GΦ are used to give a
complete description of the embedded space M0.
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We consider two maps with domain in R0

• ψ which is the return map of the Wilson flow Ψt

• φ1 which is the return map of the Kuperberg flow Φt for orbits
that go through the entry region E1

They generate a pseudogroup Ĝ = 〈ψ, φ1〉 acting on R0.

Proposition: The restriction of Ĝ to the region {r > 2} ∩ R0 is a
sub-pseudogroup of GΦ The action of Ĝ on the line segment
C ∩ R0 yields families of nested ellipses containing R0 ∩M0.

Corollary: The elements of the pseudogroup Ĝ labels the lower
branches of the tree structure of M0.
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This looks like a ping-pong game, except that the play action is
too slow to generate entropy.
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Definition: A Derived from Kuperberg (DK) flow is obtained by
choosing the embeddings so that we have:

Parametrized Radius Inequality: For all x ′ = (r ′, θ′,−2) ∈ Li , let
x = (r , θ, z) = σεi (r ′, θ′,−2) ∈ Li , then r < r ′ + ε unless
x ′ = (2, θi ,−2) and then r = 2 + ε.

The modified radius inequality for the cases ε < 0 and ε > 0:
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Meta-Principle: For ε > 0 and “most” classes [γ] ∈ π̂1(M, ω0),
there is a horseshoe subdynamics for the pseudogroup Ĝε = 〈ψ, φε1〉
acting on R0 with a periodic orbit defining [γ].

Action of Ĝε on the line r = 2 for ε > 0.
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Define a compact region U0 ⊂ R0 which is mapped to itself by the
map ϕ = ψk ◦ φε1 for k sufficiently large. “k large” corresponds to
translating the almost closed path far out in the surface M0.
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The images of the powers ϕ` form a δ-separated set for the action
of the pseudogroup Ĝε.
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This is a horseshoe dynamical system for the pseudogroup action!

Compare to the usual illustration of a horseshoe dynamical system.
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Concluding remarks:

• For ε < 0, the dynamics of a DK flow is tame, and completely
predictable, except that as ε→ 0 the dynamics approaches that of
the Kuperberg flow.

• For ε > 0, the dynamics of a DK flow is chaotic, but making
calculations of entropy for example, is only possible in special
instances. Also, we have no intuition, for example, of how to
describe the nonwandering sets for DK flow with ε > 0.

• There are many more open questions and results to prove
about Kuperberg flows and their variations!
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Thank you Krystyna for your flows!!
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