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Theorem (K. Kuperberg, 1994) Let M be a closed, orientable
3-manifold. Then M admits a C∞ non-vanishing vector field
whose flow φt has no periodic orbits.

• K. Kuperberg, A smooth counterexample to the Seifert conjecture, Ann. of

Math. (2), 140:723–732, 1994.

There are many choices in the construction of Kuperberg plugs:

Ghys: Par ailleurs, on peut construire beaucoup de pièges
de Kuperberg et il n’est pas clair qu’ils aient le même
dynamique.

• É. Ghys, Construction de champs de vecteurs sans orbite périodique

(d’après Krystyna Kuperberg), Séminaire Bourbaki, Vol. 1993/94, Exp. No.

785, Astérisque, 227: 283–307, 1995.
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Problem: Investigate the invariants of “Kuperberg flows”:

• dynamical invariants of the smooth flow in plug W
• topological invariants of unique minimal set Σ

• relations with their smooth deformations.

Theorem (Katok, 1980) Let M be a closed, orientable
3-manifold. A smooth aperiodic flow φt on M has entropy zero.

Theorem (H & Rechtman, 2016) The minimal set Σ of a
generic Kuperberg flow is a 2-dimensional “zippered lamination”,
which has unstable shape.

Theorem (Ingebretson, 2017) The Hausdorff dimension of the
minimal set Σ for a generic Kuperberg flow has 2 < HD(Σ) < 3.
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Let ϕt : M → M be a smooth non-vanishing flow on a compact
Riemannian manifold. For ε,T > 0, two points p, q ∈ M are said
to be (ϕt ,T , ε)-separated if

dM(ϕt(p), ϕt(q)) > ε for some − T ≤ t ≤ T .

A set E ⊂ M is (ϕt ,T , ε)-separated if all pairs of distinct points in
E are (ϕt ,T , ε)-separated. Let s(ϕt ,T , ε) be the maximal
cardinality of a (ϕt ,T , ε)-separated set in X .

The topological entropy of the flow ϕt is then defined by

htop(ϕt) =
1

2
· lim
ε→0

{
lim sup
T→∞

1

T
log(s(ϕt ,T , ε))

}
,

which is independent of the choice of metric dM .
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For a flow with zero entropy, de Carvalho, and independently
Katok and Thouvenot, introduced the notion of slow entropy as a
measure of the complexity of the flow. The slow entropy measures
the subexponential growth of the ε-separated points.

Definition. For 0 < α < 1, the α-slow entropy of ϕt is given by

hαtop(ϕt) =
1

2
· lim
ε→0

{
lim sup
T→∞

1

Tα
log{s(ϕt ,T , ε)}

}
.

Kyewon Park and her coauthors introduced the notion of the
entropy dimension of a flow ϕt :

Dimh(ϕt) = inf
α>0

{
hαtop(ϕt)

}
= 0 .

• Are there non-trivial entropy-like invariants for Kuperberg flows?
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W = [−2, 2]× [1, 3]× S1 with non-vanishing vector field

~W = g
f

dz
+ f

f

dθ

• f is asymmetric in the vertical coordinate z about z = 0
• g ≥ 0 is constant in the S1 factor, and vanishes only along the
circles Oi = {(−1)i} × {2} × S1
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By symmetry on g ≥ 0, it must vanish to an even order along Oi .

In the generic case, g vanishes to second order.

Consider the case where g vanishes to order 2n for n > 1. As n
increases, the speed of approach to the orbits Oi slows down.
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Self-insert the Wilson plug with a twist and a bend, matching the
flow lines on the boundaries, to obtain Kuperberg Plug K

Embed so that the Reeb cylinder {r = 2} is tangent to itself.

The degree of tangency influences the dynamics.
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Define the closed subsets of W = [1, 3]× S1 × [−2, 2] ∼= R× S1

Di = σi (Di ) for i = 1, 2 are solid 3-disks embedded in W.

W′ ≡ W− {D1 ∪ D2} , Ŵ ≡ W− {D1 ∪ D2} .

