Applications of the Contraction Mapping Theorem: Circle actions

Steve Hurder University of Illinois at Chicago April 15, 2024 **Definition.** Let (X,d) be a metric space. Then a map $T: X \to X$ is called a *contraction mapping* on X if there exists $0 \le C < 1$ such that $d(T(x), T(y)) \le C \cdot d(x,y)$ for all $x, y \in X$.

Banach Fixed-Point Theorem. [Banach, 1922] Let (X, d) be a non-empty complete metric space with a contraction mapping $T: X \to X$. Then T admits a unique fixed-point $x^* \in X$.

In these lectures, we give three applications of this theorem to the study of group actions on compact spaces.

• Γ will always denote a finitely generated group.

Question: What are the non-trivial actions of Γ on the circle \mathbb{S}^1 ?

Theorem. [Margulis] Let a group Γ act by homeomorphisms on \mathbb{S}^1 . Then, either there is a Γ -invariant probability measure on \mathbb{S}^1 , or Γ contains a free nonabelian group.

* Gregory Margulis, Free subgroups of the homeomorphism group of the circle, C. R. Acad. Sci. Paris Sér. I Math., 331, 669–674,1980.

The proof uses a "local contraction principle" on the space of probability measures on \mathbb{S}^1 to construct an invariant Cantor set, and a ping-pong game for the action on this Cantor set.

Theorem. [Witte-Morris] Let Γ be an arithmetic subgroup of a \mathbb{Q} -simple algebraic \mathbb{Q} -group G, with $\mathbb{Q} - \mathrm{rank}(G) \geq 2$. Then every continuous action of Γ on the circle \mathbb{S}^1 or the real line \mathbb{R} factors through the action of a finite quotient of Γ .

Example. Let $\Gamma \subset SL(n,\mathbb{R})$ be a lattice for $n \geq 3$, then an action of Γ on \mathbb{S}^1 factors through a finite action.

★ Dave Witte, Arithmetic groups of higher **Q**-rank cannot act on 1-manifolds, **Proc. Amer. Math. Soc.**, 122, 669–674, 1994.

The proof uses the *antithesis* of a contraction mapping principle, as it shows that a \mathbb{Z} -extension of Γ is left orderable.

Definition. A group Γ is called (left) orderable if there exists a total ordering \leq on Γ which is compatible with the group law, in the sense that $g \leq h$ and $k \in \Gamma$ implies $k \cdot g \leq k \cdot h$.

Theorem. Γ acts faithfully on $\mathbb R$ if and only if Γ is left orderable.

Example. Every torsion free nilpotent group Γ acts faithfully on \mathbb{R} .

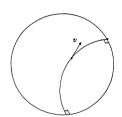
* Andrés Navas, **Groups of circle diffeomorphisms**, Chicago Lectures in Mathematics, University of Chicago Press, 2011.

Let $\Gamma \subset PSL(2,\mathbb{R})$ be a torsion-free cocompact subgroup; so a discrete subgroup such that the quotient $M = PSL(2,\mathbb{R})/\Gamma$ is a compact 3-manifold.

Let $\mathbb{D}^2 \subset \mathbb{C}^2$ be the unit disk with the Poincaré metric,

$$ds^2 = \frac{4(dx^2 + dy^2)}{(1 - (x^2 + y^2)^2)}$$

The geodesics for this model are the circular acrs



For a matrix
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, the action on $z = x + iy \in \mathbb{C}$ by

$$A \cdot z = rac{az+b}{cz+d}$$
 maps the boundary $\mathbb{S}^1 = \{\|z\|=1\}$ to itself, so defines an action $\Phi_0 \colon \Gamma imes \mathbb{S}^1 o \mathbb{S}^1$.

Alternately, each point $z \in \mathbb{S}^1$ is identified with the point at $+\infty$ for a family of geodesics in \mathbb{D}^2 , and the action Φ_0 is described by its action on geodesics in \mathbb{D}^2 .

Then the quotient $\Sigma = \mathbb{D}^2/\Gamma$ is a compact Riemann surface with a metric g_0 of constant negative curvature.

