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The spectral geometry of a closed Riemannian manifold M studies
how the spectrum of an elliptic geometric operator on M is related
to the topology & the Riemannian geometry of M.

The spectral geometry of a foliation F on a closed Riemannian
manifold M studies how the spectrum of leafwise elliptic geometric
operators for F are related to the topology & the Riemannian
geometry of the leaves, and also on the dynamical and topological
properties of the foliation itself.

We consider some aspects of how foliation spectral geometry is
related to the generalized foliation cycles introduced in Lecture 1.
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M is a closed Riemannian manifold.

FM is an n-dimensional foliation on M.

E → M an Hermitian bundle, for which there is a first-order
geometric operator along the leaves of F ,

D : C∞(F , E)→ C∞(F , E)

That is, for each leaf L of FM the restriction

DL : C∞c (L, EL)→ C∞c (L, EL)

is elliptic and essentially self-adjoint.
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For each leaf L of F , the restricted operator

DL : C∞c (L, EL)→ C∞c (L, EL)

is elliptic and essentially self-adjoint, so we can define its spectrum,
and the decomposition into pure and continuous parts:

σ(DL) = σa(DL) ∪ σc(DL) ⊂ R

In general, very little is known about this. For related discussions:

Topology of covers and the spectral theory of geometric
operators, in Index theory and operator algebras (Boulder 1991),
Contemp. Math. Vol. 148, Amer. Math. Soc., 1993.
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Gap Labeling & K-Theory

One exception is for the cases where F is Riemannian foliation as
given in the works of Jésus Alvarez-Lopez and Yuri Kordyukov.

Another special case is based on the spectral flow approach via
odd index theory for foliations, as in the solutions of Bellisard’s
“Gap Labeling Conjecture” in the study of quasi-crystals on Rn:

• Kaminker & Putnam [2003]

• Benameur & Oyono-Oyono [2003]

• Bellissard, Benedetti & Gambaudo [2006]

The idea of applying the generalized foliation cycles to the study of
leafwise spectrum, is to convert every such problem into a “gap
labeling” question, or at least one involving spectral flow of
geometric operators.
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KK-Index

C ∗(M/FM) is the reduced C ∗-algebra associated to FM .

Theorem: [Connes-Fack 1984] A first-order geometric operator D
along the leaves of F defines a generalized index class

[D] ∈ KK (M,M/F) ∼= KK (C (M),C ∗(M/F)

Given a K-Theory class [E ] ∈ K (M) we obtain the “index class”

[E ] ∩ [D] ∈ K ∗(C ∗(M/F)
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Some basic problems

The pairing [E ] ∩ [D] is called “integration along the leaves” of F ,
of the K-theory class [E ] against the leafwise fundamental class
defined by D, to obtain the non-commutative index class

[E ] ∩ [D] = IndF (D ⊗ E ) ∈ K ∗(C ∗(M/F))

Two basic problems in foliation index theory:

• What is the analytic meaning of IndF (D ⊗ E )?

• How does IndF (D⊗E ) depend on the geometry/dynamics of F?
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Some known relations

• The Lichnerowicz formula implies vanishing of components of
the index class [E ] ∩ [D] when the leaves of F have positive scalar
curvature.

• When the leaves of F have holonomy covers which satisfy the
coarse Baum-Connes Conjecture, then pairing with [D] is a faithful.

See the papers:

Exotic index theory for foliations, preprint, 1993.

Coarse geometry of foliations, in Geometric study of foliations
(Tokyo, 1993), World Sci. Publishing, 1994.
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Transverse measures and traces

Let Λ be a holonomy-invariant transverse measure for the foliation
F . That is, for a Borel subset E ⊂ M which intersects each leaf L
at most countable many times, then Λ(E ) ∈ R is invariant under
the holonomy translations of F .

Associated to Λ is a trace TrΛ : C ∗(M/F)→ R.

Proposition: The Λ-dimension function TrΛ : K 0(C ∗(M/F))→ R
is well-defined, and measures the differences of the von Neumann
dimensions of the projections in C ∗(M/F) defining a class.
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Transverse measures and foliated spaces

The support Z(Λ) ⊂ M is the smallest closed saturated subset for
which Λ has “full measure”.

Lemma: Z(Λ) is a foliated space.

So, we can restrict D to the leaves of F|Z(Λ) and study the
meaning of the index pairing on this space.

Motivates the approach in the book by Moore & Schochet.

Problem: What is the analytic meaning of the restricted index?
How does it depend on the dynamics of F|Z(Λ)?
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Generic invariant sets

Let Z ⊂ M be a closed saturated subset, with foliation F .

Definition: Z is generic if each leaf L ⊂M without holonomy for
F , is also without holonomy as a leaf for F on M.

If the leaves of F are all simply connected, then Z is generic.

Proposition: [Fack & Skandalis 1982] If Z ⊂ M is a generic
closed invariant set, then there is a well-defined restriction map

ιM,Z : C ∗(M/F)→ C ∗(Z/F)

Consequently we obtain the restricted index class:

IndF (D ⊗ E |Z) = [E ] ∩ [D] ∪ [ιM,Z ] ∈ K ∗(C ∗(Z/F))



Spectral geometry Index Theory KK-foliation cycles Even index Odd index Conclusions

Generic invariant sets

Let Z ⊂ M be a closed saturated subset, with foliation F .

Definition: Z is generic if each leaf L ⊂M without holonomy for
F , is also without holonomy as a leaf for F on M.

If the leaves of F are all simply connected, then Z is generic.

