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The set-up:

M is a compact riemannian manifold;

F is a Cr foliation, for r ≥ 0; usually r ≥ 1.

q is the codimension of F, p is the leaf dimension;

each leaf L ↪→ M is an immersed submanifold.

The “dynamics of F” refers to the study of the recur-
rence and ergodic properties of the leaves of F.

For p = 1 and F oriented, this is the study of the dy-
namics of the non-singular flow of the positively oriented
vector field spanning F.

Given any finitely-generated group Γ and a Cr-action φ
on a compact manifold N q, there is a foliation Fφ by
surfaces of a compact manifold M q+2 with a section
T ∼= N , whose dynamics is equivalent to that of the
group action.

So for p ≥ 2, the dynamics of F includes the study
of the dynamics of finitely-generated group actions on
compact manifolds. It also asks how the geometry of the
leaves influences their recurrence and ergodic properties.
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Definition: X ⊂ M is a minimal set for F if

• X is a union of leaves

• X is closed

• every leaf L ⊂ X is dense in X

If M is a compact manifold without boundary, for every
leaf L of F, its closure L always contains at least one
minimal set.

The restriction of F to X defines a minimal foliated
space or a minimal lamination.
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Problem: What minimal laminations arise as the mini-
mal sets for Cr-foliations?

Problem: Is there a restriction on the topological shape
and embedding of a minimal lamination K ⊂ M , imposed
by the topology of M for example?

Problem: How do you characterize the dynamics of
a foliated minimal lamination? (e.g., positive entropy;
expansive; hyperbolic; distal; equicontinuous)

Problem: Given a complete Riemannian manifold L of
bounded geometry, is it diffeomorphic (or quasi-isometric)
to a leaf in a minimal set of a foliation?

In this talk, will discuss two types of examples recently
discovered which realize Sierpinski spaces and solenoids
as minimal sets of smooth foliations.

The examples suggests many questions.
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Let T be a closed manifold of dimension q, possibly with
boundary, and T ↪→ M an embedding which is transverse
to F and intersects each leaf of F.

A minimal set X is exceptional if K = X ∩ T has no
interior, and is not a finite set.

X is exotic if K = X ∩ T is exceptional, and not locally
homeomorphic to the product of a manifold and a totally
disconnected Cantor set.

Problem: What continua can be realized as K = X ∩T
for a minimal set X of a Cr-foliation?
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Transversal pseudogroup: T a Riemannian manifold
of dimension q.

Example 1: T = N a closed Riemannian q-manifold.

Example 2: T ⊂ Rq is a disjoint union of closed disks.

Definition A Cr-pseudogroup of transformations G of T
is compactly generated if

1. T contains a relatively compact open subset T0

meeting all the orbits of G

2. there is a finite set Γ = {g1, . . . , gk} ⊂ Gr(T ) such
that G(Γ) = G|T0;

3. gi : D(gi) → R(gi) is the restriction of g̃i ∈ Gr(T )
with D(g) ⊂ D(g̃i).

D(g) the closure of the domain of g in T

R(g) the closure of the range of g in T

A Cr-foliation F of a compact manifold M always has a
finite open covering {φα : Uα → Dp+q} by foliation charts
which defines (via holonomy transformations) a com-
pactly generated Cr-pseudogroup of transformations G
so that the dynamics of F and of G are equivalent.
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A closed subset K ⊂ T is a minimal set for G if

• for each x ∈ K, G · x ⊂ K

• K is closed

• for each x ∈ K, G · x is dense in K

Problem: What continua K ⊂ T arise as the minimal
sets for compactly generated, Cr-pseudogroups of trans-
formations G of T ?

This problem is actually much easier than the analogous
problem for foliations, as there is no requirement the
dynamic can be completed to a system (foliation) on a
compact manifold.

Every Iterated Function System is of this type, but it is
generally unknown when a given IFS can be realized as
the restriction of a holonomy pseudogroup of a foliation
on a compact manifold.
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Foliation entropy: For g ∈ G, the word length ‖g‖x is
the least n such that

Germx(g) = Germx(g
±1
i1
◦ · · · ◦ g±1

in
)

Let x ∈ U ⊂ T , U an open neighborhood.

