Applications of the Contraction Mapping Theorem: Toral actions

Steve Hurder University of Illinois at Chicago April 16, 2024 Γ is a finitely generated group.

Question. What are the "essential" actions of Γ on a compact manifold M? On a compact metric space X?

Strategy. For an essential action, find relations between

- The algebraic properties of Γ (e.g. nilpotent, higher rank, etc)
- The dynamical properties of the action (e.g. minimal, ergodic, expansive, positive entropy, etc)
- The cohomological properties of the action.

Two cases that are better understood:

- The action is by isometries
- The action has some aspects of hyperbolic behavior

For $A \in SL(n,\mathbb{Z})$ get transformation $\phi_A \colon \mathbb{R}^n \to \mathbb{R}^n$ which restricts to $\phi_A \colon \mathbb{Z}^n \to \mathbb{Z}^n$. The quotient $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$ is the standard n-torus, and we get induced map $\phi_A \colon \mathbb{T}^n \to \mathbb{T}^n$.

Arnold's Cat Map. Let
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\phi_A \colon \mathbb{T}^2 \to \mathbb{T}^2$

From order to chaos and back. Use a sample mapping on a picture of 150×150 pixels. The number shows the iteration step; after 300 iterations, the original image returns.

Proposition. The periodic points of $\phi_A \colon \mathbb{T}^n \to \mathbb{T}^n$ are dense.

Proof. Let $\mathbb{Z}[1/m]\subset \mathbb{Q}$ denote the rational points with denominator 1/m. Then we obtain an induced map

$$\phi_{\mathcal{A}} \colon \mathbb{Z}[1/m]^n/\mathbb{Z}^n \to \mathbb{Z}[1/m]^n/\mathbb{Z}^n$$

 ϕ_A acts as permutation of the finite set $\mathbb{Z}[1/m]^n/\mathbb{Z}^n$.

 \Rightarrow a finite power of ϕ_A fixes this set.

 $\mathbb{T}^n_\mathbb{Q} = \mathbb{Q}^n/\mathbb{Z}^n \subset \mathbb{T}^n$ is dense

 \Rightarrow periodic points of ϕ_A are dense.

Definition. A diffeomorphism $f: M \to M$ is *Anosov* if there exists a direct sum decomposition $TM = E^+ \oplus E^-$ where

- *Df* uniformly expands the distribution *E*⁺
- ullet Df uniformly contracts the distribution E^-

That is, there exists $\lambda > 1$ such that

- for all $\vec{v} \in E^+$, $Df(\vec{v}) \in E^+$ and $||Df(\vec{v})|| \ge \lambda ||\vec{v}||$
- for all $\vec{v} \in E^-$, $Df(\vec{v}) \in E^-$ and $||Df(\vec{v})|| \le \lambda^{-1} ||\vec{v}||$

 \Rightarrow the distributions E^+ and E^- are uniquely integrable, defining foliations \mathcal{F}^+ and \mathcal{F}^- of M. The leaves of these foliations are smoothly immersed submanifolds.

Definition. $A \in SL(n,\mathbb{Z})$ is hyperbolic \Leftrightarrow all eigenvalues $|\lambda| \neq 1$. **Observation.** $A \in SL(n,\mathbb{Z})$ hyperbolic $\Leftrightarrow \phi_A \colon \mathbb{T}^n \to \mathbb{T}^n$ is Anosov.

Definition. A smooth action $\phi \colon \Gamma \times M \to M$ is *Anosov* if there exists $\gamma \in \Gamma$ such that $\phi(\gamma)$ is Anosov diffeomorphism of M.

Revised Problem. Classify the Anosov actions of Γ on M.

Conjecture. Let $f: M \to M$ be Anosov action, then M is an infra-nil manifold. That is, $\Lambda = \pi_1(M,x)$ has a nilpotent subgroup of finite index and the universal covering \widetilde{M} is contractible.

Definition. $x \in M$ is wandering for action $f: M \to M$ if there is an open neighborhood $x \in U$ such that the translates of U are disjoint, and is *non-wandering* otherwise.

Theorem. If $f: M \to M$ be Anosov action and the non-wandering set $\Omega(f) = M$, then the conjecture is true.

This motivates the working assumption that $\phi \colon \Gamma \times M \to M$ is an Anosov action and M is a nil-manifold. In fact, let $M = \mathbb{T}^n$.

