Plugs

Kuperberg Plug

Generic dynamics

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Laminates

The dynamics of Kuperberg flows

Steve Hurder (joint with Ana Rechtman)

University of Illinois at Chicago www.math.uic.edu/~hurder

Theorem: [K. Kuperberg] Let M be a closed, oriented 3-manifold. Then M admits a non-vanishing smooth vector field \mathcal{K} without periodic orbits.

• K. Kuperberg, "A smooth counterexample to the Seifert conjecture", Annals of Mathematics, 1994.

 \bullet S. Matsumoto, "Kuperberg's C^∞ counterexample to the Seifert conjecture", Sūgaku, Mathematical Society of Japan, 1995.

• É. Ghys, "Construction de champs de vecteurs sans orbite périodique (d'après Krystyna Kuperberg)", Séminaire Bourbaki, Vol. 1993/94, Exp. No. 785, 1995.

Theorem: [Ghys, Matsumoto, 1994] A Kuperberg flow Φ_t has a *unique minimal set* Σ .

Problem: Describe the topological shape of Σ , and analyze the dynamics of Φ_t restricted to open neighborhoods of Σ .

Theorem: [Katok, 1980] If a smooth flow on M^3 has positive topological entropy, then it has periodic orbits.

Hence, the Kuperberg flow Φ_t has topological entropy 0.

Problem: What type of entropy-zero dynamical system does the restricted flow $\Phi_t | \Sigma$ flow yield? For example, is it an odometer? Does its type depend on the construction of the flow?

Plugs

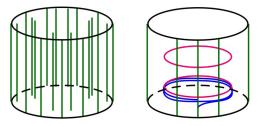
Kuperberg Plug

Generic dynamics

Laminates

Plugs

A plug $\mathbb{P} \subset \mathbb{R}^3$ is a 3-manifold with boundary, with a non-vanishing vector field that agrees with the vertical field on the boundary of \mathbb{P} :



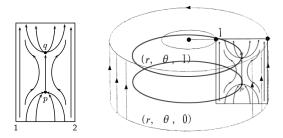
Mirror Symmetry Property: An orbit entering a plug (from the bottom) either never leaves the plug (it is "trapped"), or exits the plug at the mirror image point at the top of the plug.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Wilson Plug

Theorem: [Wilson, 1966] A closed oriented 3-manifold M admits a smooth non-vanishing vector field \mathcal{X} with two periodic orbits.

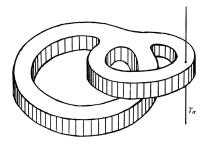
Proof: Trap orbits so they limit to a periodic orbit contained in the plug. The two periodic orbits are attractors:



Schweitzer Plug

Theorem: [Schweitzer, 1974] Every homotopy class of non-vanishing vector fields on a closed 3-manifold M contains a C^1 -vector field without closed orbits.

Proof: Replace the circular orbits of the Wilson Plug with Denjoy minimal sets, embedded as pictured, so trapped orbits limit to Denjoy minimal set.



Handel's Theorem

A minimal set K for a flow \mathcal{X} on a 3-manifold M is said to be "surface-like" if there is a tamely embedded surface $\Sigma \hookrightarrow M$ whose image contains K.

Theorem: [Handel, 1980] Let \mathcal{X} be a flow on a 3-manifold M such that its minimal sets are surface-like, then \mathcal{X} cannot be C^2 .

Handel's analysis implies any construction of counter-examples to the Seifert Conjecture requires "3-dimensional dynamics", in that its minimal sets cannot be planar.

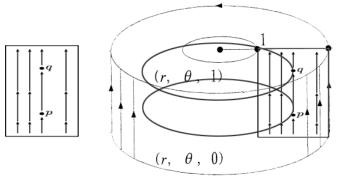
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Modified Wilson Plug

Define a radially symmetric vector field on the plug $\ensuremath{\mathbb{W}}$

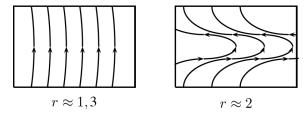
$$\mathcal{W} = g(r, \theta, z)\partial/\partial z + f(r, \theta, z)\partial/\partial \theta$$

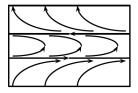
 $(r, \theta, z) \in [1, 3] \times \mathbb{S}^1 \times [-2, 2] = W$ is radially symmetric, with f(r, 0) = 0 and g(r, z) = 0 only near the boundary, and g(r, z) = 1 away from the boundary ∂W .