Proposition: [Fack & Skandalis 1982] If Z ⊂ M is a generic
closed invariant set, then there is a well-defined restriction map

ιM,Z : C ∗(M/F)→ C ∗(Z/F)

Consequently we obtain the restricted index class:

IndF (D ⊗ E |Z) = [E ] ∩ [D] ∪ [ιM,Z ] ∈ K ∗(C ∗(Z/F))



Spectral geometry Index Theory KK-foliation cycles Even index Odd index Conclusions

Corollary: Let Z ⊂ M be a generic closed invariant set containing
the support of a holonomy invariant transverse measure Λ. Then
there is a well defined measured-index functional

IndΛ ≡ TrΛ ◦ IndF ◦ ι∗M,Z : K∗(M)→ R

which factors through K ∗(C ∗r (Z/F).

We can then consider Z ⊂ M as the image of a foliated space M
and study our problems in this context.

Assumptions:

• M is a leafwise orientable matchbox manifold;

• The dynamics of F on M is equicontinuous;

• The leaves of F are simply connected.
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Theorem of Clark & H implies that M admits a presentation as an
inverse tower of compact manifolds B`.

That is, given ε > 0 there is a compact, orientable base manifold
B`0 and a tower of proper orientation-preserving covering maps

p`+1−→ B`
p`−→ · · ·

p`0+2−→ B`0+1

p`0+1−→ B`0

so that M is homeomorphic to the inverse limit of this system, and
the fibers of the natural map π`0 : M→ B`0 have diameters ≤ ε.
The diameter assumption means that the manifold B`0 embeds in
M as an “approximate leaf” for F , so that the leaves of F|M are
coverings of B`0 . This follows by shape theory of M ⊂ M.
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The assumption that the leaves of F|M are simply connected has
a simple interpretation.

Choose basepoints x` ∈ B` with p`(x`) = x`−1, set G` = π1(B`, x`).

Then there is a descending chain of groups and injective maps

p`+1−→ G`
p`−→ G`−1

p`−1−→ · · · p2−→ G`0+1

p`0+1−→ G`0

Set q` = p` ◦ · · · ◦ p`0+1 : B` −→ B`0 .

Then the leaves of F in M are simply connected if and only if the

residual kernel
⋂
`≥`0

(q`)#(G`) = {0} .
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Geometric interpretation of even index

Suppose that the leaves of F have even dimension.

Theorem: Let [E ] ∈ K 0(M). Then there is a constant λ0 > 0 so
that the measured index

TrΛ(IndF (D ⊗ E |Z)) = lim
`→∞

λ0

d(`, `0)
· Ind(D` ⊗ E |B`)

where

• λ0 depends only on Λ and the choice of B0

• d(`, `0) is the covering degree of q` : B` −→ B`0

• E |B` is restriction of E → M to an embedding of B` ⊂ M

• D` is a geometric operator on B` which approximates the
leafwise operator D.
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This result should be compared with the geometric interpretation
given to the index for measured laminations by surfaces in:

The ∂-operator, Appendix A, Global analysis on foliated spaces,
by C. C. Moore and C. Schochet, 1988.

In that work, no assumption is made on the dynamics of the
lamination, so the above result gives an “improvement” of the
conclusions there.

The assumption that the dynamics of the lamination is
equicontinuous implies the existence of approximating cycles in M,
and these cycles “carry” the measured index.
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Geometric interpretation of odd dimension

Suppose that the leaves of F have odd dimension.

Theorem: Let ϕ : M → U(N) be a leafwise smooth function with
values in the unitary group, for some N > 0. Then there is a
constant λ0 > 0 so that the measured index

ηΛ(D, ϕ) = TrΛ(IndF (D ⊗ ϕ|Z)) = lim
`→∞

λ0

d(`, `0)
· η(D`, ϕ)

where ηΛ(D, ϕ) is the leafwise η-invariant, and η(D`, ϕ) denotes
the relative η-invariant for D` coupled to the twisted flat bundle
over B` defined by the restricted unitary bundle ϕ|B`.

The proof of this result is actually quite technically involved,
though may be considered “standard” given the previous works.
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This result should be compared with the geometric interpretation
given to the odd index for flat bundles in the papers:

Toeplitz operators and the eta invariant: the case of S1,
(with Ronald G. Douglas and Jerome Kaminker), in Index theory of
elliptic operators, foliations, and operator algebras, Contemp.
Math., 70, Amer. Math. Soc., Providence, RI, 1988.

Eta invariants and the odd index theorem for coverings, in
Geometric and topological invariants of elliptic operators,
Contemp. Math., 105, Amer. Math. Soc., Providence, RI, 1990.

Both of these papers implicitly assumed that the dynamics of the
foliations being considered were equicontinuous.



Spectral geometry Index Theory KK-foliation cycles Even index Odd index Conclusions

Conclusions

The approach to studying index theory for foliations considered
previously can be understood as special cases of the study of the
index theory for a particular classes of foliated spaces.

Introducing generalized foliation cycles, as represented by
matchbox manifolds, gives approaches to generalizing these results.
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Conclusions

For example, the techniques can be applied to obtain:

• Relations between spectra for matchbox manifolds and operators
from quasi-crystals;

• Measured spectral flow estimates (integrated density of states)
for leafwise operators in foliations

• Relation between pure-point spectrum and index theory

• Spectrum for almost 1− 1 factors (generalizing the Denjoy flow)
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Conclusions

An important open problem is then:

Problem: Extend the above results for generalized foliation cycles
represented by equicontinuous matchbox manifolds, to those
represented by minimal expansive matchbox manifolds.
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Thank you for your time and patience.

The slides for both talks can be downloaded from:

http://www.math.uic.edu/∼hurder/talks/Nagoya20120321.pdf
http://www.math.uic.edu/∼hurder/talks/Nagoya20120324.pdf
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