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Definition. Let (X, d) be a metric space. Thenamap T: X — X
is called a contraction mapping on X if there exists 0 < C < 1
such that d(T(x), T(y)) < C-d(x,y) for all x,y € X.

Banach Fixed-Point Theorem. [Banach, 1922] Let (X, d) be a
non-empty complete metric space with a contraction mapping
T: X — X. Then T admits a unique fixed-point x* € X.

In these lectures, we give three applications of this theorem to the
study of group actions on compact spaces.



Circle Actions
©00

e [ will always denote a finitely generated group.

Question: What are the non-trivial actions of I on the circle S1?

Theorem. [Margulis] Let a group I act by homeomorphisms on
S!. Then, either there is a M-invariant probability measure on St,
or [ contains a free nonabelian group.

* Gregory Margulis, Free subgroups of the homeomorphism group
of the circle, C. R. Acad. Sci. Paris Sér. | Math., 331,
669-674,1980.

The proof uses a “local contraction principle” on the space of
probability measures on S* to construct an invariant Cantor set,
and a ping-pong game for the action on this Cantor set.
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Theorem. [Witte-Morris] Let ' be an arithmetic subgroup of a
Q-simple algebraic Q-group G, with Q — rank(G) > 2. Then every
continuous action of I on the circle S or the real line R factors
through the action of a finite quotient of I

Example. Let [ C SL(n,R) be a lattice for n > 3, then an action
of I on S! factors through a finite action.

* Dave Witte, Arithmetic groups of higher Q-rank cannot act on
1-manifolds, Proc. Amer. Math. Soc., 122, 669-674, 1994.

The proof uses the antithesis of a contraction mapping principle,
as it shows that a Z-extension of I is left orderable.
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Definition. A group I is called (left) orderable if there exists a
total ordering < on I which is compatible with the group law, in
the sense that g < hand k €T implies k- g < k- h.

Theorem. [ acts faithfully on R if and only if I' is left orderable.

Example. Every torsion free nilpotent group I acts faithfully on R.

* Andrés Navas, Groups of circle diffeomorphisms, Chicago
Lectures in Mathematics, University of Chicago Press, 2011.
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Let ' € PSL(2,R) be a torsion-free cocompact subgroup; so a
discrete subgroup such that the quotient M = PSL(2,R)/T is a
compact 3-manifold.

Let D? C C2 be the unit disk with the Poincaré metric,

4(dx2 + dyz)

il G ey

The geodesics for this model are the circular acrs
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For a matrix A = [ i Z ],theaction onz=x+iy €C by
b
z = Z——i—i—d maps the boundary sl — {l|z]| = 1} to itself, so

defines an action ®g: I x St — St

Alternately, each point z € S! is identified with the point at +oco
for a family of geodesics in D?, and the action ®q is described by
its action on geodesics in D?.

Then the quotient ¥ = D?/I is a compact Riemann surface with a
metric gp of constant negative curvature.
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Consider a metric g on X with negative curvature - for example a
metric which is C3-close to gp,

The lift g of g to the universal cover D? — ¥ is M-invariant, so the
deck transformations preserve the geodesics of g in D?. The action
of ' then acts on the endpoints of the geodesics at +o00, so defines
an action ®g: [ x S — SL. Let M~ denote the space of metrics
of negative curvature on X. Thus we obtain

®: M~ — Hom{l — Homeo(S')}

where ®(g) = .
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The geodesic flow ¢;: M — M for the Riemann surface ¥ of

constant negative curvature has a simple description when lifted to
SL(2,R), given by

~[a b] [e/?2 0 a bl [ e2a et/?p
Pl e g |™ 0 et2| | c d| | et?c et/?d
The action g;t

e expands the subgroup Ut = [ é [1) }

e contracts the subgroup U™ = { i (1) ]
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The infinitesimal model for this action is given by the commutator

actions on Lie the algebra sl(2,R) = [ ; _Sr } ,r,s,teR
01 00 1 0
LetX—[O O],y_[l O],z_[o _1]

then [Z,X] = 2X, [Z,Y] = —2Y and [X, Y] = Z.