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The flattened orbits of the modified Wilson flow $\ensuremath{\mathcal{W}}$ appear like:





r = 2

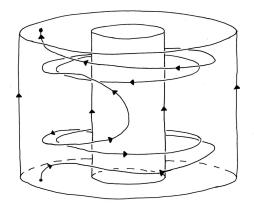
Plugs

Kuperberg Plug

Generic dynamic

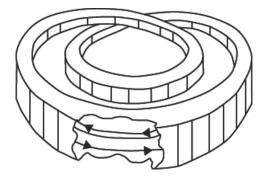
Laminates

3d-orbits of W appear for r > 2 appear like:



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Embed modified Wilson as a double cover



	ert			

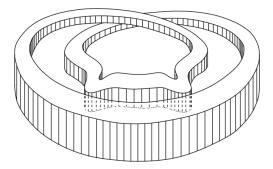
Plugs

Kuperberg Plug

Generic dynamics

Laminates

Grow two horns



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Plugs

Kuperberg Plug

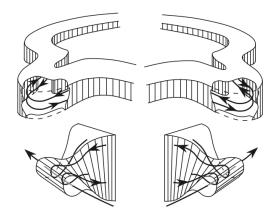
Generic dynamics

・ロト ・四ト ・ヨト ・ヨト

æ

Laminates

Twist the horns



Plugs

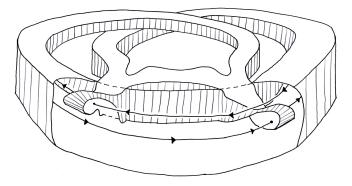
Kuperberg Plug

Generic dynamics

Laminates

Insert the horns

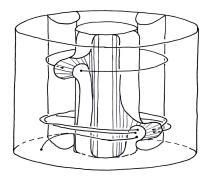
The vector field \mathcal{W} induces a field \mathcal{K} on the surgered manifold. Then the Kuperberg Plug is pictured as:



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Wilson dynamics + insertions = Kuperberg dynamics



This is an aperiodic plug, as only chance for periodic orbit is via the circular Wilson orbits, and they get broken up.

Kuperberg Plug

Shigenori Matsumoto's summary:

そこで、どうしても W 内のふたつの周期軌道 $T_1 \ge T_2$ を予め破壊しておく必要がある. しか しそのために新しい部品を開発するのでは話は振り出しに戻って しまう. Kuperberg の発想は、 W 内の周期軌道自身で自分達を破壊させるという ものである. 敵同士が妨害工作をしあうように わなを仕掛けた後は、何もせずに黙ってみていればよいということである.

We therefore must demolish the two closed orbits in the Wilson Plug beforehand. But producing a new plug will take us back to the starting line. The idea of Kuperberg is to let closed orbits demolish themselves. We set up a trap within enemy lines and watch them settle their dispute while we take no active part.

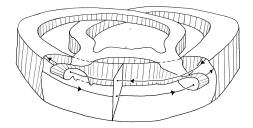
(transl. by Kiki Hudson Arai)

The transverse section

Consider a rectangular section

$${f R}_0 = \{(r,\pi,z) \mid 1 \le r \le 3 \ \& \ -2 \le z \le 2\}$$

as pictured here, which is disjoint from insertions. The periodic orbits in \mathbb{W} intersect this in two special points $\omega_1 = (2, \pi, -1)$ and $\omega_2 = (2, \pi, 1)$.



Seifert Conjecture	Plugs	Kuperberg Plug	Generic dynamics	Laminates
		The second second	- 1	

The minimal set

 $\Phi_t \colon \mathbb{K} \to \mathbb{K}$ is Kuperberg flow.

• Every trapped orbit in \mathbb{K} contains either ω_1 or ω_2 in its closure.

Define the orbit closures $\Sigma_i = \overline{\{\Phi_t(\omega_i) \mid t \in \mathbb{R}\}}$ for i = 1, 2.

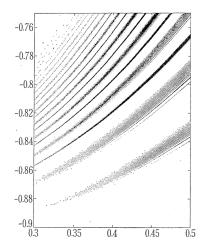
Theorem: $\Sigma_1 = \Sigma_2$ and $\Sigma \equiv \Sigma_1$ is the unique minimal set for Φ_t .

