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Introduction

A trip back in time...

A quote by Jean-Marc, from his 1992 paper with Charles Tresser
“Self Similar Constructions in Smooth Dynamics: Rigidity,
Smoothness and Dimension”:

There are relations between the optimal smoothness of
some examples in dynamics and dimension
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Introduction

The study of the regularity of invariant structures for smooth
dynamical systems has long been an active topic:

• Anosov observed in 1967 that the stable and unstable foliations
for a smooth Anosov diffeomorphism have C 1+α smoothness;

• Hirsch and Pugh in 1968 showed that stable manifolds for
hyperbolic sets have C 1+α smoothness;

• Schweitzer in 1971 produced C 1+α counterexamples to the
Seifert Conjecture for flows on compact 3-manifolds;

• Harrison in 1975 showed the existence, for any r ≥ 0, of
C r -diffeomorphisms of surfaces which are not topologically
conjugate to any C r+1-diffeomorphism;

and remains an active topic of research today.
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In this talk, we explore a theme that began with Smale’s
observation, in his celebrated survey article (Bulletin A.M.S. 1967),
that the doubling solenoid arises naturally as a non-manifold basic
set of a smooth expanding endomorphism of a compact
3-manifold, hence is realized as an invariant set for its expanding
foliation, which is a C 1+α-flow.



Solenoidal minimal sets

Introduction

The Smale attractor is an example of a classical Vietoris solenoid.

Let P = (p1, p2, . . .) be an infinite sequence of integers, pi > 1.

Let f ii−1 : S1 → S1 be a pi -to-1 self-covering map of a circle.

A Vietoris solenoid is the inverse limit space

ΣP = {(yi ) = (y0, y1, y2, . . .) | f ii−1(yi ) = yi−1 } ⊂
∏
i≥0

S1

with subspace topology from the Tychonoff topology on
∏

i≥0 S1 .

There is a projection map Π: ΣP → S1, Π(y0, y1, y2, . . .) = y0.
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The fibre Xb = Π−1(b) = {(b, y1, y2, . . .)} ⊂ ΣP is a Cantor set,
for each b ∈ S1. For an embedded solenoid, Xb corresponds to the
intersection of the solenoid with a transverse section.

The fundamental group π1(S1, b) = Z acts on Xb via lifts of paths
in S1, so the monodromy action on the fiber defines a group action
Φ: Z× Xb → Xb which is a classical odometer action.

The meta principle is to study relations between properties of the
monodromy action, and the dynamics of extensions of the action
to a diffeomorphism of a manifold.
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For example, Gambaudo, van Strien and Tresser, in their work
“The periodic orbit structure of orientation-preserving
diffeomorphisms on D2 with topological entropy zero”, Annales de
l’I.H.P. (1989), showed that the periodic orbits for an entropy zero,
orientation-preserving C 1 diffeomorphism f : D2 → D2 have a “tree
structure”: They summarized their results as saying

All periodic orbits of such an orientation-preserving dif-
feomorphism of D2 can be organized in a tree: each orbit
of period n ≥ 2 has a parent orbit.

This “tree structure” on periodic orbits persists through the
various generalizations we discuss here.
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Gambaudo and Tresser showed in another work, “Self-similar
constructions in smooth dynamics: rigidity, smoothness and
dimension”, C.M.P., 1992, the existence of a C k -diffeomorphism
on Dd , where k increases with d ≥ 2, so that the periodic orbits of
the map satisfy a period doubling property.
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The problem we consider in our work dates from 1965, when
McCord began the study of higher-dimensional generalizations of
the Vietoris solenoid.

Let M0 be a connected closed manifold, and let f ii−1 : Mi → Mi−1

be a sequence of finite-to-one proper covering maps. Then

M∞ = lim
←−
{f ii−1 : Mi → Mi−1 | i ≥ 1}

is a compact connected metrizable space, called a (weak) solenoid.

There is a fibration map Π0 : M∞ → M0, and for b ∈ M0 the fiber
Xb = Π−1

0 (b) is a Cantor space. The monodromy of the fibration
yields a group action ϕ : G × Xb → Xb where G = π1(M0, b).
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Theorem [McCord, 1965]. A solenoid is a matchbox manifold,
or generalized lamination (Ghys), or solenoidal manifold (Sullivan).

