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Kuperberg’s Theorem

Theorem: [Kuperberg, 1994] Let M be a closed 3-manifold M.
Then there exists a smooth, non-vanishing vector X on M with no
periodic orbits.
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Wilson Plug

Wilson’s fundamental idea was the construction of a plug which
trapped content, and all trapped orbits have limit set a periodic
orbit contained in the plug. The two periodic orbits are attractors:
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Schweitzer’s Theorem

Theorem: [Schweitzer, 1974] Every homotopy class of
non-singular vector fields on a closed 3-manifold M contains a
C 1-vector field with no closed orbits.

In early 1970’s, Paul Schweitzer had two deep insights:

In the Wilson Plug:

• the periodic circles can be replaced by a minimal set for a flow
without periodic orbits, such as the Denjoy minimal set;

• the new minimal set does not have to be in a planar flow, but
may be contained in a surface flow which embeds in R3.
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Schweitzer Plug

The circular orbits of the Wilson Plug are replaced by Denjoy
minimal sets, embedded as follows:
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Kuperberg’s “Big Idea”

Shigenori Matsumoto’s summary:

We therefore must demolish the two closed orbits in the Wilson
Plug beforehand. But producing a new plug will take us back to the
starting line. The idea of Kuperberg is to let closed orbits demolish
themselves. We set up a trap within enemy lines and watch them
settle their dispute while we take no active part.

(transl. by Kiki Hudson Arai)
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Modified Wilson Plug
The vector field W = f (r , z)∂/∂z + g(r , z)∂/∂θ on the plug
(r , θ, z) ∈ [1, 3]× S1 × [−2, 2] = W is radially symmetric, with
f (r , 0) = 0 and g(r , z) = 0 only near the boundary, and
g(r , z) = 1 away from the boundary ∂W .
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Form and twist the horns
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Insert the twisted horns

The vector field W induces a field K on the surgered manifold.
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Minimal set for the Kuperberg Plug

If x ∈ P has forward orbit trapped, then the ω-limit set ωx is a
closed invariant subset of the interior of P, hence contains a
minimal set K for the flow.

Theorem: The Kuperberg flow has a unique minimal set K, given
by the closure of the orbit of the image of a special point from
either of the periodic orbits in the Wilson Plug.

Problem: Describe the dynamics of X restricted to K.

Problem: What is the topological shape of K?

Steven Hurder & Ana Rechtman UIC

Kuperberg minimal sets



Construction Dynamics of the Plug Strategy Renormalization Renormalization Bibliography

Computer model of K
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Zippered laminations

Theorem:[H & R] The Kuperberg flow preserves a “zippered
lamination” M, where:

• M is defined by the closure of the orbit of the Reeb Cylinder.

• The boundary Z = ∂M is the flow of a Cantor set (the zipper),
defined by 2-dimensional ping-pong dynamics.

• The dynamics of flow X restricted to M is “Denjoy type” -
either polynomial (dense) or exponential class (Cantor)

Theorem:[H & R] The minimal set K has unstable shape.
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The minimal set

Theorem:[H & R] K = L for a “generic” Kuperberg Plug.

By generic, we mean that the singularities for the vanishing of the
vertical vector field W used to define K are quadratic type, and
the insertion yields a quadratic radius function.

The two papers below contain particular constructions of
Kuperberg Plugs which discuss the existence of open disks in K .

• É. Ghys, “Construction de champs de vecteurs sans orbite périodique (d’après

Krystyna Kuperberg)”, Séminaire Bourbaki, Vol. 1993/94, Exp. No. 785, 1995.

• G. Kuperberg and K. Kuperberg, “Generalized counterexamples to the

Seifert conjecture” , Annals of Math, 1996.
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Families of orbits

Strategy is to consider the orbits of transversal segments to the
Kuperberg flow, obtaining global dynamical information as well.

Radius inequality: r(x) ≥ r(x), where r(x) is the radius of the
image of x in the inserted region, with equality only at the periodic
orbit entry point. Thus, passing through the face of an insertion
increases the radius.
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Tongues in Wilson Plug
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Propellors in Kuperberg Plug

When a tongue as above is combined with the recursive Wilson
dynamics of the Kuperberg flow, we obtain a “propellor”:
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Propellors produce leaves of the lamination

The orbit of the Reeb cylinder R = {−1 ≤ z ≤ 1} produces arcs:
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Ellipses capture full dynamics

The orbit of the full cylinder C = {−2 ≤ z ≤ 2} produces ellipses.

Going to tip of propellor ≡ moving toward left most ellipse.
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Re-insertion of the propellors
Dynamics are renormalizable, so nesting within nesting . . .

Left arcs are lamination M. Right arcs are recurrence sets.
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Coding

The pseudogroup dynamics of the flow admits a coding.

Ei are entry faces of insertions, Si are exit faces of insertions.

Orbits in K have quasi-tiling property: “tiles” are the codes for
Wilson orbit segments.
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Wilson sub-dynamics

Let Φt denote flow of K. Let p1 be special point - image of Wilson
periodic orbit in transversal E1.

The there exists times 0 < s1 < s2 < · · · with s` →∞ very rapidly,
ξ` = Φs`(p1) with, for (r , θ, z) coordinates on E1

• radius r(ξ`) = r(p1) constant,

• angle θ(ξ`) = θ(ξ1) constant;

• height z(ξ`) monotone increasing to −1 = z(p1).

• |z(ξ`+1)− z(ξ`)| decreases polynomial speed as `→∞.
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Re-insertion dynamics
K1 : E1 → E1 is reinsertion map. ψi = Φs`i

◦ K1 ◦ Φs`0
yields

Steven Hurder & Ana Rechtman UIC

Kuperberg minimal sets



Construction Dynamics of the Plug Strategy Renormalization Renormalization Bibliography

Ping Pong dynamics

Pseudogroup generated by 〈ψi , ψj〉 for i 6= j large generates “free”
semi-sub-pseuodogroup.

• The problem is that the domains are planar, not linear.

• Orbits are chaotic in open neighborhood of special point p1 -
the renormalization point.

• Chaos is seen in tips of propellors.
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Almost homoclinic dynamics

The dynamics generated by ψi maps resemble that of homoclinic
tangencies of partially hyperbolic systems:
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Reeb circle

The circle S = {(r , θ, z) | r = 2 , z = 0} is called Reeb circle.

• Wilson orbit for x with 0 < |r(x)− 2| < ε traverses S within ε.

• Wilson flow is rotation on circles {(r , θ, z) | r 6= 2, z = cst}.
• Flow of S under Φt defines lamination M (up to closure).
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Density

Proposition: The Φt-orbits of special point is dense in an open
tubular neighbor hood of S.

Proof (by G. & K. Kuperberg): Choose vector field K precisely,
then show explicitly.

Proof (by É. Ghys): Choose vector field K carefully, then calculate
and invoke Baire for subset of insertions.

Proof (by H. & R.): Choose vector field K and insertions
generically, then special orbits {ξ`} have polynomial density, and
follow image of this set under renormalization to get density in
arbitrary open neighborhoods of points in the Reeb circle S.
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