What is the topological shape of $\Sigma?$ What is the Hausdorff dimension of the intersection $\Sigma\cap R_0?$

・ロト ・聞ト ・ヨト ・ヨト

ж

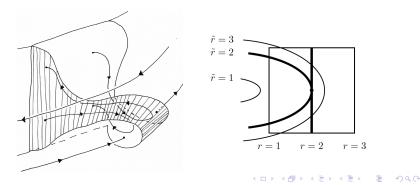
Suggestive computer illustration of $\Sigma \cap \mathbf{R}_0$, by B. Sévennec (1994).



Quadratic hypotheses

A more detailed study of the Kuperberg dynamics requires some type of regularity hypotheses on the construction.

Definition: A Kuperberg flow \mathcal{K} is said to be *generic* if the singularities for the vanishing of the vertical part $g(r, \theta, z) \frac{\partial}{\partial z}$ of the Wilson vector field $\mathcal W$ are of quadratic type, and each insertion map σ_i for i = 1, 2 yields a quadratic radius function.

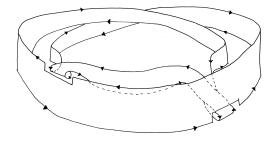


The twisted band and the propellers

Reeb cylinder $\mathcal{R} = \{(2, \theta, z) \mid 0 \le \theta \le 2\pi \& -1 \le z \le 1\} \subset \mathbb{W}$ \mathcal{R}' is Reeb cylinder minus insertions. Introduce Φ_t -invariant sets

is reading the minus insertions. Introduce Ψ_t -invariant set

$$\mathfrak{M}_0 = igcup_{t\in\mathbb{R}} \, \, \Phi_t(\mathcal{R}') \quad, \quad \mathfrak{M} \equiv \overline{\mathfrak{M}_0} \subset \mathbb{K}$$



Plugs

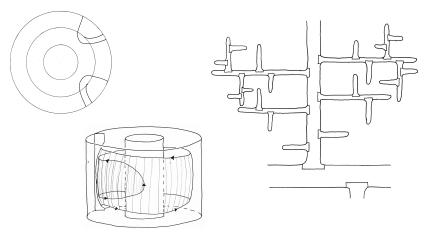
Kuperberg Plug

Generic dynamics

Laminates

Levels

 $\mathfrak{M}_0 \;=\; \mathcal{R}' \;\cup\; \mathfrak{M}_0^1 \;\cup\; \mathfrak{M}_0^2 \;\cup\; \cdots$



Theorem: [H & R] For the generic Kuperberg flow, the minimal set $\mathcal{Z} = \mathfrak{M}$, and thus is 2-dimensional.

$$\mathcal{R}' \subset \mathcal{Z} = \overline{\{\Phi_t(\omega_i) \mid t \in \mathbb{R}\}} \subset \bigcup_{t \in \mathbb{R}} \Phi_t(\mathcal{R}') = \mathfrak{M}.$$

Proof: Show that the orbit $\Phi_t(\omega_1)$ forms a spiral about \mathcal{R}' which is uniformly spaced tending to zero as $r \to 2$.

The two papers below discuss the existence of open disks in Σ .

É. Ghys, "Construction de champs de vecteurs sans orbite périodique (d'après Krystyna Kuperberg)", Séminaire Bourbaki, Vol. 1993/94, Exp. No. 785, 1995.
G. Kuperberg and K. Kuperberg, "Generalized counterexamples to the Seifert conjecture", Annals of Math, 1996.

Theorem: For the generic Kuperberg flow, all points in the complement $\mathbb{K} - \mathfrak{M}$ are wandering. Moreover, any orbit which is entirely contained in either the region for r > 2, or the region r < 2 of \mathbb{K} , cannot be infinite.

Proof: Combine results of Ghys and Matsumoto for orbits with $r \leq 2$, and the authors for the case where r > 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion: \mathfrak{M} is where the dynamical properties of the Kuperberg flow are determined.