Question: Let M∞ be a weak solenoid. For what 1 ≤ k ≤ ω,
does there exists a transversally C k -foliation F such that M∞ is
homeomorphic to a minimal set of F .

This natural question is not so easy to answer.
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In a paper with Alex Clark, “Embedding solenoids in foliations”,
Top. Apps. 2011, we used a generalization of the Tresser and
Gambaudo construction to give an answer for toroidal solenoids.

Theorem (Clark-H, 2011): Let M∞ be a solenoid defined by a
tower of coverings of the n-torus Tn, then there exist conditions on
1 ≤ k ≤ ω and d ≥ 2, which imply that there exists a
codimension-d , transversally C k -foliation F such that M∞ is
homeomorphic to a minimal set of F .

These conditions are given in Propositions 8.5 and 8.6 in our
paper. They are more subtle than the estimates in the 1992 work
of Gambaudo & Tresser – the embedding criteria depend on a
presentation of the solenoid.
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In contrast to the “elementary” toroidal solenoids, which are
compact abelian groups, Schori constructed in his 1966 paper, a
2-dimensional solenoid which is not homogeneous as a topological
space. It is defined via an tower of coverings of a genus-2 surface.

In a paper “Molino theory for matchbox manifolds”, Pacific
Journal Math, 2017, with Jessica Dyer and Olga Lukina, we show:

Theorem: The mondromy action of the Schori solenoid is not
LQA, hence the solenoid does not embed into a real analytic
foliation of any codimension.

In this talk, we will take a tour through the techniques for the
study of weak solenoids, which results in a proof of conclusion.
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The first stop on our tour, we consider the structure of the
monodromy actions on the fibers of weak solenoids.

Let X be a Cantor set with metric dX and let G be a group.

Definition: An action ϕ : G × X→ X by homeomorphisms is
equicontinuous if for every ε > 0 there exist δ > 0 such that

dX(x , y) < δ =⇒ dX(ϕ(g)(x), ϕ(g)(y)) < ε for all g ∈ G .

Fact: The monodromy action of a weak solenoid is equicontinuous.

Question: Let ϕ : G × X→ X be an equicontinuous minimal
Cantor action. Does there exists a C k -action Φ: G × Dd → Dd

which has an invariant minimal set K ⊂ Dk , such that the
restricted action Φ|K is conjugate to the action of ϕ on X?
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We recall some classical notions from Auslander, Minimal flows
and their extensions, 1988.

We say that U ⊂ X is adapted to the action ϕ : G ×X→ X if U is
a non-empty clopen subset, and for any g ∈ G , Φ(g)(U) ∩ U 6= ∅
implies that Φ(g)(U) = U. That is, the translates of U form a
partition of the Cantor set X. It follows that

GU = {g ∈ G | ϕ(g)(U) ∩ U 6= ∅} (1)

is a subgroup of finite index in G , called the stabilizer of U.



Solenoidal minimal sets

Actions

For a Cantor space X, let CO(X) denote the collection of all
clopen (compact open) subsets of X. Note that for
φ ∈ Homeo(X) and U ∈ CO(X), the image φ(U) ∈ CO(X).

Proposition (Glasner and Weiss, 1995): A Cantor action
ϕ : G × X→ X is equicontinuous if and only if, for the induced
action Φ∗ : G × CO(X)→ CO(X), the G -orbit of every
U ∈ CO(X) is finite.

Corollary: Let ϕ : G × X→ X be an equicontinuous Cantor
action. Then for all x ∈ X and all δ > 0, there exists an adapted
clopen set U with x ∈ U ⊂ BX(x , δ).
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Definition: Let ϕi : Gi × Xi → Xi be minimal equicontinuous
Cantor actions, for i = 1, 2. Say that ϕ1 is return equivalent to ϕ2

if there exist

• adapted clopen subsets Ui ⊂ Xi for i = 1, 2

• a homeomorphism h : U1 → U2

such that h induces an isomorphism αh : G1|U1 → G2|U2 of the
restricted groups, where Gi |Ui ⊂ Homeo(Ui ).

Remark: When Ui = Xi for i = 1, 2, and the actions are effective,
this reduces to the notion of topological conjugacy of the actions,
where αh : G1 → G2 intertwines the actions.
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Theorem (Clark, H, Lukina 2017): Let M1 and M2 be weak
solenoids. Suppose that there exists a homeomorphism
h : M1 →M2, then the fiber monodromy actions associated to
M1 and M2 are return equivalent.

