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Prelude

I"is a finitely generated group.

Question. What are the “essential” actions of I on a compact
manifold M? On a compact metric space X?

Strategy. For an essential action, find relations between
e The algebraic properties of I (e.g. nilpotent, higher rank, etc)

e The dynamical properties of the action (e.g. minimal, ergodic,
expansive, positive entropy, etc)

e The cohomological properties of the action.

Two cases that are better understood:
e The action is by isometries

e The action has some aspects of hyperbolic behavior
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For A € SL(n,Z) get transformation ¢4: R” — R" which restricts
to ¢a: Z" — Z". The quotient T" = R"/7Z" is the standard
n-torus, and we get induced map ¢5: T" — T".

21
11

Arnold’s Cat Map. Let A= [ ] da: T2 = T?
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From order to chaos and back. Use a sample mapping on a picture
of 150x150 pixels. The number shows the iteration step; after 300
iterations, the original image returns.
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Proposition. The periodic points of ¢4: T" — T" are dense.

Proof. Let Z[1/m] C Q denote the rational points with
denominator 1/m. Then we obtain an induced map

da: Z[1/m)"/Z" — Z[1/m]" ) Z"

¢a acts as permutation of the finite set Z[1/m]"/Z".
= a finite power of ¢4 fixes this set.
Tg = Q"/Z" C T" is dense

= periodic points of ¢, are dense.
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Definition. A diffeomorphism f: M — M is Anosov if there exists
a direct sum decomposition TM = E* & E~ where

e Df uniformly expands the distribution E

e Df uniformly contracts the distribution £~

That is, there exists A > 1 such that

e forall Ve ET, Df(V) € E* and ||Df(V)|| > ||Vl

e forall Ve E-, Df(V) € E~ and || DF(V)|| < X711V

= the distributions ET and E~ are uniquely integrable, defining
foliations FT and F~ of M. The leaves of these foliations are
smoothly immersed submanifolds.

Definition. A € SL(n,Z) is hyperbolic < all eigenvalues |\| # 1.
Observation. A € SL(n,Z) hyperbolic < ¢a: T" — T" is Anosov.
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Definition. A smooth action ¢: ' x M — M is Anosov if there
exists v € ' such that ¢(7) is Anosov diffeomorphism of M.

Revised Problem. Classify the Anosov actions of I on M.

Conjecture. Let f: M — M be Anosov action, then M is an
infra-nil manifold. That is, A = m1(M, x) has a nilpotent subgroup
of finite index and the universal covering M is contractible.

Definition. x € M is wandering for action f: M — M if there is
an open neighborhood x € U such that the translates of U are
disjoint, and is non-wandering otherwise.

Theorem. If f: M — M be Anosov action and the non-wandering
set Q(f) = M, then the conjecture is true.
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This motivates the working assumption that ¢: [ x M — M is an
Anosov action and M is a nil-manifold. In fact, let M = T".

For v €T, we have ¢(v). € Aut{H1(T";Z)} C Aut{H:1(T";R)}
which gives an affine representation

p: T — Aut{Hy(T"R)/H,(T";Z)} C Homeo(T")

This is called the standard action for ¢.

Problem. Find conditions on an Anosov action ¢: [ x M — M,
for M a nil-manifold, which are sufficient to imply there exists a
subgroup " C T of finite index such that the restriction of ¢ to I’
is conjugate to the standard action of [".
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Theorem. Let f: T” — T" be Anosov, then f is topologically
conjugate to a linear hyperbolic automorphism ¢a4.

* J. Franks, Anosov diffeomorphisms on tori, Trans. Amer.
Math. Soc., 145:117-124, 1969.

* A. Manning, There are no new Anosov diffeomorphisms on tori,
American Jour. Math., 96:422-429, 1974.

Assume we have an Anosov action ¢: I x T" — T”, then for some
v € T, the action ¢(7) is conjugate to a hyperbolic p() € Aut(T")

Does this imply that the full action ¢ is a standard linear action?
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Theorem. [Folkert Tangerman, 1990] There exists an analytic
family {¢+ | 0 <t < 1} of volume-preserving real analytic actions
of SL(2,7Z) on T?, with g = ¢ the standard action, such that the
action (o, is not topologically conjugate to ¢ for all 0 < t < 1.
Observe that the deformed actions are Anosov.
Sketch of construction.
Lemma. For the generators of SL(2,7):

0 -1 1 -1
° A_[l 0 ]andB—[l 0 }
e A has order 4, B has order 6, and A2 = B3 = —/.
e SL(2,7Z) is isomorphic to the amalgamated product

SL(2,Z) = (Z/4T) %727, (Z,/61)

generated by {A, B}.
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Let 7: R? x R? — R? be the translation action.
Let Z; = x% — ya% be the rotational vector field about the origin.