C ≡ {r = 2} [Full Cylinder]

R ≡ {(2, θ, z) | −1 ≤ z ≤ 1} [Reeb Cylinder]

R′ ≡ R ∩ Ŵ [Notched Reeb Cylinder]

Oi ≡ {(2, θ, (−1)i )}, i = 1, 2 [Periodic Orbits]
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Consider the flow of the image τ(R′) ⊂ K

M0 ≡ {Φt(τ(R′)) | −∞ < t <∞}

The surface M0 is union of embedded “tongues” in K, where each
tongue wraps around the Reeb cylinder τ(R′).
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M0 is an infinite union of tongues at increasing levels,
corresponding to the level filtration

M0
0 ⊂M1

0 ⊂M2
0 ⊂ · · ·

The closure M ≡ M0 ⊂ K is a lamination with boundary.

The topology of M is highly complex.

M0 is a “fat tree” whose leaves at higher levels are recurrent on
themselves, corresponding to the branching of the tree below.
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Choose a Riemannian metric on the plug K.

Then M0 ⊂ K inherits a Riemannian metric.

Let dM denote the associated path-distance function on M0.

Fix the basepoint ω0 = (2, π, 0) ∈ τ(R′) and let

Bω0(s) = {x ∈M0 | dM(ω0, x) ≤ s}

be the closed ball of radius s about the basepoint ω0.

Let A(X ) denote the Riemannian area of a Borel subset X ⊂M0.

Then Gr(M0, s) = A(Bω0(s)) is the growth function of M0.

Given functions f1, f2 : [0,∞)→ [0,∞), we say that f1 . f2 if there
exists constants A,B,C > 0 such that for all s ≥ 0, we have that
f2(s) ≤ A · f1(B · s) + C .

Say that f1 ∼ f2 if both f1 . f2 and f2 . f1 hold.
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f1 ∼ f2 defines an equivalence relation on functions, which is used
to define their growth type.

Theorem (H & Ingebretson, 2017) There exists Kuperberg
flows such that the growth type Gr(M0, s) satisfies

Gr(M0, s) ∼ exp(sα)

for α > 0 arbitrarily small.

We give two applications of this construction.
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The Kuperberg pseudogroup GF is generated by the holonomy of
the lamination M for the section R0.

The “expansion growth function” is:

h(GF , d , ε, `) = max{#E | E ⊂ R0 is (d , ε, `)-separated}

The complexity of GF is the growth type of ` 7→ h(GF , d , ε, `)
Theorem (H & Ingebretson, 2017) There exists Kuperberg
flows such that for ε > 0 sufficiently small, the growth type
satisfies h(GF , d , ε, `) ∼ exp(`α), for α > 0 arbitrarily small.

These examples have non-trivial lamination slow entropy.

The relation between the lamination slow entropy and the flow
slow entropy is complicated.
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The open sets U` = {x ∈ K | dK(x ,Σ) < ε`} where we have
0 < ε`+1 < ε` for all ` ≥ 1, and lim

`→∞
ε` = 0, give a shape

approximation to Σ.

For α > 0, an α-pseudo-orbit for the Kuperberg flow ϕt

determines a path in U` if α < ε`.

Theorem (Misiurewicz, 1984) htop(ϕt) = hψ(ϕt) where hψ(ϕt)
denotes the entropy of ϕt calculated using pseudo-orbits.

Theorem (Barge & Swanson, 1990) htop(ϕt) = Hψ(ϕt) where
Hψ(ϕt) denotes the growth rate of separated periodic
pseudo-orbits for ϕt .

Conjecture: The expansion growth function for ϕt defined using
pseudo-orbits has the same growth type as for M0.
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We also state an additional shape property for the minimal set of a
generic Kuperberg flow.

Theorem (H & Rechtman, 2016) Let Σ be the minimal set for a
generic Kuperberg flow. Then the Mittag-Leffler condition for
homology groups is satisfied. That is, given a shape approximation
U = {U`} for Σ, then for any ` ≥ 1 there exists p > ` such that for
any q ≥ p

Image{H1(Up;Z)→ H1(U`;Z)} = Image{H1(Uq;Z)→ H1(U`;Z)}.

A shape 1-cycle is an “almost closed” path with endpoints
sufficiently close (see picture below.)

Problem: How are the shape 1-cycles related to the periodic
pseudo-orbits for ϕt?



Introduction Entropy Constructions Lamination Growth Shape

Thank you for your attention!
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