Then we have two Lie subalgebras LT = (Z, X) and L™ = (Z,Y)
which generate subgroups of SL(2,R). The left translates of these
subgroups define codimension one foliations F* and F~ which are
invariant under the left action of I, so descend to foliations F*

and F~ on M. Moreover, they are transverse to the S! subgroup
of SL(2,R) generated by the Lie vector § = X — Y.
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Conclusion. There is a direct sum decomposition
TM = (Z) & (X) & (Y) where the flow of ¢ is:

e tangent to the distribution (Z)
e expands the distribution (X)
e contracts the distribution (Y)

Definition. Let M be a compact manifold of dimension n.
A smooth flow ¢; of M is Anosov if there exists a direct sum
decomposition TM = Eq & E* @ E~ where the flow of ¢; is

e tangent to the distribution Eg
e uniformly expands the distribution ET

e uniformly contracts the distribution E~
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Theorem. [Anosov| The weak unstable and weak stable
distributions Eg @& E™ and Ey @ E~ are both integrable, and
integrate to codimension one foliations denoted £ and F~ on M.

Theorem. [Anosov] Anosov flows are structurally stable. If ¢} is
Cl-close to ¢;, then ¢, is also an Anosov flow, and there is a
homeomorphism of M conjugating orbits of ¢; to orbits of ¢}.

* D.V. Anosov, Tangent fields of transversal foliations in
U-systems, Math. Notes Acad. Sci., USSR, 2:818-823, 1967.

* D.V. Anosov, Geodesic Flows on Closed Riemannian Manifolds
with Negative Curvature, 90, Proc. Steklov Inst. Math., 1967.
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The proof of structural stability by Anosov uses the shadowing
principle for Anosov flows.

John Mather gave an alternate proof using the Banach Fixed-Point
Theorem for the space of sections of a vector bundle.

* Mather, Anosov diffeomorphisms, appendix to S. Smale,
Differentiable Dynamical Systems, Bulleting A.M.S., 73, 1967,
pages 792-795.
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In Section 3 of work with Katok, we refined the argument of
Mather to show the contraction mapping was locally defined on a
space of sections with a norm defined by the Zygmund condition:

Definition. The Zygmund norm of f: [a, b] — R is given by

f A
A(F) = sup limsup LOCER)IHFO = h) = 2f(x)
a<x<b h—0 |h|

Remark. A.(f) < oo implies that f is a-Hdlder for all o < 1.

* S. Hurder and A. Katok, Differentiability, rigidity and
Godbillon-Vey classes for Anosov flows, Publ. Math. Inst.
Hautes Etudes Sci., 72:5-61, 1990.



Anosov Flows
000000@®

Theorem. [Hurder-Katok] If ¢, is a volume preserving Anosov
flow of a 3-manifold, then the foliations Ft and F~ are C! and
their derivatives have bounded Zygmund norm.

Corollary. The induced action at infinity for a geodesic flow ¢; is
C1*« for all o < 1. That is, the flow induces a homomorphism

®: I — Diff*™(S') ¢ Homeo(S')

=> variations of metrics of negative curvature on ¥ generate
variations of C1T®-actions of ' = 71(X, xg) on S*.
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Let F be a codimension one C>-foliation of a compact manifold
M. Assume that the normal bundle to F is orientable, then there
exists a 1-form w such that ker(w) = TF.

By the Frobenius Theorem, the distribution TF is integrable
implies that there is a 1-form 7 such that dw =7 Aw. Then a
calculation shows that n A dn is closed, and that its cohomology
class [ A dn] € H3(M;R) is independent of the choice of w.

Theorem. [Godbillon-Vey] The class GV/(F) € H3(M;R) is a
diffeomorphism invariant of the foliation F, and depends only on
the concordance class of F.
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Roussarie calculated the Godbillon-Vey invariant for the weak
unstable foliation of M = SL(2,R)/T.

Let X*, Y*, Z* be the dual 1-forms for the framing {X, Y, Z} of
TM. Then TF*t =ker(Y*) so take w = Y*. Then
dw=—-2Z*AY* and set n = —2Z"*, so we get

nAdn=-2Z"N-2dZ* =4Z* NX* AN Y™

is a volume form on M. Hence 0 # GV(FT) € H3(M;R).