S = {x1, . . . , x`} ⊂ U is (n, ε)-separated if for all xi 6= xj

∃ g ∈ G|U such that ‖g‖x ≤ n and dT (g(xi), g(xj)) ≥ ε

h(U, n, ε) = max #{S | S ⊂ U is (n, ε) separated}

B(x, δ) ⊂ T is open δ–ball about x ∈ T

The local entropy of G at x is

hloc(G, x) = lim
δ→0

{
lim
ε→0

{
lim sup

n→∞

lnh(B(x, δ), n, ε)

n

}}
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Example: G generated by an expanding map f : N → N
of a compact manifold N , then hloc(G, x) = hloc(f, x) is
the usual local entropy of f .

hloc(G, x) > 0 means that looking out from the point x
along orbits of G, one sees exponentially growing chaos
in every open neighborhood about x.

The geometric entropy of G:

h(G) = lim
ε→0

{
lim sup

n→∞

lnh(T , n, ε)

n

}
The geometric entropy of F is h(F) = h(G) where G is
the pseudogroup determined by a good covering of M
by foliations charts.

Proposition: G compactly generated =⇒

h(F) ≡ h(G) = sup
x∈T

hloc(G, x)
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Definition: A compactly generated pseudogroup (M,Γ0),
Γ0 = {h1, . . . , hk} a generating set, is a Markov sub-
pseudgroup for G if k ≥ 2 and the generators satisfy:

1. each hi ∈ Γ0 is the restriction of an element h̃i ∈ G
with D(hi) ⊂ D(h̃i)

2. (Open Set Condition) R(hi) ∩R(hj) = ∅ for i 6= j

3. if R(hi) ∩D(hj) 6= ∅ then R(hi) ⊂ D(hj)

Remarks:

• Can use h̃i : D(hi) → R(hi) in the definition.

• (2) does not assume R(hi) ∩R(hj) = ∅ for i 6= j.

• (M,Γ) is discrete if R(hi) ∩R(hj) = ∅ for i 6= j.

This last property corresponds to the Strong Open Set
Condition for iterated function systems.

The transition matrix P for a Markov pseudogroup (M,Γ0)
is the k× k matrix with entries {0,1} defined by Pij = 1
if R(hj) ⊂ D(hi), and 0 otherwise.

• (M,Γ0) is a chaotic Markov pseudogroup ⇐⇒ P is
irreducible and aperiodic, so there exists ` > 0 such that
(P `)ij ≥ 1 for all 1 ≤ i, j ≤ k.
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Definition: A G-invariant minimal set K ⊂ T is Markov
if there is a chaotic Markov pseudogroup (M,Γ) such
that

K ⊂ R(h1) ∪ · · · ∪R(hk)

Here is a useful fact.

Theorem 1: If K is Markov then the relative foliation
entropy h(F , K) > 0.

Conjecture 1: Foliation entropy h(G, T ) > 0 implies
there is a Markov minimal set K ⊂ G · x.
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Known examples includes McSwiggen’s construction of
a C2-action of Z on Tq with dense wandering domains.
[Diffeomorphisms of the k-torus with wandering domains,
Ergodic Theory Dynam. Systems, 15:1189–1205, 1995.]
These examples have entropy 0.

The suspension of Kleinian group actions on the sphere
at ∞ ∼= Sq give examples were the minimal set is locally
Sierpinski. These examples have positive entropy.

Graphic from [The classification of conformal dynamical
systems by Curt McMullen]
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Here are some recent results:

Theorem 1: [B́ıs, Hurder & Shive 2005] There exists
a smooth foliation of a compact 4-manifold M , whose
leaves are 2-dimensional, such that there is a unique
chaotic Markov minimal set X that has intersection with
a transversal T2 ↪→ M is a Sierpinski 2-torus:

The leaves inside of X are quasi-isometric to “tree-like”
realizations of orbits of a generalized “Iterated Function
System”.
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The above example is realized using a single covering
map f : T2 → T2 which is a deformation of the standard
affine map (x, y) 7→ (2x,2y).

The construction works more generally for the following
data:

• N is a closed manifold of dimension q,

• Γ0 = {f1 : N → N, . . . , fk : N → N} a collection of self-
covering maps.