For $\gamma \in \Gamma$, we have $\phi(\gamma)_* \in \operatorname{Aut}\{H_1(\mathbb{T}^n; \mathbb{Z})\} \subset \operatorname{Aut}\{H_1(\mathbb{T}^n; \mathbb{R})\}$ which gives an affine representation

$$\rho\colon\Gamma\to \operatorname{Aut}\{H_1(\mathbb{T}^n;\mathbb{R})/H_1(\mathbb{T}^n;\mathbb{Z})\}\subset\operatorname{Homeo}(\mathbb{T}^n)$$

This is called the *standard action* for ϕ .

Problem. Find conditions on an Anosov action $\phi \colon \Gamma \times M \to M$, for M a nil-manifold, which are sufficient to imply there exists a subgroup $\Gamma' \subset \Gamma$ of finite index such that the restriction of ϕ to Γ' is conjugate to the standard action of Γ' .

Theorem. Let $f: \mathbb{T}^n \to \mathbb{T}^n$ be Anosov, then f is *topologically* conjugate to a linear hyperbolic automorphism ϕ_A .

- * J. Franks, *Anosov diffeomorphisms on tori*, **Trans. Amer. Math. Soc.**, 145:117–124, 1969.
- ★ A. Manning, *There are no new Anosov diffeomorphisms on tori*, **American Jour. Math.**, 96:422–429, 1974.

Assume we have an Anosov action $\phi \colon \Gamma \times \mathbb{T}^n \to \mathbb{T}^n$, then for some $\gamma \in \Gamma$, the action $\phi(\gamma)$ is conjugate to a hyperbolic $\rho(\gamma) \in \operatorname{Aut}(\mathbb{T}^n)$

Does this imply that the full action ϕ is a standard linear action?

Theorem. [Folkert Tangerman, 1990] There exists an analytic family $\{\varphi_t \mid 0 \leq t \leq 1\}$ of volume-preserving real analytic actions of $SL(2,\mathbb{Z})$ on \mathbb{T}^2 , with $\varphi_0 = \varphi$ the standard action, such that the action φ_t is not topologically conjugate to φ for all $0 < t \leq 1$.

Observe that the deformed actions are Anosov.

Sketch of construction.

Lemma. For the generators of $SL(2,\mathbb{Z})$:

•
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$

- A has order 4, B has order 6, and $A^2 = B^3 = -I$.
- $SL(2,\mathbb{Z})$ is isomorphic to the amalgamated product

$$SL(2,\mathbb{Z})\cong (\mathbb{Z}/4\mathbb{Z}) imes_{\mathbb{Z}/2\mathbb{Z}}(\mathbb{Z}/6\mathbb{Z})$$

generated by $\{A, B\}$.

Let $T: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$ be the translation action.

Let $\vec{Z}_1 = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}$ be the rotational vector field about the origin.

Let $\psi \colon [0,1] \to [0,1]$ be a smooth function such that $\psi(0) = 1$, $\psi(s) \ge 0$ for all s, and $\psi(s) = 0$ for $s \ge 10^{-4}$.

Define the divergence-free vector field $\vec{Z}_{\psi} = \psi(x^2 + y^2) \cdot \vec{Z}_1$.

Form the translate $Z_+ = DT_{(1/2,0)}(Z_{\psi})$ of the vector field \vec{Z}_{ψ} , centered at the point $(1/2,0) \in \mathbb{R}^2$, and the vector fields

$$Z_{-} = D(\phi_A^2)(Z_{+}) = D(\phi_{-1})(Z_{+})$$
 , $Z = Z_{+} + Z_{-}$

Note that $D(\phi_A^2)(Z) = Z$.

Form the infinite sum

$$\widetilde{Z} = \sum_{(a,b) \in \mathbb{Z}^2} DT_{(a,b)}(Z)$$

which is well-defined since the supports of the translates are disjoint. \widetilde{Z} is invariant under the action of \mathbb{Z}^2 .

Let $\xi(t)\colon \mathbb{R}^2 \to \mathbb{R}^2$ be the flow of \widetilde{Z} , then for $(a,b)\in \mathbb{Z}^2$,

$$\xi(t) \circ \phi_A^2 = \phi_A^2 \circ \xi(t)$$
 , $T_{(a,b)} \circ \xi(t) = \xi(t) \circ T_{(a,b)}$

Let $\xi(t)\colon \mathbb{T}^2 o \mathbb{T}^2$ be the induced flow. Set

$$\phi_t(A) = \widetilde{\xi}(t)^{-1} \circ \phi_A \circ \widetilde{\xi}(t) \quad , \quad \phi_t(B) = \phi_B$$

Then $\phi_t(A)^2 = \phi_{-1}$ so we get an action $\phi_t \colon SL(2,\mathbb{Z}) \times \mathbb{T}^2 \to \mathbb{T}^2$.

