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Matchbox manifolds

Let M be a continuum.

Suppose that each x ∈M has an open neighborhood
homeomorphic to (−1, 1)n × Tx , where Tx is a totally
disconnected clopen subset of some Polish space X. =⇒
arc-components are locally Euclidean.

Definition: M is an n-dimensional matchbox manifold ⇐⇒ M
admits a covering by foliated coordinate charts
U = {ϕi : Ui → [−1, 1]n × Ti | i ∈ I} where Ti are is a totally
disconnected clopen subsets of X.

The transition functions are assumed to be C r , for 1 ≤ r ≤ ∞,
along leaves, and the derivatives depend (uniformly) continuously
on the transverse parameter.
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Why Matchbox Manifolds?

L0 is a connected, complete Riemannian manifold, “marked” with
a metric, a net, a tiling, or other local structure.

“Compactify” this data by looking for a continuum M in which L0

embeds as a leaf of a “foliation” and respecting the local structure.

A simple example which embeds in foliation on T2 :

“Slinky model” gives even more compact model, and is continuum.
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Triply periodic manifold

“Compactifying” gives a foliation of a compact 4-manifold

M = (L× S1)/Z3 with leaf L
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Penrose tiling stripped of decorations

Closure of R2-translates of the graph below yields a continuum M
foliated by action of R2:
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Graph closures & Ghys-Kenyon examples
Closure of space of subtrees of given graph, yields a Cantor set
with pseudogroup action, which generates a foliated continuum M.
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Definition: An n-dimensional matchbox manifold is a continuum
M which is a smooth foliated space with codimension zero and
leaf dimension n. Similar concept to laminations.

Ti are totally disconnected ⇐⇒ M is a matchbox manifold

leaves of F ⇐⇒ orbits of group action

• A “smooth matchbox manifold” M is analogous to a compact
manifold, and the pseudogroup dynamics of the foliation F on the
transverse fibers Ti represents intrinsic fundamental groupoid.

• They appear in study of tiling spaces, leaves of foliations, graph
constructions, inverse limit spaces, pseudogroup actions on totally
disconnected spaces, et cetera.
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Questions that we would like to understand

• How does a matchbox manifold M differ from an invariant set of
a smooth dynamical system? of a foliation dynamical system?

• What is the group of homeomorphisms of M? is it “big” or
“small”? is it “algebraic”?

• Can you “count” the matchbox manifolds? How do you
distinguish one from another? with K-Theory invariants? using
cohomology invariants? systems of approximations?

• What classification scheme works to understand these spaces?

• Restrict attention to one of two cases:
M is transitive if there exists a dense leaf.
M is minimal if every leaf in M is dense.
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Embeddings

If f : K→ K is minimal action on Cantor set, then classical
problem asks, when does this action arise as the restriction of a
C r -diffeomorphism of f : S1 → S1?, where r < 2? How about as
invariant set for some diffeomorphism on Nk where k ≥ 1?

Solutions to this problem for solenoids modeled on Tn, n = 1 by
Gambaudo, Tressier, et al in 1990’s. For n ≥ 1 by Clark & Hurder,
“Embedding solenoids in foliations”, Topology Appl., 2011.

The criteria for embedding depend on the degree of smoothness
required. These are very special cases, and problem is wide open.

Steven Hurder UIC

Introduction to Matchbox Manifolds



Matchbox Manifolds Goals Solenoids Pseudogroups Shape Coding Morphisms

Homeomorphisms

Let M be a matchbox manifold of dimension n.

Lemma: A homeomorphism φ : M→M′ of matchbox manifolds
must map leaves to leaves ⇒ is a foliated homeomorphism.

Proof: Leaves of F ⇐⇒ path components of M

Corollary: Homeo(M) = Homeo(M,F) – all homeomorphisms
are leaf preserving.
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Bing Bling

Bing Question: Let X be a homogeneous continuum, and
suppose every proper subcontinuum of X is an arc. Must X then
be a circle or a solenoid?

Yes! Hagopian, 1977.

Mislove & Rogers, 1989.
Aarts, Hagopian & Oversteegen, 1991.
Clark, 2002.
Clark & Hurder, 2010.

Proofs vary in their degrees of “abstractness”, suggesting:

Bing Conjecture: Suppose that M is homogeneous continuum,
and M is a matchbox manifold of dimension n ≥ 1. Then either M
is homeomorphic to a compact manifold, or to a McCord solenoid.
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The Theorem

Theorem: [C & H, 2010] Bing Conjecture is true for all n ≥ 1.