Theorem 2: There exists a foliated manifold M whose
whose dynamics is equivalent to that generated by the
system of maps Γ.

The construction uses a generalization of the Hirsch
example.

The dimension of the leaves is generally much greater
than 2, and depends on the orders of the various cover-
ing groups.
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As an application of Theorem 2, we have:

Theorem 3: [BHS 2005] For q > 2, there exists a
smooth foliation F of a compact M such that F has a
unique chaotic Markov minimal set X whose intersection
K = X ∩ Tq with a transversal Tq ↪→ M is a Sierpinski
k-torus:

π`(K) =

{
Z∞, ` = k − 1,

0, otherwise.

There are many other constructions of exotic minimal
sets for deformations of systems of expanding and of
partially expanding self-maps of compact manifolds.

The use of self-coverings seems to have much more free-
dom to create wandering domains for smooth systems,
than happens for systems of diffeomorphisms.
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We can use this construction to obtain foliation of codi-
mension q with transversally affine, local holonomy equiv-
alent to SL(q, Z).

Let Γ ⊂ SL(q, Z) be a finitely generated subgroup; or
rather, for matrices {A1, . . . , Ak} ⊂ SL(q, Z) let Γ denote
the group they generate. For each index 1 ≤ ` ≤ k, let
λ` ∈ N be a positive integer, and let Λ` = λ` · Id be the
diagonal matrix with all diagonal entries λ`. Let B` =
Λ` ·A` be the integer matrix with inverse B−1

` ∈ SL(q, Q).

?

Tq

Tq

Id

- TqA`

?
Λ`

Tq-
B`
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The construction above yields a foliation FC of codi-
mension q with transversal Tq whose global holonomy
induced on the section M0 = Tq is equivalent to the
pseudogroup ΓC generated by the maps {B̃` : Tq → Tq |
1 ≤ ` ≤ k}.

Let Γ = SL(q, Z) and {A1, . . . , Ak} be a set of generators.
Note that for any pair 1 ≤ i, j ≤ k we have that

[Bi, Bj] = BiBjB
−1
i B−1

j = AiAjA
−1
i A−1

j = [Ai, Aj]

as the factors Λi and Λj are multiples of the identity.

Thus, the subgroup Γ̂ = 〈B1, . . . , Bk〉 ⊂ SL(q, Q) gener-
ated by the matrices {B`} contains a subgroup isomor-
phic to the commutator subgroup [Γ,Γ] ⊂ SL(q, Z).

[Γ,Γ] is a normal subgroup of finite index in SL(q, Z).

While the commutator [B̃i, B̃j] of maps is not well-defined
as diffeomorphisms of Tq, it is well-defined as local ele-
ments of the holonomy groupoid ΓC. Thus, the holon-
omy groupoid ΓC contains a subgroupoid equivalent to
that generated by the action of [Γ,Γ] on Tq.

Theorem 4: [Hurder 2006] The foliations FC are stable
under C1 deformations.

Question: Are the foliations FC stable under C1 pertur-
bations?
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Theorem 5: [Clark & Hurder 2006] Let F be a Cr

foliation of a compact manifold M , r ≥ 1. If F has a
compact leaf L such that:

• The holonomy of L is germinally Cr-flat,

• There is a surjective map ρ : π1(L) → Zk.

Then there exists a Cr-foliation F ′ which is Cr-close to
F such that F ′ has a solenoidal minimal set X whose
leaves are Zk-covers of L.

Moreover, X admits an F ′-holonomy invariant transverse
measure, and the geometric entropy h(F ′, X) = 0 so X
is not Markovian.

[Embedding solenoids, Alex Clark & Robbert Fokkink,

Fund. Math., Vol. 181, 2004. p. 111]
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Remark: This construction can be made for the com-
pact leaves in the generalized Hirsch foliations in The-
orems 1 & 2. It produces a second foliation which is
transverse to the “Hirsch foliation”, and which contains
an embedded solenoidal minimal set.

There is a “duality” between the generalized Hirsch fo-
liations and embedded solenoids, in that the holonomy
of the Hirsch foliations generate expanding maps of the
solenoids, while the fiber dynamics of the solenoid cap-
ture the graph structure of the leaves of the Hirsch folia-
tion. It is a sort of “resonance” between the dynamics of
the two transverse foliations - one foliation is transver-
sally hyperbolic, the other is transversally distal.