Proposition. If there exists a homeomorphism $h: \mathbb{T}^2 \to \mathbb{T}^2$ conjugating the action ϕ_t to ϕ_1 then t=0.

The proof uses fundamental domains for the actions of A and B.

There is a companion result:

Theorem. Let $h: \mathbb{T}^2 \to \mathbb{T}^2$ be a homeomorphism which conjugates the actions $\phi, \phi' \colon SL(2,\mathbb{Z}) \times \mathbb{T}^2 \to \mathbb{T}^2$, where ϕ is the standard action. Then h is smooth.

* Elise Cawley, The Teichmüller space of the standard action of $SL(2,\mathbb{Z})$ on \mathbb{T}^2 is trivial, Internat. Math. Res. Notices, International Mathematics Research Notices, 7:135–141, 1992.

The key to the above example is that $H^1(SL(2,\mathbb{Z});\mathbb{R}) \neq 0$, which is used implicitly in the construction of the deformation.

"The notion of hyperbolicity has proved the key to questions of stability in the cases of actions by \mathbb{Z} or \mathbb{R} . For actions by other groups, we would hope to find conditions analogous to hyperbolicity in the sense that they facilitate analysis to a comparable extent. However, we should not expect these conditions to resemble hyperbolicity too closely, for they should reflect the algebra of the particular group being studied."

★ D. Stowe *Stable orbits of differentiable group actions*, **Trans. Amer. Math. Soc.**, 277:665–684, 1983.

Theorem: Let $\phi \colon \Gamma \times M \to M$ be a smooth action with isolated fixed-point $x \in M$. Suppose that $H^1(\Gamma; \mathbb{V}_{\phi}) = 0$ for all finite dimensional modules over the action of $D_x \phi$. Then for a nearby action ϕ' there is an isolated fixed-point x' near to x.

* D. Stowe, The stationary set of a group action, **Proc. Amer.** Math. Soc. 79:139–146. 1980.

Definition. [SVC] Γ satisfies the strong vanishing cohomology condition if $H^1(\Gamma'; \mathbb{R}^N_{\alpha'}) = \{0\}$ for every subgroup $\Gamma' \subset \Gamma$ of finite index and representation $\rho' \colon \Gamma' \to GL(N, \mathbb{R}), \ N \ge 1$.

 Γ satisfies SVC $\Longrightarrow \Gamma' \subset \Gamma$ finite index satisfies SVC.

Theorem. [Margulis] Let $\Gamma \subset G$ be an irreducible lattice in a connected semi-simple algebraic \mathbb{R} -group G. Assume that the \mathbb{R} -split rank of each factor of G is at least 2, and that $G^0_{\mathbb{R}}$ has no compact factors. Then Γ satisfies condition SVC.

★ Theorem 2.1 in G. A. Margulis, **Discrete Subgroups of Semisimple Lie Groups**. Springer-Verlag, 1991.

Example. For $n \geq 3$, a lattice $\Gamma \subset SL(n, \mathbf{Z})$ satisfies SVC.

Theorem. Let $\phi \colon \Gamma \times \mathbb{T}^n \to \mathbb{T}^n$, for $n \geq 3$ and $\Gamma \subset SL(n,\mathbb{Z})$ finite index. Then a deformation ϕ_t of ϕ is smoothly conjugate to ϕ_t .

The proof has three parts, and uses:

- Action is Anosov and the periodic points of the action are dense.
- \bullet Γ satisfies SVC condition so the periodic points are stable.
- \bullet Γ contains maximal abelian semi-simple subgroup, hence the action is *trellised*, and so the conjugation must be smooth.
- * S. Hurder, *Rigidity for Anosov actions of higher rank lattices*, **Annals of Math. (2)**, 135:361-410, 1992.

Step 1. Let $\phi_t \colon \Gamma \times \mathbb{T}^n \to \mathbb{T}^n$ be a 1-parameter family of actions.

Let $\gamma_0 \in \Gamma$ so that $\phi_0(\gamma_0)$ is Anosov, hence a hyperbolic matrix.

The diffeomorphism $\phi_0(\gamma_0)$ is structurally stable by Anosov, so there exists homeomorphisms $h_t \colon \mathbb{T}^n \to \mathbb{T}^n$ for $0 \le t \le \epsilon$ conjugating ϕ_t and ϕ_0 .

The periodic points of $\phi_0(\gamma_0)$ are dense, so the same holds for $\phi_t(\gamma_0)$ for $0 \le t \le \epsilon$.