There is a converse to this result, but it requires assumptions on
the base manifold and possibly further assumptions on the actions.
Here is a sample result:

Theorem (Clark, H, Lukina 2017): Suppose that M1 and M2

are toroidal solenoids of the same dimension n. Then M1 and M2

are homeomorphic if and only if the fiber monodromy actions
associated to M1 and M2 are return equivalent.
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Problem: Find invariants of the return equivalence class of an
action which either are sufficient to imply the action admits a
smooth realization, or which imply that no such realization exists.

The results of Gambaudo and Tresser referred to above, specify
that the periodic orbits of the extended smooth Z-action satisfy a
period doubling property. On the other hand, the embedding
problem as formulated above need not have this property. For
example, the presentation of the doubling solenoid over S1 can be
defined by covering maps with degrees 2n where n tends rapidly to
infinity, so the embedding obtained may only have periodic orbits
that grow in order by these covering degrees.

In order to explore the aspects of the embedding question, we
introduce the group chain (or odometer) model for an
equicontinuous minimal Cantor action.
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Let ϕ : G × X→ X be a minimal equicontinuous Cantor action.

For a choice of basepoint x ∈ X and scale ε > 0, there exists an
adapted clopen set U ∈ CO(X) with x ∈ U and diam(U) < ε.
Iterating this construction, for a given basepoint x , one can always
construct the following:

Definition: Let ϕ : G × X→ X be a minimal equicontinuous
action on a Cantor space X. A properly descending chain of clopen
sets U = {U` ⊂ X | ` ≥ 1} is said to be an adapted neighborhood
basis at x ∈ X for the action Φ if x ∈ U`+1 ⊂ U` for all ` ≥ 1 with
∩ U` = {x}, and each U` is adapted to the action Φ.
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For such a collection, setting G` = GU`
we obtain a descending

chain of finite index subgroups

GU = {G = G0 ⊃ G1 ⊃ G2 ⊃ · · · } .

Set X` = G/G` and note that G acts transitively on the left on X`.
The inclusion G`+1 ⊂ G` induces a natural G -invariant quotient
map p`+1 : X`+1 → X`. Introduce the inverse limit

X∞ ≡ lim←− {p`+1 : X`+1 → X` | ` > 0}

which is a Cantor space with the Tychonoff topology, and the
action on the factors X` induces a minimal equicontinuous action
Φx : G × X∞ → X∞.
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The action Φx : G × X∞ → X∞ is called the generalized odometer
model, or also called a subodometer, by Cortez & Petite in their
work “G-odometers and their almost one-to-one extensions”, 2008.

We give some remarks on this construction.

• Each Xi = G/Gi is a finite set with a left action of G . It is a
group if Gi is normal in G , and then the Cantor space X∞ is a
profinite group.

• The intersection K (GU ) =
⋂
`≥0

G` is called the kernel of GU .

• For g ∈ K (GU ), the left action of g on X` fixes the coset
e` ∈ X` and hence fixes the limiting point e∞ ∈ X∞.
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We next recall the tree model for the action ϕ : G × X→ X.

The construction is analogous to that used by Gambaudo in his
1992 paper with Tresser, and also used in his work with Martens,
“Algebraic topology for minimal Cantor sets”, Ann. Henri Poincaré
2006.

First, choose an adapted neighborhood basis at x ∈ X for the
action, U = {Ui ⊂ X | i ≥ 1}.
Note that by assumption we have

⋂
Ui = {x}.
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Next, associate a vertex vi ,g at level i to each g · Ui .

Join vi ,g and vi+1,h by an edge if and only if h · Ui+1 ⊂ g · Ui .

A sequence of vertices (vi ,gi )i≥0 is a path in the space PT of paths
in T , and X ∼= PT .

The subgroup Gi of elements which stabilize Ui has finite index in
G , and there is a group chain of stabilizers GU ≡ {Gi}i≥0

associated to the action.
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We next introduce the Ellis group associated to an action.

An action ϕ : G × X→ X induces a representation
Φ: G → Homeo(X) with image group

HΦ = Φ(G ) ⊂ Homeo(X)

Definition: The closure E (Φ) of HΦ, in the topology of pointwise
convergence on maps, is called the Ellis (enveloping) semigroup.

