

Smooth flows with fractional entropy dimension

Steve Hurder MCA – Montreal, July 27, 2017

University of Illinois at Chicago www.math.uic.edu/~hurder

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Theorem (K. Kuperberg, 1994) Let M be a closed, orientable 3-manifold. Then M admits a C^{∞} non-vanishing vector field whose flow ϕ_t has no periodic orbits.

• K. Kuperberg, A smooth counterexample to the Seifert conjecture, Ann. of Math. (2), 140:723–732, 1994.

Shape

Theorem (K. Kuperberg, 1994) Let M be a closed, orientable 3-manifold. Then M admits a C^{∞} non-vanishing vector field whose flow ϕ_t has no periodic orbits.

• K. Kuperberg, A smooth counterexample to the Seifert conjecture, Ann. of Math. (2), 140:723–732, 1994.

There are many choices in the construction of Kuperberg plugs:

Ghys: Par ailleurs, on peut construire beaucoup de pièges de Kuperberg et il n'est pas clair qu'ils aient le même dynamique.

 É. Ghys, Construction de champs de vecteurs sans orbite périodique (d'après Krystyna Kuperberg), Séminaire Bourbaki, Vol. 1993/94, Exp. No. 785, Astérisque, 227: 283–307, 1995.

Lamination

Growth

Shape

Problem: Investigate the invariants of "Kuperberg flows":

- dynamical invariants of the smooth flow in plug $\ensuremath{\mathbb{W}}$
- topological invariants of unique minimal set $\boldsymbol{\Sigma}$
- relations with their smooth deformations.

Shape

Problem: Investigate the invariants of "Kuperberg flows":

- dynamical invariants of the smooth flow in plug $\mathbb W$
- topological invariants of unique minimal set Σ
- relations with their smooth deformations.

Theorem (Katok, 1980) Let M be a closed, orientable 3-manifold. A smooth aperiodic flow ϕ_t on M has entropy zero.

Theorem (H & Rechtman, 2016) The minimal set Σ of a generic Kuperberg flow is a 2-dimensional "zippered lamination", which has unstable shape.

Theorem (Ingebretson, 2017) The Hausdorff dimension of the minimal set Σ for a generic Kuperberg flow has $2 < HD(\Sigma) < 3$.

Let $\varphi_t \colon M \to M$ be a smooth non-vanishing flow on a compact Riemannian manifold. For $\epsilon, T > 0$, two points $p, q \in M$ are said to be (φ_t, T, ϵ) -separated if

 $d_M(arphi_t(p),arphi_t(q)) > \epsilon \quad ext{for some} \quad - \ T \leq t \leq T \; .$

A set $E \subset M$ is (φ_t, T, ϵ) -separated if all pairs of distinct points in E are (φ_t, T, ϵ) -separated. Let $s(\varphi_t, T, \epsilon)$ be the maximal cardinality of a (φ_t, T, ϵ) -separated set in X.

The topological entropy of the flow φ_t is then defined by

$$h_{top}(\varphi_t) = \frac{1}{2} \cdot \lim_{\epsilon \to 0} \left\{ \limsup_{T \to \infty} \frac{1}{T} \log(s(\varphi_t, T, \epsilon)) \right\} ,$$

which is independent of the choice of metric d_M .

Gr

Shape

For a flow with zero entropy, de Carvalho, and independently Katok and Thouvenot, introduced the notion of *slow entropy* as a measure of the complexity of the flow. The slow entropy measures the subexponential growth of the ϵ -separated points.

Definition. For $0 < \alpha < 1$, the α -slow entropy of φ_t is given by

$$h^{\alpha}_{top}(\varphi_t) = \frac{1}{2} \cdot \lim_{\epsilon \to 0} \left\{ \limsup_{T \to \infty} \frac{1}{T^{\alpha}} \log\{s(\varphi_t, T, \epsilon)\} \right\}$$

For a flow with zero entropy, de Carvalho, and independently Katok and Thouvenot, introduced the notion of *slow entropy* as a measure of the complexity of the flow. The slow entropy measures the subexponential growth of the ϵ -separated points.