* C. Godbillon and J. Vey, Un invariant des feuilletages de
codimension 1, C.R. Acad. Sci. Paris, 273:92-95, 1971.
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Suppose that F is a codimension one foliation on a circle bundle
St — M — B which is transverse to the circle fibers. Then there is
a map, “integration over the fibers”

/ - H3(M;R) — H?(B;R)
Sl

which yields a class gv(F) = / GV(F) € H*(B;R).
St

Suppose the base B = ¥ as for the case M = SL(2,R)/T then
gv(F) € H*(L;R) = H3(T; R).
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There is a formula for this class, given by Thurston:

Let 1,72 € T and let a(y;) € Diff(S!). Set
f=log{a(n)} , g=log{a(1172)}
guiinn) = [ f dg = Area((f,g): 8" — ?)
S

This last equality follows from Stokes’ Theorem for planar curves.

* R. Bott, On some formulas for the characteristic classes of group
actions, in Differential topology, foliations and Gelfand-Fuks
cohomology (Proc. Sympos., Pontificia Univ. Catdlica, Rio
de Janeiro, 1976), Lect. Notes in Math. Vol. 652, 1978:25-61.
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Observations.

e The area integral / f dg is well defined when the image of S!
St

has Lebesgue measure 0.

e If the maps f, g are a-Hdlder continuous for o > 1/2 then the

image circle in R? has Lebesgue measure 0.

Theorem. [Hurder & Katok, 1991] Let g be a metric of negative
curvature on a compact surface . Then there is a well-defined
Godbillon-Vey class gv(F;) € H*(T; R).

* T. Tsuboi, On the Hurder-Katok extension of the Godbillon-Vey
invariant, J. Fac. Sci. Univ. Tokyo, 37:255-262, 1990.
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Theorem. [Formula of Mitsumatsu| Let (X, g) be a closed
Riemann surface with strictly negative curvature and Euler
characteristic x(X). Then

(GV(F]). [M]) = 47° - x(%) —3-/M (%H)Zdvo/

where % is the unit tangent vector to the circle fibers of M — %,

and H is the unique bounded positive solution to the Riccati
equation along the geodesic flow on M.

Y. Mitsumatsu, A relation between the topological invariance of
the Godbillon-Vey invariant and the differentiability of Anosov
foliations, in Foliations (Tokyo, 1983), Adv. Stud. Pure Math.,
Vol. 5, North-Holland, Amsterdam, 1985, pages 159-167.
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Mitsumatsu showed this formula under the assumption that the
foliation ]-"; is C2. In Section 9 of the paper with Katok we
extended this formula to the case when F, is Cclte,

This is fortuitous because of the observation

Corollary. [Mitsumatsu] (GV(F,),[M]) = 4x* - x(X) if and only
if g has constant negative curvature.

Thus, if g a metric with variable negative curvature on ¥, then

(GV(FS), [M]) < 4n® - x(%)
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The space of metrics with negative curvature on X is locally
connected, so we obtain for the group cohomology:

Theorem. Let Diff1™*(S!) denote the group of diffeomorphisms
of the circle with a-Holder first derivatives. For oo > 1/2:

e There is a well-defined class gv € H2(Diff§+°‘(S1);]R).

e There exists continuous families of cycles f,: ¥ — BDiff;™*(S?)
such that the evaluation (gv, [f;X]) varies continuously and
non-trivially with t.



Two Problems
°

Problem 1. Thurston extended his construction of foliations on S3
with variable Godbillon-Vey class in an unpublished work (see
below). Show that the Thurston construction can also be
deformed with holonomy in the group Diffé*o‘(Sl).

Problem 2. Heitsch modified Thurston's construction to show
that the higher codimension Godbillon-Vey classes are also
variable. Show that the Heitsch constructions can also be
deformed with holonomy in the group Diff5™*(S!).

* J. Heitsch, Independent variation of secondary classes, Ann. of
Math. (2), 108:421-460, 1978.

* T. Mizutani, On Thurston’s construction of a surjective
homomorphism Hp,11(BT ,,7Z) — R, in Geometry, dynamics,
and foliations 2013, Math. Soc. Japan, Tokyo, 2017, 211-219.
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