Laminates

Zippered laminations

Theorem:[H & R] For the generic Kuperberg flow:

- \bullet There is a lamination $\mathcal{L} \subset \mathfrak{M}$ with open leaves;
- \bullet Each leaf of ${\cal L}$ has a tree structure, with branching number at most 4;
- $\partial_z \mathfrak{M} = \mathfrak{M} \mathcal{L}$ is the union of the boundaries of the leaves of \mathcal{L} ;
- $\partial_z \mathfrak{M}$ is dense in \mathfrak{M} .

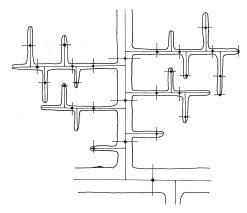
So \mathfrak{M} is like a lamination with boundary, except that its "boundary" $\partial_z \mathfrak{M}$ is dense in \mathfrak{M} . To describe the topological properties of \mathfrak{M} we must recall how \mathfrak{M}_0 was defined.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Cantor transversal

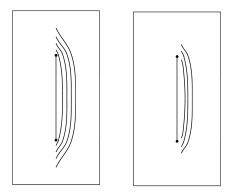
 $\mathcal{T} = \{(r, \pi, 0) \mid 1 \leq r \leq 3\} \subset \mathbf{R}_0 \text{ is transverse to } \mathfrak{M}_0.$

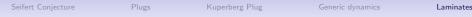
Theorem: $\mathfrak{C} = \mathfrak{M} \cap \mathcal{T}$ is a Cantor set, which is a complete transversal for the open leaves $\mathcal{L} \subset \mathfrak{M}$.



Transverse pseudogroup

The flow Φ_t induces a pseudogroup \mathcal{G}_K on \mathbf{R}_0 Five generators $\{\psi, \phi_1^{\pm}, \phi_2^{\pm}\}$ – these act on curves in $\mathfrak{M}_0 \cap \mathbf{R}_0$ (illustrated below) to obtain $\mathcal{G}_{\mathfrak{M}}$ acting on \mathfrak{C} .





Lamination entropy

For $\epsilon > 0$, say that $\xi_1, \xi_2 \in \mathfrak{C}$ are (n, ϵ) -separated if there exists $\varphi \in \mathcal{G}_{\mathfrak{M}}^{(n)}$ with $\xi_1, \xi_2 \in Dom(\varphi)$, and $d_{\mathfrak{C}}(\varphi(\xi_1), \varphi(\xi_2)) \geq \epsilon$.

A finite set $S \subset \mathfrak{C}$ is said to be (n, ϵ) -separated if every distinct pair $\xi_1, \xi_2 \in S$ are (n, ϵ) -separated.

Let $s(\mathcal{G}_{\mathfrak{M}}, n, \epsilon)$ be the maximal cardinality of an (n, ϵ) -separated subset of \mathfrak{M} .

Plugs

Kuperberg Plug

The *lamination entropy* of $\mathcal{G}_{\mathfrak{M}}$ is defined by:

$$h(\mathcal{G}_{\mathfrak{M}}) = \lim_{\epsilon \to 0} \left\{ \limsup_{n \to \infty} \frac{1}{n} \ln(s(\mathcal{G}_{\mathfrak{M}}, n, \epsilon)) \right\}.$$

The limit $h(\mathcal{G}_{\mathfrak{M}})$ depends on the generating set, but the fact of being non-zero does not.

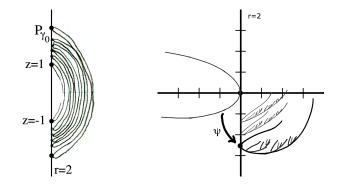
For $0 < \alpha < 1$, define the *slow entropy* for $\mathcal{G}_{\mathfrak{M}}$

$$h_{lpha}(\mathcal{G}_{\mathfrak{M}}) \;=\; \lim_{\epsilon o 0} \left\{ \limsup_{n o \infty} rac{1}{n^{lpha}} \ln(s(\mathcal{G}_{\mathfrak{M}}, n, \epsilon))
ight\}.$$

Theorem: (H and R) For $\alpha = 1/2$, the pseudogroup $\mathcal{G}_{\mathfrak{M}}$ has positive slow entropy, $h_{1/2}(\mathcal{G}_{\mathfrak{M}}) > 0$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

Proof: The parabolic arcs are one-half of a stretched ellipse, and the action of $\mathcal{G}_{\mathcal{K}}$ maps ellipses into ellipses, so can get a good game of ping-pong up and running. The only catch is that the game runs slow. The n^{th} -volley takes approximately n^2 steps.