The resonance can be seen at the level of group actions,
by considering the action of the fundamental group Γ̂ =
π1(M) on the universal covering M̃ → M , where there
are two transverse foliations and the action is partially
hyperbolic.
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The Construction.

The traditional construction of the affine Hirsch example
proceeds as follows. Choose an analytic embedding of
S1 in the solid torus D2×S1 so that its image is twice a
generator of the fundamental group of the solid torus.

Remove an open tubular neighborhood of the embedded
S1. What remains is a three dimensional manifold N1

whose boundary is two disjoint copies of T 2. D2 × S1

fibers over S1 with fibers the 2-disc. This fibration re-
stricted to N1 foliates N1 with leaves consisting of 2-
disks with two open subdisks removed.
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Now identify the two components of the boundary of N1

by a diffeomorphism which covers the map z 7→ z2 of S1

to obtain the manifold N . Endow N with a Riemannian
metric; then the punctured 2-disks foliating N1 can now
be viewed as pairs of pants.

As the foliation of N1 is transverse to the boundary,
the punctured 2-disks assemble to yield a foliation of
foliation F on N , where the leaves without holonomy
(corresponding to irrational points for the chosen dou-
bling map of S1) are infinitely branching surfaces, de-
composable into pairs-of-pants which correspond to the
punctured disks in N1.
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The construction is generalized in two ways:

• Replace the map z 7→ z2 of S1 with a self-covering
f : N → N .

To obtain the example of Theorem 2, choose a map
f : T2 → T2 as pictured below, where h = f−1, so that f
has a sink on the square in the upper right square:

If the map f is a uniform expander, then the foliation

F obtained from gluing will have all leaves dense. The

idea in general is to introduce sinks of various shapes –

then the foliation F will have a minimal set consisting

of the regions “left over”.
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• Replace the simple braid of S1 × D2 implicitly used in
the original Hirsch construction

with a “flat-bundle braid” of N×Sp, p ≥ 2 obtained from
a representation,

Π = π1(N)/f∗π1(N), ρ : Π → SO(p + 1)
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Proof of Theorem 5: Step 1

Consider again the construction of the Hirsch example:

There is a core circle S1, and the torus is the boundary
of a product bundle S1 × D2 → S1.

Given the leaf L ⊂ M , the radial “blow-up”’ of its normal
bundle at the zero section yields a product bundle
L×Sq−1 → L. It is trivial since the linear holonomy of L is
trivial, and the foliation is a product on this bundle with
all leaves trivial coverings of the core L. The bundle is
the boundary of the disk bundle L× Dq, and the idea is
to recursively extend the foliation into this tube.
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Proof of Theorem 5: Step 2

Choose a descending sequence of normal subgroups

Zk ⊃ n1 · Zk ⊃ n1n2 · Zk ⊃ n1n2n3 · Zk ⊃ · · ·
where all integers n` > 1. Then π1(L) → Zk induces a
chain of normal subgroups

π1(L) = Γ0 ⊂ Γ1 ⊃ Γ2 ⊃ · · ·

such that
∞⋂

`=1

Γ` = {e}. We get a corresponding sequence

of finite coverings

L = L0 ⊃ L1 ⊃ L2 ⊃ L3 ⊃ · · ·

Each group Γ` acts via rotations on S2k−1 ⊂ Ck, giving
representations ρ` : Γ` → SO(2k). The representation ρ`

is deformable to the identity,

ρ`,t : Γk → SO(2k) , ρ`,0 = ρ` , ρ`,1 = Id

The family ρ`,t yields a foliation of L×D2k−1 → L which is
a product near L×S2k−2, and in a neighborhood of L×{0}
is a flat bundle whose generic leaves are the coverings
L` → L. The foliation is a tubular neighborhood of a
generic leaf is a product.

This allows us to recursively insert each successive cov-
ering L`. The resulting limit foliation F ′ will contain a
minimal set diffeomorphic to the solenoid defined by the
sequence of covers above.

If the integers n` →∞ sufficiently fast (eg, n` = `!) then
F ′ will be Cr.
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