Sketch of proof of this, introduces many ideas from foliation and
topological dynamical systems of matchbox manifolds – a.k.a.
dynamics of pseudogroups acting on totally disconnected spaces.

1. detour through weak solenoids

2. dynamics of pseudogroups

3. shape and transverse foliations

4. codings and solenoids

5. automorphisms...
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Weak solenoids

Let B` be compact, orientable manifolds of dimension n ≥ 1 for
` ≥ 0, with orientation-preserving covering maps

p`+1−→ B`
p`−→ B`−1

p`−1−→ · · · p2−→ B1
p1−→ B0

The p` are the bonding maps for the weak solenoid

S = lim
←
{p` : B` → B`−1} ⊂

∞∏
`=0

B`

Proposition: S has natural structure of a matchbox manifold,
with every leaf dense.

Steven Hurder UIC
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From Vietoris solenoids to McCord solenoids

Basepoints x` ∈ B` with p`(x`) = x`−1, set G` = π1(B`, x`).

There is a descending chain of groups and injective maps

p`+1−→ G`
p`−→ G`−1

p`−1−→ · · · p2−→ G1
p1−→ G0

Set q` = p` ◦ · · · ◦ p1 : B` −→ B0.

Definition: S is a McCord solenoid for some fixed `0 ≥ 0, for all
` ≥ `0 the image G` → H` ⊂ G`0 is a normal subgroup of G`0 .

Theorem [McCord 1965] Let B0 be an oriented smooth closed
manifold. Then a McCord solenoid S is an orientable,
homogeneous, equicontinuous smooth matchbox manifold.

Steven Hurder UIC
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Classifying weak solenoids

A weak solenoid is determined by the base manifold B0 and the
tower equivalence of the descending chain

P ≡
{

p`+1−→ G`
p`−→ G`−1

p`−1−→ · · · p2−→ G1
p1−→ G0

}
Theorem:[Pontragin 1934; Baer 1937] For G0

∼= Z, the
homeomorphism types of McCord solenoids is uncountable.

Theorem:[Kechris 2000; Thomas2001] For G0
∼= Zk with k ≥ 2,

the homeomorphism types of McCord solenoids is not classifiable,
in the sense of Descriptive Set Theory.

The number of such is not just huge, but indescribably large.
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Pseudogroups

Covering of M by foliation charts =⇒ transversal T ⊂M for F
Holonomy of F on T =⇒ compactly generated pseudogroup GF :

I relatively compact open subset T0 ⊂ T meeting all leaves of F
I a finite set Γ = {g1, . . . , gk} ⊂ GF such that 〈Γ〉 = GF |T0;

I gi : D(gi )→ R(gi ) is the restriction of g̃i ∈ GF ,
D(g) ⊂ D(g̃i ).

Dynamical properties of F formulated in terms of GF ; e.g.,

F has no leafwise holonomy if for g ∈ GF , x ∈ Dom(g), g(x) = x
implies g |V = Id for some open neighborhood x ∈ V ⊂ T .

Steven Hurder UIC
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Topological dynamics

Definition: M is an equicontinuous matchbox manifold if it
admits some covering by foliation charts as above, such that for all
ε > 0, there exists δ > 0 so that for all hI ∈ GF we have

x , x ′ ∈ D(hI) with dT (x , x ′) < δ =⇒ dT (hI(x), hI(c ′)) < ε

Theorem: Let M be an equicontinuous matchbox manifold. Then
M is minimal.

Theorem: If M is a homogeneous matchbox manifold, then the
pseudogroup GF is equicontinuous.
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Topological dynamics of pseudogroups

Can also define and study pseudogroup dynamics which are distal,
expansive, proximal, etc.

ADVERT: See

• Lectures on Foliation Dynamics: Barcelona 2010
S. H., [2011 arXiv]

• Dynamics of foliations, groups and pseudogroups,
P. Walczak, [2004, Birkhäuser, 2004]

Steven Hurder UIC
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Shape theory

The shape of a set M ⊂ B is defined by a co-final descending
chain {U` | ` ≥ 1} of open neighborhoods in Banach space B,

U1 ⊃ U2 ⊃ · · · ⊃ U` ⊃ · · · ⊃M ;
∞⋂
`=1

U` = M

Such a tower is called a shape approximation to M.