Seifert Conjecture	Plugs	Kuperberg Plug	Generic dynamics	Laminates				
Sullivan dictionary								

Remark: The entropy $h(\Phi_t)$ of the flow Φ_t is calculated by following the path around the perimeter of the leaf \mathfrak{M}_0 , while for the entropy $h(\mathcal{G}_{\mathfrak{M}})$ we are allowed to follow straight paths, along the Cayley graph of $\mathcal{G}_{\mathfrak{M}}$ in \mathfrak{M}_0 .

The same points get separated, but just at different rates.

Analogous to behavior of horocycle flow (Kuperberg flow Φ_t) verses geodesic flow (Wilson flow Ψ_t), even including "nested ellipses at infinity" in \mathbf{R}_0 .

Shape of the minimal set

For $\epsilon > 0$, let $N_{\epsilon}(\mathfrak{M}) = \{x \in \mathbb{K} \mid d(x, \mathfrak{M}) < \epsilon\}.$

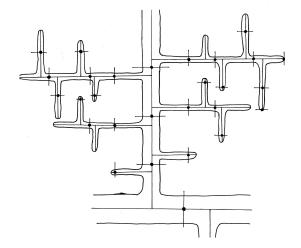
Definition: The shape of \mathfrak{M} is $\mathcal{S}(\mathfrak{M}) = \varprojlim \{N_{\epsilon} \mid \epsilon > 0\}.$

Definition: A continua $K \subset M$ is said to have *stable shape* if there exists a cofinal sequence $\epsilon_{\ell} > 0$ for $\ell \ge 1$, such that $\epsilon_{\ell} \to 0$, and the inclusion $N_{\epsilon_{\ell}} \subset N_{\ell_1}$ is a homotopy equivalence for all $\ell \ge \ell_1$.

Example: The Denjoy minimal set has stable shape $\cong \mathbb{S}^1 \vee \mathbb{S}^1$.

We then realize the original motivation for this work: **Theorem:** [H & R] The shape $S(\mathfrak{M})$ is not stable.

Proof: The shape homotopy group $\pi_1^{sh}(\mathfrak{M}, \omega_1)$ is generated by paths in \mathfrak{M}_0 going out to the ends of the embedded tree, so is not stable!



Remarks and Problems

Theorem: [H & R] In every C^1 -neighborhood of \mathcal{K} , there exists a smooth flow Φ'_t on \mathbb{K} with positive entropy, and the associated invariant lamination \mathfrak{M}' is the suspension of a horseshoe. There also exists a smooth flow Φ''_t on \mathbb{K} with no trapped orbits.

Problem: Give a description of the dynamical properties of all flows C^1 -close to a generic Kuperberg flow.

Theorem: [Kuperbergs, 1996] There exists a PL flow on \mathbb{K} for which the minimal set Σ is 1-dimensional.

Problem: Characterize the smooth (non-generic!) flows on \mathfrak{M} for which Σ is 1-dimensional.

Problem: Understand the topological orbit-equivalence class of the action $\mathcal{G}_{\mathfrak{M}}$ on \mathfrak{C} .

Bibliography

- H. Seifert, "Closed integral curves in 3-space and isotopic two-dimensional deformations", Proc. A.M.S., 1, 1950.
- F.W. Wilson, "On the minimal sets of non-singular vector fields", Annals of Math, 1966.
- P. Schweitzer, "Counterexamples to the Seifert conjecture and opening closed leaves of foliations", Annals of Math, 1974.
- M. Handel, "One-dimensional minimal sets and the Seifert conjecture", Annals of Math, 1980.
- J. Harrison, " C^2 counterexamples to the Seifert conjecture", Topology, 1988.
- K. Kuperberg, "A smooth counterexample to the Seifert conjecture", Annals of Math, 1994.
- É. Ghys, "Construction de champs de vecteurs sans orbite périodique (d'après Krystyna Kuperberg)", Séminaire Bourbaki, Vol. 1993/94, Exp. No. 785, 1995.
- S. Matsumoto, "Kuperberg's C^{∞} counterexample to the Seifert conjecture", Sūgaku, Mathematical Society of Japan, 1995.