Consider a metric g on Σ with negative curvature - for example a metric which is C^3 -close to g_0 ,

The lift \widetilde{g} of g to the universal cover $\mathbb{D}^2 \to \Sigma$ is Γ -invariant, so the deck transformations preserve the geodesics of \widetilde{g} in \mathbb{D}^2 . The action of Γ then acts on the endpoints of the geodesics at $+\infty$, so defines an action $\Phi_g \colon \Gamma \times \mathbb{S}^1 \to \mathbb{S}^1$. Let \mathfrak{M}^- denote the space of metrics of negative curvature on Σ . Thus we obtain

$$\Phi \colon \mathfrak{M}^- \to \mathsf{Hom}\{\Gamma \to \mathsf{Homeo}(\mathbb{S}^1)\}$$

where $\Phi(g) = \Phi_g$.

The geodesic flow $\phi_t \colon M \to M$ for the Riemann surface Σ of constant negative curvature has a simple description when lifted to $SL(2,\mathbb{R})$, given by

$$\widetilde{\phi_t} \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] = \left[\begin{array}{cc} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{array} \right] \cdot \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] = \left[\begin{array}{cc} e^{t/2}a & e^{t/2}b \\ e^{-t/2}c & e^{-t/2}d \end{array} \right]$$

The action $\widetilde{\phi}_t$

- expands the subgroup $U^+ = \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$
- ullet contracts the subgroup $U^-=\left[egin{array}{cc} 1 & 0 \ c & 1 \end{array}
 ight]$

The infinitesimal model for this action is given by the commutator actions on Lie the algebra $\mathfrak{sl}(2,\mathbb{R})=\begin{bmatrix}r&s\\t&-r\end{bmatrix}$, $r,s,t\in\mathbb{R}$ Let $X=\begin{bmatrix}0&1\\0&0\end{bmatrix}$, $Y=\begin{bmatrix}0&0\\1&0\end{bmatrix}$, $Z=\begin{bmatrix}1&0\\0&-1\end{bmatrix}$ then [Z,X]=2X, [Z,Y]=-2Y and [X,Y]=Z.

Then we have two Lie subalgebras $L^+ = \langle Z, X \rangle$ and $L^- = \langle Z, Y \rangle$ which generate subgroups of $SL(2,\mathbb{R})$. The left translates of these subgroups define codimension one foliations $\widetilde{\mathcal{F}}^+$ and $\widetilde{\mathcal{F}}^-$ which are invariant under the left action of Γ , so descend to foliations \mathcal{F}^+ and \mathcal{F}^- on M. Moreover, they are transverse to the \mathbb{S}^1 subgroup of $SL(2,\mathbb{R})$ generated by the Lie vector $\overrightarrow{\theta} = X - Y$.

Conclusion. There is a direct sum decomposition $TM = \langle Z \rangle \oplus \langle X \rangle \oplus \langle Y \rangle$ where the flow of ϕ_t is:

- ullet tangent to the distribution $\langle Z \rangle$
- ullet expands the distribution $\langle X
 angle$
- ullet contracts the distribution $\langle Y \rangle$

Definition. Let M be a compact manifold of dimension n. A smooth flow ϕ_t of M is Anosov if there exists a direct sum decomposition $TM = E_0 \oplus E^+ \oplus E^-$ where the flow of ϕ_t is

- tangent to the distribution *E*₀
- uniformly expands the distribution E^+
- uniformly contracts the distribution E^-

Theorem. [Anosov] The *weak unstable* and *weak stable* distributions $E_0 \oplus E^+$ and $E_0 \oplus E^-$ are both integrable, and integrate to codimension one foliations denoted \mathcal{F}^+ and \mathcal{F}^- on M.

Theorem. [Anosov] Anosov flows are structurally stable. If ϕ'_t is C^1 -close to ϕ_t , then ϕ'_t is also an Anosov flow, and there is a homeomorphism of M conjugating orbits of ϕ_t to orbits of ϕ'_t .

- ★ D.V. Anosov, Tangent fields of transversal foliations in *U-systems*, **Math. Notes Acad. Sci., USSR**, 2:818–823, 1967.
- * D.V. Anosov, Geodesic Flows on Closed Riemannian Manifolds with Negative Curvature, 90, Proc. Steklov Inst. Math., 1967.

The proof of structural stability by Anosov uses the *shadowing principle* for Anosov flows.

John Mather gave an alternate proof using the Banach Fixed-Point Theorem for the space of sections of a vector bundle.

* Mather, Anosov diffeomorphisms, appendix to S. Smale, Differentiable Dynamical Systems, Bulleting A.M.S., 73, 1967, pages 792-795.