Proposition (Ellis, 1969): Let ϕ be an equicontinuous Cantor
action. Then E (Φ) = HΦ = closure of HΦ in the uniform topology
on maps. In particular, HΦ is a profinite group.

For x ∈ X let HΦx = {h ∈ HΦ | h(x) = x} be its isotropy group.
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Lemma: The left action of HΦ on X is transitive, hence
X ∼= HΦ/HΦx and the closed subgroup HΦx ⊂ HΦ is independent
of the choice of basepoint x , up to topological isomorphism.

We give a representation for HΦx in terms of the odometer model
for the action.

The normal core N of a subgroup H ⊂ G is the largest subgroup
N ⊂ H which is normal in G .

Let Ci ⊂ Gi be the normal core of Gi in G , then Ci has finite index
in G . Define the profinite group

G∞ ≡ lim
←−
{qi : G/Ci+1 → G/Ci | i > 0} .
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Each group G/Ci acts on the finite set Xi = G/Gi , so there is an
induced action Φ̂∞ : G∞ → Homeo(X∞) ∼= Homeo(X).

Theorem (Dyer-H-Lukina, 2016). HΦ
∼= Φ̂∞(G∞), and

D∞ ≡ lim
←−
{πi : Gi+1/Ci+1 → Gi/Ci | ` ≥ 0} ∼= HΦx . (2)

The inverse limit group D∞ is called the discriminant group for the
action. Its non-triviality is the obstruction to the existence of a
transitive right action on X that commutes with the left action ϕ.

We next return to considering the structure of weak solenoids.
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The approach to the study of weak solenoids via their monodromy
Cantor actions obtained from group chains was initiated in the
work of [Fokkink & Oversteegen, 2002].

Let Π0 : M∞ → M0 be a weak solenoid defined by the system of
maps {f i0 : Mi → M0 | i > 0}, where f i0 = f 1

0 ◦ · · · ◦ f ii−1.

Choose a basepoint b ∈ M0 and basepoints xi ∈ Mi such that
f i0 (xi ) = b. Set x = lim xi ∈ Xb ≡ Π−1

0 (b).

Define G = G0 = π1(M0, b), and let Gi ⊂ G be the subgroup
defined by Gi = Image{(f i0 )# : π1(Mi , xi )→ π1(M0, b)}.

{Gi | i ≥ 0} is a descending chain of subgroups of finite index in G .

The subgroups Gi are not assumed to be normal in G .
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Example 1: Consider the Vietoris solenoid

Σ = {f ii−1 : S1 → S1}.

Then G = π1(Z, 0) = Z, and Gi = (p1 · · · pi )Z, where pi is the
degree of f ii−1.

Then G/Gi = Z/p1 · · · piZ.

Since Z is abelian, Gi = Ci , and so Gi/Ci is a trivial group.

Thus C∞ ∼= Xb, where Xb is a fibre of Σ→ S1, and so the
discriminant group D∞ of the Vietoris solenoid is trivial.
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Example 2: Here is a more interesting example, with D∞
non-trivial. It is due to [Rogers & Tollefson, 1971/72].

Let T2 = S1 × S1, and consider an involution

r × i(x , y) = (x + 1
2 ,−y).

The quotient K = T2/(x , y) ∼ r × i(x , y)

is the Klein bottle.

The double cover L : T2 → T2 : (x , y) 7→ (x , 2y)

induces a double cover p : K → K .

Define K∞ to be the inverse limit of the iterations of p : K → K .

Since i ◦ L = p ◦ i , there is a double cover i∞ : T∞ → K∞.
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The fundamental group of the Klein bottle is

G0 = π1(K , 0) = 〈a, b | bab−1 = a−1〉.

For the cover p : K → K we have

p∗π1(K , 0) = 〈a2, b | bab−1 = a−1〉,

and for pn = p ◦ · · · ◦ p : K → K we have

Gn = (pn)∗π1(K , 0) = 〈a2n , b | bab−1 = a−1〉.

The cosets of G/Gn are represented by aiGi , i = 0, . . . , n − 1,

Cn =
⋂
g∈G

gGng
−1 = 〈a2n | bab−1 = a−1〉.