Next, must show that h_t conjugates the full action of Γ .

Step 2. Let $y \in \mathbb{T}_{\mathbb{Q}}^n$ be a rational point, so is periodic for $\phi_0(\gamma_0)$.

Set $y_t = h_t(y)$ which is isolated periodic for $\phi_t(\gamma_0)$ for $0 \le t \le \epsilon$.

Let $\Gamma_y = \{ \gamma \in \Gamma \mid \phi_0(\gamma)(y) = y \}$ a finite index subgroup of Γ .

 Γ satisfies the SVC condition, so isolated periodic points of the action of Γ_y are stable.

There exists $0 < \epsilon'_y \le \epsilon$ such that $\phi_t(\Gamma_y)(y_t) = y_t$ for $0 \le t < \epsilon'_y$ So $\phi_t(\Gamma_y)(y_t) = y_t$ for $t = \epsilon'_y$

There is $n \ge 1$ such that $\gamma_0^n \in \Gamma_y$ which is again Anosov, hence y_t is isolated fixed point for $\phi_t(\Gamma_y)$.

Hence y_t is isolated fixed point for $\phi_t(\Gamma_y)$ for all $0 \le t \le \epsilon$.

Thus, h_t conjugates ϕ_t to ϕ_0 on the dense set $\mathbb{T}_{\mathbb{Q}}^n \subset \mathbb{T}^n$ and so conjugates the action of ϕ_t to ϕ_0 for all $0 \le t \le \epsilon$.

Step 3. We show that the conjugating homeomorphism is smooth.

That is, the "Teichmüller space" of deformations of the standard action $\phi_0: \Gamma \times \mathbb{T}^n \to \mathbb{T}^n$ is trivial.

Definition. A C^1 -action $\phi \colon \Gamma \times \mathbb{T}^n \to \mathbb{T}^n$ is *Cartan* if there exists an abelian subgroup $\mathcal{A} \subset \Gamma$ generated by $\{\gamma_1, \ldots, \gamma_n\} \subset \mathcal{A}$ such that each $\phi(\gamma_i)$ is Anosov with 1-dimensional stable foliation \mathcal{F}_i^- and the foliations $\{\mathcal{F}_1^-, \ldots, \mathcal{F}_n^-\}$ are completely transverse.

That is, their tangent spaces define a framing of $T\mathbb{T}^n$ – a trellis

Theorem. Let G be a semi-simple analytic Lie group and $\Gamma \subset G$ a lattice. Let H be a Cartan subgroup of G, then there exists $g \in G$ such that $\Gamma_H = \Gamma \cap g^{-1}Hg$ is a uniform lattice in $g^{-1}Hg$.

* G. Prasad and M. S. Raghunathan, *Cartan subgroups and lattices in semi-simple groups*, **Annals of Math.**, 96:296–317, 1972.

Corollary. Let $\Gamma \subset SL(n,\mathbb{Z})$ be a lattice. Then the standard action $\phi \colon \Gamma \times \mathbb{T}^n \to \mathbb{T}^n$ is Cartan.

Let $A = \langle \gamma_1, \dots, \gamma_n \rangle \subset \Gamma \subset SL(n, \mathbb{Z})$ be a Cartan subgroup.

The stable manifolds of Anosov diffeomorphisms are preserved by a conjugacy, so the conjugacy $h_t \colon \mathbb{T}^n \to \mathbb{T}^n$ preserves the stable foliations $\{\mathcal{F}_1^-, \ldots, \mathcal{F}_n^-\}$. That is, h_t preserves the lines in the trellises for the actions.

Stowe's Theorem implies that the actions of Γ_y are conjugated at a periodic orbit y, which implies that the exponents of contraction are equal for the actions $\phi_0(\gamma_i)$ and $\phi_t(\gamma_i)$ at y and $h_t(y)$, respectively.

The Livsic Theorem then implies that the restriction of h_t to the stable foliations is a smooth map of 1-dimensional manifolds.

We have homeomorphisms $h_t \colon \mathbb{T}^n \to \mathbb{T}^n$ whose restrictions to a transverse family of 1-dimensional foliations of \mathbb{T}^n are leafwise smooth. These 1-manifolds are smoothly embedded in \mathbb{T}^n .

Theorem. Let \mathcal{F}_s and \mathcal{F}_u be two transverse foliations with uniformly smooth leaves, of some manifold M. If f is uniformly smooth along the leaves of \mathcal{F}_s and \mathcal{F}_u , then f is smooth.

* J.-L Journé, *A regularity lemma for functions of several variables*, **Rev. Mat. Iberoamericana**, 4:187–193, 1988.