Definition. For $0 < \alpha < 1$, the α -slow entropy of φ_t is given by

$$h_{top}^{lpha}(\varphi_t) = rac{1}{2} \cdot \lim_{\epsilon o 0} \left\{ \limsup_{T o \infty} rac{1}{T^{lpha}} \log\{s(\varphi_t, T, \epsilon)\}
ight\} \; .$$

Kyewon Park and her coauthors introduced the notion of the entropy dimension of a flow φ_t :

$$\operatorname{Dim}_{h}(\varphi_{t}) = \inf_{\alpha > 0} \left\{ h_{top}^{\alpha}(\varphi_{t}) \right\} = 0 .$$

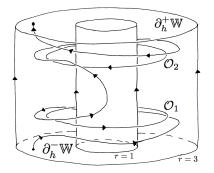
• Are there non-trivial entropy-like invariants for Kuperberg flows?

Introduction

 $\mathbb{W} = [-2,2] \times [1,3] \times \mathbb{S}^1$ with non-vanishing vector field

$$\vec{W} = g \frac{f}{dz} + f \frac{f}{d\theta}$$

- f is asymmetric in the vertical coordinate z about z = 0
- $g \ge 0$ is constant in the \mathbb{S}^1 factor, and vanishes only along the circles $\mathcal{O}_i = \{(-1)^i\} \times \{2\} \times \mathbb{S}^1$



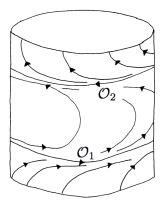
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Introduction	Entropy	Constructions	Lamination	Growth	Shape

By symmetry on $g \ge 0$, it must vanish to an even order along \mathcal{O}_i .

In the generic case, g vanishes to second order.

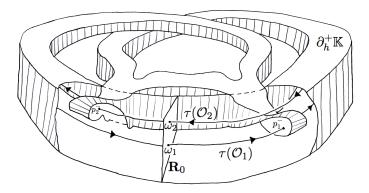
Consider the case where g vanishes to order 2n for n > 1. As n increases, the speed of approach to the orbits O_i slows down.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Shape

Self-insert the Wilson plug with a twist and a bend, matching the flow lines on the boundaries, to obtain Kuperberg Plug $\mathbb K$



Embed so that the Reeb cylinder $\{r = 2\}$ is tangent to itself. The degree of tangency influences the dynamics.

Introduction

Define the closed subsets of $\mathbb{W}=[1,3]\times\mathbb{S}^1\times [-2,2]\cong \textbf{R}\times\mathbb{S}^1$

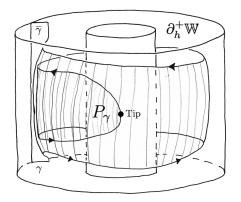
 $\mathcal{D}_i = \sigma_i(D_i)$ for i = 1, 2 are solid 3-disks embedded in \mathbb{W} .

$$\mathbb{W}' \equiv \mathbb{W} - \{\mathcal{D}_1 \cup \mathcal{D}_2\} \quad , \quad \widehat{\mathbb{W}} \equiv \overline{\mathbb{W} - \{\mathcal{D}_1 \cup \mathcal{D}_2\}} \; .$$

Consider the flow of the image $au(\mathcal{R}') \subset \mathbb{K}$

$$\mathfrak{M}_0 \;\equiv\; \{ \Phi_t(au(\mathcal{R}')) \mid -\infty < t < \infty \}$$

The surface \mathfrak{M}_0 is union of embedded "tongues" in \mathbb{K} , where each tongue wraps around the Reeb cylinder $\tau(\mathcal{R}')$.