Then Gn/Cn = {Cn, bCn}, and so D∞ ∼= Z/2Z.
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The discriminant need not be an invariant of return equivalence for
an equicontinuous Cantor action! We use the tree model for the
action to analyze this.

Recall that U = {U` ⊂ X | ` ≥ 1} is an adapted neighborhood
basis at x ∈ X for the action, and PT denotes the space of infinite
paths starting at the root point corresponding to X.

Then we have a minimal action Φ: G × PT → PT .

The group Gi stabilizes a branch of a tree, i.e fixes a vertex at level
i . Then by minimality of the action, the set of vertices at level i is
identified with G/Gi . There is a homeomorphism

φ : PT → X∞ = lim
←−
{G/Gi → G/Gi−1},

equivariant with respect to the actions of G on PT and X∞.
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The core subgroup Ci =
⋂

g∈G gGig
−1 ⊂ G fixes every vertex at

level i , and the quotient group G/Ci acts transitively on the set of
vertices at level i , which correspond to the set G/Gi . Then

C∞ = lim
←−
{G/Ci → G/Ci−1}

is a profinite group acting transitively on the path space PT .

We use this model to consider the discriminant groups of the
action ϕ restricted to an adapted clopen subset U ⊂ X.
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The set of paths through vertex vk at level k is a clopen set
Uk ⊂ PT . Assume that x ∈ Uk .

The restricted action on Uk is given by Φk : Gk → Homeo(Uk).

For each k ≥ i , the normal core of Gi in Gk is

Ck,i =
⋂

g∈Gk

gGig . .

Observe that Ck,i ⊃ Ci as the action of Ci fixes all vertices at level
i , while Ck,i fixes just those vertices at level i in the branches of
the tree through the vertex vk .

The isotropy group of the action of Φ(Gk) at x is represented by

Dx ,k = lim
←−
{Gi/Ck,i → Gi−1/Ck,i−1 | i ≥ k}

which is the discriminant group of the action Φk : Gk × Uk → Uk .
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Note that there are coset inclusions Gi/Ci → Gi/Ck,i .

Theorem (Dyer-H-Lukina, 2017) Let ϕ : G × X→ X be an
equicontinuous minimal Cantor action with group chain {Gi}i≥0

associated to a basepoint x ∈ X. Then for any k > j ≥ 0 there is a
well-defined surjective homomorphism

Λk,j : Dx ,j → Dx ,k

of discriminant groups.

Definition: The action ϕ is said to be stable, if there exists j0,
such that for all k > j ≥ j0 the homomorphism Λk,j is an
isomorphism. If no such j0 exist, then the action is said to be wild.
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Definition (H-Lukina, 2017): The asymptotic discriminant of
the action (X,G ,Φ) is the equivalence class of the chain of
surjective group homomorphisms

Dx ,0 → Dx ,1 → Dx ,2 → · · ·

with respect to the tail equivalence relation.

The notion of “tail equivalence” is precisely defined in the work
with Lukina, Wild solenoids, Transactions A.M.S., 2018.

In that work we also show the following key property:

Theorem (H-Lukina, 2017): The asymptotic discriminant of an
equicontinuous minimal Cantor action ϕ : G × X→ X is invariant
under the return equivalence of actions. In particular, the property
of being stable or wild is an invariant of return equivalence.
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Theorem (H-Lukina, 2017). Suppose that Φ: G × X∞ → X∞ is
a wild action. Then there exists a strictly increasing chain of
indices {1 ≤ k1 < k2 < · · · } so that the sequence of finite
subgroups in the profinite group G∞

Ck1,∞ ⊂ Ck2,∞ ⊂ · · · ⊂ Ckj ,∞ ⊂ · · · ⊂ D∞

is strictly increasing, where Cki = kerDx ,∞ → Dx ,ki .
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We next discuss the notion of an “analytic Cantor action”, which
was introduced in the works of Alvarez Lopez, and its relation to
wildness and the Hausdorff property for the action.

Let U,V ⊂ X be clopen subsets of a Cantor space X.

• A homeomorphism h : U → V is quasi-analytic (QA) if either
U = V and h is the identity map, or for every clopen subset
W ⊂ U the fixed-point set of the restriction
h|W : W → h(W ) ⊂ V has no interior.

• A homeomorphism h : U → V is locally quasi-analytic (LQA) if
for each x ∈ U there exists a clopen neighborhood x ∈ U ′ ⊂ U
such that the restriction hU′ : U ′ → V ′ = H(U ′) is QA.