Let ¢: [0,1] — [0, 1] be a smooth function such that ¢(0) =1,
Y(s) >0 for all s, and 9(s) = 0 for s > 107%.

Define the divergence-free vector field Z_;p = p(x2+y?) - Z;.

Form the translate Z = DT(y1/50)(Zy) of the vector field Z[,,
centered at the point (1/2,0) € R?, and the vector fields

Zo = D(6ANZs) = D(6-1)(Z) , Z=Zp+2Z

Note that D(¢3%)(Z) = Z.
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Form the infinite sum

Z= > DT,y (2)
(a,b)€Z2

which is well-defined since the supports of the translates are
disjoint. Z is invariant under the action of Z2.

Let £(t): R2 — R? be the flow of Z, then for (a, b) € Z2,
E(t)opa=dac&(t) . Tep)o&(t) =&(t)o Ty
Let £(t): T2 — T2 be the induced flow. Set
de(A) = E(t) Todacl(t) , ¢(B) =5
Then ¢:(A)? = ¢_; so we get an action ¢;: SL(2,Z) x T? — T2.
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Proposition. If there exists a homeomorphism h: T? — T?
conjugating the action ¢ to ¢ then t = 0.

The proof uses fundamental domains for the actions of A and B.

There is a companion result:

Theorem. Let h: T? — T2 be a homeomorphism which
conjugates the actions ¢, ¢': SL(2,7) x T2 — T2, where ¢ is the
standard action. Then h is smooth.

* Elise Cawley, The Teichmiiller space of the standard action of
SL(2,Z) on T? is trivial, Internat. Math. Res. Notices,
International Mathematics Research Notices, 7:135-141, 1992.
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The key to the above example is that H1(SL(2,Z); R) # 0, which
is used implicitly in the construction of the deformation.

“The notion of hyperbolicity has proved the key to questions of
stability in the cases of actions by Z or R. For actions by other
groups, we would hope to find conditions analogous to
hyperbolicity in the sense that they facilitate analysis to a
comparable extent. However, we should not expect these
conditions to resemble hyperbolicity too closely, for they should
reflect the algebra of the particular group being studied.”

* D. Stowe Stable orbits of differentiable group actions, Trans.
Amer. Math. Soc., 277:665-684, 1983.
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Theorem: Let ¢: I x M — M be a smooth action with isolated
fixed-point x € M. Suppose that H(I'; V) = 0 for all finite
dimensional modules over the action of Dy¢. Then for a nearby
action ¢ there is an isolated fixed-point x’ near to x.

* D. Stowe, The stationary set of a group action, Proc. Amer.
Math. Soc., 79:139-146, 1980.

Definition.[SVC] T satisfies the strong vanishing cohomology
condition if HY(I"'; Rg) = {0} for every subgroup " C T of finite
index and representation p’: "' — GL(N,R), N > 1.

I satisfies SVC = " C T finite index satisfies SVC.
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Theorem.[Margulis] Let I C G be an irreducible lattice in a
connected semi-simple algebraic R-group G. Assume that the
R-split rank of each factor of G is at least 2, and that GH% has no
compact factors. Then I satisfies condition SVC.

* Theorem 2.1 in G. A. Margulis, Discrete Subgroups of
Semisimple Lie Groups. Springer-Verlag, 1991.

Example. For n > 3, a lattice ' C SL(n, Z) satisfies SVC.
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Theorem. Let ¢: [ x T" — T", for n > 3 and [ C SL(n,Z) finite
index. Then a deformation ¢; of ¢ is smoothly conjugate to ¢;.

The proof has three parts, and uses:
e Action is Anosov and the periodic points of the action are dense.
e [ satisfies SVC condition so the periodic points are stable.

e [ contains maximal abelian semi-simple subgroup, hence the
action is trellised, and so the conjugation must be smooth.

* S. Hurder, Rigidity for Anosov actions of higher rank lattices,
Annals of Math. (2), 135:361-410, 1992.
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Step 1. Let ¢¢: [ x T" — T" be a 1-parameter family of actions.
Let 7o € T so that ¢o(70) is Anosov, hence a hyperbolic matrix.

The diffeomorphism ¢o(70) is structurally stable by Anosov, so
there exists homeomorphisms h;: T” — T" for 0 <t < ¢

conjugating ¢: and ¢g.

The periodic points of ¢g(7) are dense, so the same holds for
¢de(y0) for 0 <t <e.

Next, must show that h; conjugates the full action of T.



2,

Step 2. Let y € T{ be a rational point, so is periodic for ¢o(70).-
Set y; = h¢(y) which is isolated periodic for ¢¢(y0) for 0 < t <.
Let [y ={y Tl | ¢o(y)(y) =y} a finite index subgroup of T

I" satisfies the SVC condition, so isolated periodic points of the
action of 'y are stable.