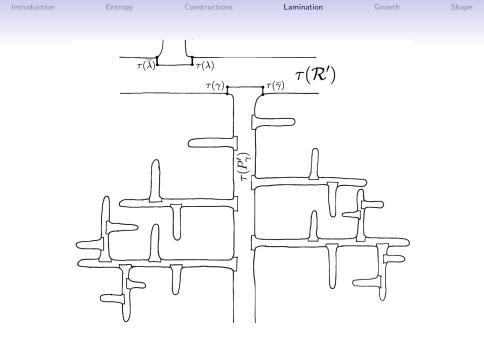
Introduction	Entropy	Constructions	Lamination	Growth	Shape

 \mathfrak{M}_0 is an infinite union of tongues at increasing levels, corresponding to the level filtration

$$\mathfrak{M}^0_0\subset\mathfrak{M}^1_0\subset\mathfrak{M}^2_0\subset\cdots$$

The closure $\mathfrak{M} \equiv \overline{\mathfrak{M}_0} \subset \mathbb{K}$ is a lamination with boundary. The topology of \mathfrak{M} is highly complex.

 \mathfrak{M}_0 is a "fat tree" whose leaves at higher levels are recurrent on themselves, corresponding to the branching of the tree below.



Choose a Riemannian metric on the plug $\mathbb{K}.$

Then $\mathfrak{M}_0\subset\mathbb{K}$ inherits a Riemannian metric.

Let $d_{\mathfrak{M}}$ denote the associated path-distance function on \mathfrak{M}_0 .

Fix the basepoint $\omega_{0}=(2,\pi,0)\in au(\mathcal{R}')$ and let

$$B_{\omega_0}(s) = \{x \in \mathfrak{M}_0 \mid d_\mathfrak{M}(\omega_0, x) \leq s\}$$

be the closed ball of radius s about the basepoint ω_0 .

Let A(X) denote the Riemannian area of a Borel subset $X \subset \mathfrak{M}_0$. Then $\operatorname{Gr}(\mathfrak{M}_0, s) = A(B_{\omega_0}(s))$ is the growth function of \mathfrak{M}_0 . Given functions $f_1, f_2: [0, \infty) \to [0, \infty)$, we say that $f_1 \leq f_2$ if there exists constants A, B, C > 0 such that for all $s \geq 0$, we have that $f_2(s) \leq A \cdot f_1(B \cdot s) + C$.

Say that $f_1 \sim f_2$ if both $f_1 \lesssim f_2$ and $f_2 \lesssim f_1$ hold.

 $f_1 \sim f_2$ defines an equivalence relation on functions, which is used to define their growth type.

Theorem (H & Ingebretson, 2017) There exists Kuperberg flows such that the growth type $Gr(\mathfrak{M}_0, s)$ satisfies

 $\operatorname{Gr}(\mathfrak{M}_0, s) \sim \exp(s^{\alpha})$

for $\alpha > 0$ arbitrarily small.

We give two applications of this construction.

The Kuperberg pseudogroup $\mathcal{G}_\mathcal{F}$ is generated by the holonomy of the lamination \mathfrak{M} for the section $R_0.$

The "expansion growth function" is:

 $h(\mathcal{G}_{\mathcal{F}}, d, \epsilon, \ell) = \max\{\#\mathcal{E} \mid \mathcal{E} \subset \mathbf{R}_0 \text{ is } (d, \epsilon, \ell) \text{-separated}\}$

The complexity of $\mathcal{G}_{\mathcal{F}}$ is the growth type of $\ell \mapsto h(\mathcal{G}_{\mathcal{F}}, d, \epsilon, \ell)$ **Theorem (H & Ingebretson, 2017)** There exists Kuperberg flows such that for $\epsilon > 0$ sufficiently small, the growth type satisfies $h(\mathcal{G}_{\mathcal{F}}, d, \epsilon, \ell) \sim \exp(\ell^{\alpha})$, for $\alpha > 0$ arbitrarily small.

These examples have non-trivial *lamination* slow entropy.

The relation between the lamination slow entropy and the flow slow entropy is complicated.