• A group action ϕ : G : X→ X is LQA if for each x ∈ X, there
exists a clopen neighborhood x ∈ U, such that the restrictions of
elements of G to U are quasi-analytic.
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Remarks:

• A free action G × X→ X is quasi-analytic.

• The automorphism group of a spherically homogeneous rooted
tree Td , acting on the Cantor set of ends, is not LQA.

Proposition: Suppose that ϕ : G : X→ X is the restriction of a
Cω action on Dk for some k ≥ 1. Then the action of ϕ is LQA.
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Theorem (H-Lukina, 2017). Let ϕ : G × X→ X be an
equicontinuous minimal Cantor action, where G is finitely
generated. Then the action ϕ is stable if and only if the action of
the profinite group G∞ on X∞ satisfies the LQA property.

These results yield a “non-realizable” criteria:

Corollary. If an equicontinuous minimal Cantor action
ϕ : G × X→ X is not LQA, then any weak solenoid whose
mondromy action is return equivalent to this action cannot be
realized as the minimal set for a Cω-foliation.

Question: Is there a version of this result for C 2-foliations?
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Corollary: A weak solenoid whose monodromy action is not LQA
admits an infinitely increasing chain of closed groups in the
fundamental group π1(M0, b0) of the base manifold M0.

Proposition: Let M∞ be a weak solenoid whose base manifold
M0 has nilpotent fundamental group G0. Then the monodromy
action of the solenoid is stable.
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We conclude this discussion with a “geometric proof” that an LQA
Cantor action ϕ : G × X→ X is stable using the tree model for it.

Consider the restricted action of Gk on Uk ⊂ X with group chain
{Gi}i≥k .

The elements in Ck,i ⊂ Gi stabilize all vertices at level k in a
branch of T , while the elements in Ci ⊂ Ck,i stabilize all vertices
at level k . Then let

Sk = lim
←−
{Ck,i/Ci → Ck,i−1/Ci} ∼= ker{Dx → Dx ,k}.

Suppose that h ∈ Sk , with h 6= id , then h acts trivially on Uk , but
acts non-trivially on X. If the action ϕ is not LQA, then such an h
exists for clopen sets Uk with arbitrarily small diameter, and hence
the action is not stable.
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Finally, we note that the LQA property for a group action
ϕ : G × X→ X can be related to properties of the germinal
groupoid G(X,G , ϕ) associated to the action.

Recall that for g1, g2 ∈ G , we say that ϕ(g1) and ϕ(g2) are
germinally equivalent at x ∈ X if ϕ(g1)(x) = ϕ(g2)(x), and there
exists an open neighborhood x ∈ U ⊂ X such that the restrictions
agree, ϕ(g1)|U = ϕ(g2)|U. We then write ϕ(g1) ∼x ϕ(g2).

For g ∈ G , denote the equivalence class of ϕ(g) at x by [g ]x . The
collection of germs G(X,G , ϕ) = {[g ]x | g ∈ G , x ∈ X} is given
the sheaf topology, and forms an étale groupoid modeled on X.
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Theorem (H-Lukina, 2017). If an action ϕ : G × X→ X is
locally quasi-analytic, then G(X,G , ϕ) is Hausdorff.

The Hausdorff property for a germinal groupoid G(X,G , ϕ) appears
in the work of [Renault, 2008] on the C ∗-algebra associated to the
action, and has been studied in various works in C ∗-algebras.

Problem: Find relations between the wild property for a group
action, and the algebraic and topological invariants for the
C ∗-algebra associated to the action.

Some results on this problem are given in the work by Rui Excel,
“Non-Hausdorff étale groupoids”, Proc. A.M.S., 2011.
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We conclude with examples of Cantor actions which are not LQA.

Example 3: [Schori, 1966] gave the first example of a
non-homogeneous weak solenoid. It is obtained by taking repeated
3-fold coverings starting with a closed surface Σ2 of genus 2.

3
X0

2
X0

1
X0

c)

H0 F 0

0D’ 0D’’0C’
0C’’

0X

b)

X 1

H 1
F 1

D 1
C 1

d)

0D0C

0F
H0

X0

a)

Proposition (Dyer-H-Lukina, 2017). The monodromy action of
G = π1(Σ2, b0) on the fiber of the solenoid over Σ2 is not LQA,
and in particular is wild.
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Example 4: Arboreal actions of Galois groups.