In Section 3 of work with Katok, we refined the argument of Mather to show the contraction mapping was locally defined on a space of sections with a norm defined by the Zygmund condition:

Definition. The Zygmund norm of $f:[a,b] \to \mathbb{R}$ is given by

$$\Lambda_*(f) = \sup_{a < x < b} \limsup_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{|h|}$$

Remark. $\Lambda_*(f) < \infty$ implies that f is α -Hölder for all $\alpha < 1$.

* S. Hurder and A. Katok, *Differentiability, rigidity and Godbillon-Vey classes for Anosov flows*, **Publ. Math. Inst. Hautes Etudes Sci.**, 72:5–61, 1990.

Theorem. [Hurder-Katok] If ϕ_t is a volume preserving Anosov flow of a 3-manifold, then the foliations \mathcal{F}^+ and \mathcal{F}^- are \mathcal{C}^1 and their derivatives have bounded Zygmund norm.

Corollary. The induced action at infinity for a geodesic flow ϕ_t is $C^{1+\alpha}$ for all $\alpha < 1$. That is, the flow induces a homomorphism

$$\Phi \colon \Gamma \to \mathsf{Diff}^{1+lpha}(\mathbb{S}^1) \subset \mathsf{Homeo}(\mathbb{S}^1)$$

 \Rightarrow variations of metrics of negative curvature on Σ generate variations of $C^{1+\alpha}$ -actions of $\Gamma = \pi_1(\Sigma, x_0)$ on \mathbb{S}^1 .

Let $\mathcal F$ be a codimension one C^2 -foliation of a compact manifold M. Assume that the normal bundle to $\mathcal F$ is orientable, then there exists a 1-form ω such that $\ker(\omega)=T\mathcal F$.

By the Frobenius Theorem, the distribution $T\mathcal{F}$ is integrable implies that there is a 1-form η such that $d\omega = \eta \wedge \omega$. Then a calculation shows that $\eta \wedge d\eta$ is closed, and that its cohomology class $[\eta \wedge d\eta] \in H^3(M;\mathbb{R})$ is independent of the choice of ω .

Theorem. [Godbillon-Vey] The class $GV(\mathcal{F}) \in H^3(M; \mathbb{R})$ is a diffeomorphism invariant of the foliation \mathcal{F} , and depends only on the concordance class of \mathcal{F} .

Roussarie calculated the Godbillon-Vey invariant for the weak unstable foliation of $M = SL(2,\mathbb{R})/\Gamma$.

Let X^*, Y^*, Z^* be the dual 1-forms for the framing $\{X, Y, Z\}$ of TM. Then $T\mathcal{F}^+ = \ker(Y^*)$ so take $\omega = Y^*$. Then $d\omega = -2Z^* \wedge Y^*$ and set $\eta = -2Z^*$, so we get

$$\eta \wedge d\eta = -2Z^* \wedge -2dZ^* = 4Z^* \wedge X^* \wedge Y^*$$

is a volume form on M. Hence $0 \neq GV(\mathcal{F}^+) \in H^3(M; \mathbb{R})$.

★ C. Godbillon and J. Vey, *Un invariant des feuilletages de codimension 1*, **C.R. Acad. Sci. Paris**, 273:92–95, 1971.

Suppose that \mathcal{F} is a codimension one foliation on a circle bundle $\mathbb{S}^1 \to M \to B$ which is transverse to the circle fibers. Then there is a map, "integration over the fibers"

$$\int_{\mathbb{S}^1}\colon H^3(M;\mathbb{R})\to H^2(B;\mathbb{R})$$

which yields a class $gv(\mathcal{F}) = \int_{\mathbb{S}^1} GV(\mathcal{F}) \in H^2(B; \mathbb{R}).$

Suppose the base $B = \Sigma$ as for the case $M = SL(2, \mathbb{R})/\Gamma$ then $gv(\mathcal{F}) \in H^2(\Sigma; \mathbb{R}) \cong H^2(\Gamma; \mathbb{R})$.

There is a formula for this class, given by Thurston:

Let
$$\gamma_1, \gamma_2 \in \Gamma$$
 and let $\alpha(\gamma_i) \in \mathbf{Diff}(\mathbb{S}^1)$. Set

$$f = \log\{\alpha(\gamma_2)'\}$$
 , $g = \log\{\alpha(\gamma_1\gamma_2)'\}$

$$gv(\gamma_1,\gamma_2)=\int_{\mathbb{S}^1} f \ dg = \mathsf{Area}\{(f,g)\colon \mathbb{S}^1 o \mathbb{R}^2\}$$

This last equality follows from Stokes' Theorem for planar curves.