Thus, the conjugating maps h_t are smooth, as was to be shown.

The above results apply to a wide variety of other lattice actions:

* Section 7, Rigidity for Anosov actions of higher rank lattices.

Let $\phi\colon \Gamma\times M\to M$ be a C^∞ -action on a compact n-manifold M. Choose a *measurable* framing $TM\cong M\times \mathbb{R}^n$ then the derivative defines a measurable cocycle, or "virtual homomorphism",

$$D\phi \colon \Gamma \times M \to GL(n,\mathbb{R})$$

$$D\phi(\gamma_2\gamma_1,x)=D\phi(\gamma_2,\gamma_1\cdot x)\cdot D\phi(\gamma_1,x)$$

This is just the chain rule for group actions.

- Margulis Rigidity gives conditions on a lattice $\Gamma \subset G$ which imply that a homomorphism $\rho \colon \Gamma \to H$ extends to a homomorphism $\widehat{\rho} \colon G \to H$.
- Zimmer Superrigidity gives conditions on a lattice $\Gamma \subset G$ and measure-preserving action $\phi \colon \Gamma \times M \to M$ which imply that a cocycle $\alpha \colon \Gamma \times M \to H$ is measurably conjugate to a constant cocycle, which extends to a homomorphism $\widehat{\rho} \colon G \to H$.

In the 1980's, Zimmer used superrigidity to study volume-preserving actions of higher rank lattices on compact manifolds. He posed the question whether a group action, given by a map $\phi\colon\Gamma\to \mathbf{Diff}(M)$, must behave like its cocycle $D\phi$?

Conjecture. [Zimmer] Let $\Gamma \subset G$ be a higher rank lattice, and suppose there are no non-trivial representations $\widehat{\rho} \colon G \to GL(n,\mathbb{R})$, then an action $\phi \colon \Gamma \times M \to M$ factors through a finite action.

For a discussion of the Zimmer Program, see

* D. Fisher, *Groups acting on manifolds: around the Zimmer program*, in **Group actions in ergodic theory, geometry, and topology—selected papers**, Univ. Chicago Press, Chicago, IL, 2020, pages 609–683.

There has been remarkable progress towards establishing the Zimmer Conjecture in special cases.

Hypothesis. Suppose G is a connected semisimple Lie group with finite center, all of whose noncompact almost-simple factors have \mathbb{R} -rank 2 or higher, and suppose Γ is a lattice in G.

Theorem. Let G and Γ be as in the Hypothesis. Let α be a C^{∞} -action of Γ on a compact nilmanifold $M=N/\Lambda$. Suppose α can be lifted to an action on the universal cover M of M, and let ρ be the associated linear data of α . If $\alpha(\gamma)$ is hyperbolic for some element $\gamma \in \Gamma$, then there are a finite-index subgroup $\Gamma' \subset \Gamma$ and a C^{∞} -diffeomorphism $h \colon M \to M$, homotopic to identity, such that $\rho(\gamma) \circ h = h \circ \alpha(\gamma)$ for all $\gamma \in \Gamma'$.

* A. Brown, F. Rodriguez Hertz and Z. Wang, *Global smooth and topological rigidity of hyperbolic lattice actions*, **Ann. of Math.** (2), 186:913–972, 2017.

When the dimension m of M is less than n, there are no non-trivial representations $\rho \colon SL(n,\mathbb{Z}) \to GL(m,\mathbb{R})$. The Zimmer Conjecture then becomes a generalized version of Witte's Theorem for \mathbb{S}^1 .

Theorem. Given a subgroup $\Gamma \subset SL(n,\mathbb{Z})$ of finite index, and a closed manifold M with dimension m < n-1, then every C^2 -action $\alpha \colon \Gamma \times M \to M$ is finite.

 \star A. Brown, D. Fisher and S. Hurtado, *Zimmer's conjecture for actions of SL*(m,\mathbb{Z}), **Invent. Math.**, 221:1001–1060, 2020.

There have been many more results in the period between 1990 and today. The introduction to the paper by Brown, Rodriguez Hertz, and Wang gives a nice overview, as of 2015.

Moreover, the action continues with the conference:

 Group Actions and Rigidity: Around the Zimmer Program Introductory school: Rigidity, Dynamics and Geometric Structures April 15 to 19, 2024 - CIRM, Marseille Luminy https://indico.math.cnrs.fr/event/9764/

This is part of a thematic semester

 Group Actions and Rigidity: Around the Zimmer Program, Paris April 15th to July 5th, 2024 https://indico.math.cnrs.fr/category/619/