The analogy between theory of finite coverings and Galois theory
of finite field extensions suggests looking for examples of minimal
Cantor actions arising from purely arithmetic constructions.

• [R.W.K. Odoni, 1985] began the study of arboreal
representations of absolute Galois groups on the rooted trees
formed by the solutions of iterated polynomial equations.

• [Jones, 2013] gives a nice introduction and survey of this
program, from the point of view of arithmetic dynamical systems
and number theory.
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The following discussion concerns results of [Lukina, 2018].

Let X = Pd be the space of paths

in a spherically homogeneous rooted tree Td .

Let G be any discrete group, acting on Td

by permuting edges at each level

so that the paths are preserved.

The space of paths with the

cylinder topology is a Cantor set

This action is equicontinuous.
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Let f (x) be an irreducible polynomial of degree d over a number
field K . Let α ∈ K , and suppose f (x) = α has d distinct solutions.

Identify α with the root of a d-ary tree Td , and identify every
solution α11, α12, . . . , α1d of f (x) = α with a vertex at level 1 in
the tree.

Gal(K (f −1(α))/K ) is identified with a subgroup

of the symmetric group Sd .

For every α1i , consider the equation

f (x) = α1i , so f ◦ f (x) = f (α1i ) = α.

Suppose there are d2 distinct roots. Identify the solutions of
f (x) = α1i with the d vertices at level 2 connected with α1i at
level 1.
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The action of Gal(K (f −2(α))/K ) preserves the structure of the
tree, so

Gal(K (f −2(α))/K ) ⊆ [Sd ]2,

where [Sd ]2 denotes the two-fold wreath product of symmetric
groups Sd .

Continue by induction, assuming that for each i > 0 the
polynomial f i (x) has d i distinct roots.

In the limit, we get a d-ary infinite tree Td of preimages of α
under the iterations of f (x), and the profinite group

Gal∞(f ) = lim
←−
{Gal(K (f −i (α))/K )→ Gal(K (f −(i−1)(α))/K )},

a subgroup of the infinite wreath product Aut(Td) = [Sd ]∞.
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The group Gal∞(f ) is called an arboreal representation of the
absolute Galois group Gal(K sep/K ).

The representation depends on the polynomial f and on α.

Thus Gal∞(f ) is a profinite group acting on the Cantor set of
paths in the tree Td .

Example [Odoni, 1985]. If K = Q, α = 2, f (x) = x2 − x + 1,
then

Gal∞(f ) ∼= Aut(T2) ∼= [S2]∞ .
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Theorem [Lukina, 2018]. Let f (x) be a polynomial of degree
d ≥ 2 over a field K , suppose all roots of f i (x) are distinct and
f i (x)− α is irreducible for all i ≥ 0.

Let v be a path in the space of paths Pd of the tree Td .

Then there exists a countably generated group G0, a
homomorphism Φ : G0 → Homeo(Pd) and a chain {Gi}i≥0 of
subgroups in G0 such that

(1) There is an isomorphism φ̃ : Φ(G0)→ Gal∞(f ),

(2) There is a homeomorphism φ : lim
←−
{G0/Gi} → Pd with

φ(eGi ) = v,

(3) For all u ∈ Pd and g ∈ Φ(G0) we have

φ̃(g) · φ(u) = φ(g(u)).
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Theorem [Lukina, 2018]. Suppose the image of an arboreal
representation Gal∞(f ) is a subgroup of finite index in Aut(Td).
Then the action of the dense subgroup G0 on the path space Pd is
not LQA, and in particular is wild.

Remark: The proof of this result is geometric, it uses the fact that
the action of Aut(Td) is not locally quasi-analytic.

Remark: There are many techniques, in the literature and
developing, for calculating arboreal representations.
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Into the future...

Problem: Let ϕ : G ×X→ X be a wild action. Show that it is not
return equivalent to any C k -action for k ≥ 2.

Question: Let ϕ : G × X→ X be a minimal equicontinuous
action, where G is a finitely generated, torsion free nilpotent
group. Can the action be realized up to return equivalence by a
C k -action for some k ≥ 1?

Question: Characterize the algebraic number fields and
polynomials whose arboreal representations are wild.
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