* R. Bott, On some formulas for the characteristic classes of group actions, in Differential topology, foliations and Gelfand-Fuks cohomology (Proc. Sympos., Pontifícia Univ. Católica, Rio de Janeiro, 1976), Lect. Notes in Math. Vol. 652, 1978:25–61.

Observations.

- The area integral $\int_{\mathbb{S}^1} f \ dg$ is well defined when the image of \mathbb{S}^1 has Lebesgue measure 0.
- If the maps f,g are α -Hölder continuous for $\alpha>1/2$ then the image circle in \mathbb{R}^2 has Lebesgue measure 0.

Theorem. [Hurder & Katok, 1991] Let g be a metric of negative curvature on a compact surface Σ . Then there is a well-defined Godbillon-Vey class $gv(\mathcal{F}_g^+) \in H^2(\Gamma; \mathbb{R})$.

* T. Tsuboi, *On the Hurder-Katok extension of the Godbillon-Vey invariant*, **J. Fac. Sci. Univ. Tokyo**, 37:255–262, 1990.

Theorem. [Formula of Mitsumatsu] Let (Σ, g) be a closed Riemann surface with strictly negative curvature and Euler characteristic $\chi(\Sigma)$. Then

$$\langle GV(\mathcal{F}_g^+), [M] \rangle = 4\pi^2 \cdot \chi(\Sigma) - 3 \cdot \int_M \left(\frac{\partial}{\partial \theta} H\right)^2 dvol$$

where $\frac{\partial}{\partial \theta}$ is the unit tangent vector to the circle fibers of $M \to \Sigma$, and H is the unique bounded positive solution to the Riccati equation along the geodesic flow on M.

Y. Mitsumatsu, A relation between the topological invariance of the Godbillon-Vey invariant and the differentiability of Anosov foliations, in Foliations (Tokyo, 1983), Adv. Stud. Pure Math., Vol. 5, North-Holland, Amsterdam, 1985, pages 159–167.

Mitsumatsu showed this formula under the assumption that the foliation \mathcal{F}_g^+ is C^2 . In Section 9 of the paper with Katok we extended this formula to the case when \mathcal{F}_g^+ is $C^{1+\alpha}$.

This is fortuitous because of the observation

Corollary. [Mitsumatsu] $\langle GV(\mathcal{F}_g^+), [M] \rangle = 4\pi^2 \cdot \chi(\Sigma)$ if and only if g has constant negative curvature.

Thus, if g a metric with variable negative curvature on Σ , then

$$\langle GV(\mathcal{F}_g^+), [M] \rangle < 4\pi^2 \cdot \chi(\Sigma)$$

The space of metrics with negative curvature on Σ is locally connected, so we obtain for the group cohomology:

Theorem. Let $\mathsf{Diff}^{1+\alpha}(\mathbb{S}^1)$ denote the group of diffeomorphisms of the circle with α -Hölder first derivatives. For $\alpha > 1/2$:

- There is a well-defined class $gv \in H^2(\mathbf{Diff}^{1+\alpha}_{\delta}(\mathbb{S}^1); \mathbb{R})$.
- There exists continuous families of cycles $f_t \colon \Sigma \to B\mathbf{Diff}_{\delta}^{1+\alpha}(\mathbb{S}^1)$ such that the evaluation $\langle gv, [f_t\Sigma] \rangle$ varies continuously and non-trivially with t.

- **Problem 1.** Thurston extended his construction of foliations on \mathbb{S}^3 with variable Godbillon-Vey class in an unpublished work (see below). Show that the Thurston construction can also be deformed with holonomy in the group $\mathbf{Diff}^{1+\alpha}_{\delta}(\mathbb{S}^1)$.
- **Problem 2.** Heitsch modified Thurston's construction to show that the higher codimension Godbillon-Vey classes are also variable. Show that the Heitsch constructions can also be deformed with holonomy in the group $\mathrm{Diff}_{\delta}^{1+\alpha}(\mathbb{S}^1)$.
- ★ J. Heitsch, *Independent variation of secondary classes*, **Ann. of Math. (2)**, 108:421–460, 1978.
- * T. Mizutani, On Thurston's construction of a surjective homomorphism $H_{2n+1}(B\Gamma_n,\mathbb{Z})\to\mathbb{R}$, in **Geometry, dynamics,** and foliations 2013, Math. Soc. Japan, Tokyo, 2017, 211–219.