Homeomorphism h : M→M′ induces maps h`,`′ : U` → U ′`′ of
shape approximations.

Steven Hurder UIC
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Main technical result

Theorem: Let M be a transitive matchbox manifold. Then M has
a shape approximation such that each U` admits a quotient map
π` : U` → B` for ` ≥ 0 where B` is a “branched n-manifold”,
covered by a leaf of F .

The system of induced maps p` : B` → B`−1 yields an inverse limit
space homeomorphic to M.

This study is part of sequence of papers by Clark, H. & Lukina:

• Voronoi tessellations for matchbox manifolds, July 2011 (arXiv).

• Shape of matchbox manifolds, September 2011, to appear.

• Classification of matchbox manifolds, 2011, to appear.
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Remarks

• For M a tiling space on Rn, this is just the presentation of M as
inverse limit in usual methods.

• For M with foliation defined by free G -action and tiling on
orbits, as in Benedetti & Gambaudo, same as their result.

For general M, the problem is to find good local product
structures, which are stable under transverse perturbation. The
leaves are not assumed to have flat structures, so this adds an
extra level of difficulty, as compared to the methods in paper of
Giordano, Matui, Hiroki, Putnam, & Skau: “Orbit equivalence for
Cantor minimal Zd -systems”, Invent. Math. 179 (2010)
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The difficulties depends on the dimension:

• For n = 1, it is trivial.

• For n = 2, given a uniformly spaced net in L0, the volumes of
triangles in the associated Delaunay triangulation in the plane are
a priori bounded by the net spacing estimates.

• For n ≥ 3, there are no a priori estimates on simplicial volumes,
and the method becomes much more involved.

In terms of leaf dimensions, we have the fundamental observation:

1 � 2 � 3 < n
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Coding orbits

Coding the orbits of a dynamical system is about as old an idea as
exists in dynamics.

Ahlfors, Gottschalk, ...

E. Thomas in 1970 paper for 1-dimensional matchbox manifolds
applied these ideas to matchbox manifolds.
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Theorem: [Clark & Hurder] Suppose that F is equicontinuous.
Then for all ε > 0, there is a decomposition into kε disjoint clopen
sets, for kε � 0,

T = T1 ∪ · · · ∪ Tkε
such that diam(Ti ) < ε for all i , and the sets Ti are permuted by
the action of GF .

We obtain a “good coding” of the orbits of the pseudogroup GF .

Moreover, the coding respects the inverse limit structure defined
by shape approximations.
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Theorem: [C & H, 2010] Let M be a equicontinuous matchbox
manifold. Then M is minimal, and homeomorphic to a weak
solenoid.

Corollary: Let M be a equicontinuous matchbox manifold. Then
M is homeomorphic to the suspension of an minimal action of a
countable group on a Cantor space K.
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Homogeneous matchbox manifolds

Definition: A matchbox manifold M is homogeneous if the group
of homeomorphisms of M acts transitively.

Theorem: [C & H, 2010] Let M be a homogeneous matchbox
manifold. Then M is equicontinuous, minimal, without holonomy;
and M is homeomorphic to a McCord solenoid.

Corollary: Let M be a homogeneous matchbox manifold. Then M
is homeomorphic to the suspension of an minimal action of a
countable group on a Cantor group K.
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Leeuwenbrug Program

Question: To what extent is an element of Homeo(M)
determined by its restriction to a complete transversal T to F?

Question’: Let M,M′ be matchbox manifolds of leaf dimension n,
with transversals T , T ′ and associated pseudogroups GF and G′F ′ .
Given a homeomorphism h : T → T ′ which intertwines actions of
GF and G′F ′ , when does there exists a homeomorphism
H : M→M′ which induces h?

Theorem: True for n = 1, i.e., for oriented flows.

J.M. Aarts and M. Martens, “Flows on one-dimensional spaces”,
Fund. Math., 131:3958, 1988.
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co-Hopfian

Example of Alex Clark shows this is false for n = 2!

False even for solenoids built over a surface B0 of higher genus.

The problem comes up from the fact that covers of the base B0

need not be homeomorphic to the base.

Problem: Understand equivalence between matchbox manifolds in
terms of their holonomy pseudogroups, and other invariants of
their dynamics and geometry.

Long way to go...
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