The open sets $U_{\ell} = \{x \in \mathbb{K} \mid d_{\mathbb{K}}(x, \Sigma) < \epsilon_{\ell}\}$ where we have $0 < \epsilon_{\ell+1} < \epsilon_{\ell}$ for all $\ell \ge 1$, and $\lim_{\ell \to \infty} \epsilon_{\ell} = 0$, give a shape approximation to Σ .

For $\alpha > 0$, an α -pseudo-orbit for the Kuperberg flow φ_t determines a path in U_ℓ if $\alpha < \epsilon_\ell$.

Theorem (Misiurewicz, 1984) $h_{top}(\varphi_t) = h_{\psi}(\varphi_t)$ where $h_{\psi}(\varphi_t)$ denotes the entropy of φ_t calculated using pseudo-orbits.

Theorem (Barge & Swanson, 1990) $h_{top}(\varphi_t) = H_{\psi}(\varphi_t)$ where $H_{\psi}(\varphi_t)$ denotes the growth rate of separated periodic pseudo-orbits for φ_t .

Conjecture: The expansion growth function for φ_t defined using pseudo-orbits has the same growth type as for \mathfrak{M}_0 .

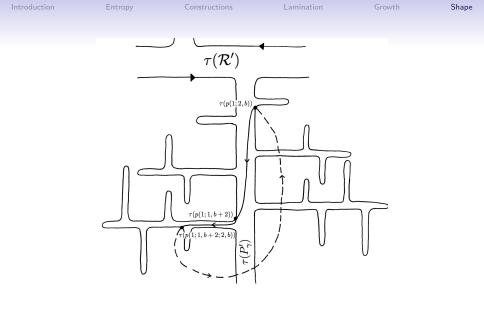
We also state an additional shape property for the minimal set of a generic Kuperberg flow.

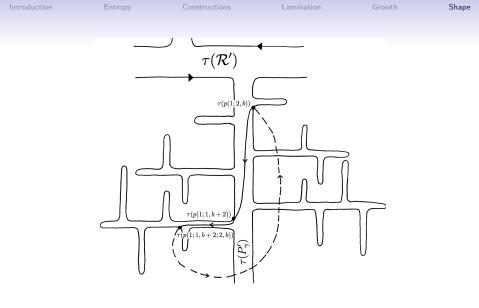
Theorem (H & Rechtman, 2016) Let Σ be the minimal set for a generic Kuperberg flow. Then the Mittag-Leffler condition for homology groups is satisfied. That is, given a shape approximation $\mathfrak{U} = \{U_\ell\}$ for Σ , then for any $\ell \ge 1$ there exists $p > \ell$ such that for any $q \ge p$

 $\mathit{Image}\{\mathit{H}_1(\mathit{U}_p;\mathbb{Z}) \rightarrow \mathit{H}_1(\mathit{U}_\ell;\mathbb{Z})\} = \mathit{Image}\{\mathit{H}_1(\mathit{U}_q;\mathbb{Z}) \rightarrow \mathit{H}_1(\mathit{U}_\ell;\mathbb{Z})\}.$

A shape 1-cycle is an "almost closed" path with endpoints sufficiently close (see picture below.)

Problem: How are the shape 1-cycles related to the periodic pseudo-orbits for φ_t ?





Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

K. Kuperberg, A smooth counterexample to the Seifert conjecture, Ann. of Math. (2), 140:723–732, 1994.

S. Hurder and A. Rechtman, *The dynamics of generic Kuperberg flows*, **Astérisque**, Vol. 377, 2016.

S. Hurder and A. Rechtman, *Aperiodicity at the boundary of chaos*, **Ergodic Theory Dynamical Systems**, to appear, 2017.

S. Hurder and A. Rechtman, *Perspectives on Kuperberg flows*, **Topology Proceedings**, to appear, 2017.

D. Ingebretson, *Hausdorff dimension of generic Kuperberg minimal sets*, **Thesis**, University of Illinois at Chicago, August 2017.

S. Hurder and D. Ingebretson, *Smooth flows with fractional entropy dimension*, in preparation, 2017.

S. Hurder and A. Rechtman, *The dynamics of Derived from Kuperberg flows*, in preparation, 2017.