There exists 0 < €|, < € such that ¢¢(T'y)(y:) = y: for 0 < t < ¢},

So ¢¢(Fy)(ye) = ye for t = 6;

There is n > 1 such that 7§ € ', which is again Anosov, hence y;
is isolated fixed point for ¢:(I').

Hence y; is isolated fixed point for ¢¢(I',) for all 0 <t <e.
Thus, h; conjugates ¢; to ¢ on the dense set T(’é cT
and so conjugates the action of ¢ to ¢g for all 0 <t <e.
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Step 3. We show that the conjugating homeomorphism is smooth.

That is, the “Teichmiiller space” of deformations of the standard
action ¢g: ' x T" — T" is trivial.

Definition. A Cl-action ¢: I x T" — T" is Cartan if there exists
an abelian subgroup A C I' generated by {~v1,...,72} C A such
that each ¢(7;) is Anosov with 1-dimensional stable foliation F;
and the foliations {7 ,..., F, } are completely transverse.

That is, their tangent spaces define a framing of TT"” — a trellis
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Theorem. Let G be a semi-simple analytic Lie group and ' C G a
lattice. Let H be a Cartan subgroup of G, then there exists g € G
such that Ty = 'N g 1Hg is a uniform lattice in g1 Hg.

* G. Prasad and M. S. Raghunathan, Cartan subgroups and
lattices in semi-simple groups, Annals of Math., 96:296-317,
1972.

Corollary. Let ' C SL(n,Z) be a lattice. Then the standard action
¢: ' xT" — T" is Cartan.
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Let A= (y1,...,7n) CT C SL(n,Z) be a Cartan subgroup.

The stable manifolds of Anosov diffeomorphisms are preserved by a
conjugacy, so the conjugacy h;: T" — T" preserves the stable
foliations {F; ,...,F, }. Thatis, h; preserves the lines in the
trellises for the actions.

Stowe's Theorem implies that the actions of '), are conjugated at a
periodic orbit y, which implies that the exponents of contraction
are equal for the actions ¢o(i) and ¢+(7i) at y and h(y),
respectively.

The Livsic Theorem then implies that the restriction of h; to the
stable foliations is a smooth map of 1-dimensional manifolds.
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We have homeomorphisms h;: T — T" whose restrictions to a
transverse family of 1-dimensional foliations of T" are leafwise
smooth. These 1-manifolds are smoothly embedded in T".

Theorem. Let F; and F, be two transverse foliations with
uniformly smooth leaves, of some manifold M. If f is uniformly
smooth along the leaves of Fs and F,, then f is smooth.

* J.-L Journé, A regularity lemma for functions of several
variables, Rev. Mat. Iberoamericana, 4:187-193, 1988.

Thus, the conjugating maps h; are smooth, as was to be shown.

The above results apply to a wide variety of other lattice actions:

* Section 7, Rigidity for Anosov actions of higher rank lattices.
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Let ¢: [ x M — M be a C*-action on a compact n-manifold M.
Choose a measurable framing TM = M x R" then the derivative
defines a measurable cocycle, or “virtual homomorphism”,

Do: T x M — GL(n,R)

D¢ (a1, x) = Dp(v2,71 - x) - Dd(v1,x)

This is just the chain rule for group actions.

e Margulis Rigidity gives conditions on a lattice ' C G which
imply that a homomorphism p: ' — H extends to a
homomorphism p: G — H.

e Zimmer Superrigidity gives conditions on a lattice ' C G and
measure-preserving action ¢: [ x M — M which imply that a
cocycle a: ' x M — H is measurably conjugate to a constant
cocycle, which extends to a homomorphism p: G — H.



Zimmer Program
0e000

In the 1980's, Zimmer used superrigidity to study
volume-preserving actions of higher rank lattices on compact
manifolds. He posed the question whether a group action, given by
a map ¢: [ — Diff(M), must behave like its cocycle D¢?

Conjecture. [Zimmer] Let [ C G be a higher rank lattice, and
suppose there are no non-trivial representations p: G — GL(n,R),
then an action ¢: ' x M — M factors through a finite action.

For a discussion of the Zimmer Program, see

* D. Fisher, Groups acting on manifolds: around the Zimmer
program, in Group actions in ergodic theory, geometry, and
topology—selected papers, Univ. Chicago Press, Chicago, IL,
2020, pages 609—683.
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There has been remarkable progress towards establishing the
Zimmer Conjecture in special cases.

Hypothesis. Suppose G is a connected semisimple Lie group with
finite center, all of whose noncompact almost-simple factors have
R-rank 2 or higher, and suppose I is a lattice in G.

Theorem. Let G and ' be as in the Hypothesis. Let a be a
C°°-action of I on a compact nilmanifold M = N/A. Suppose «
can be lifted to an action on the universal cover M of M, and let p
be the associated linear data of . If a(7y) is hyperbolic for some
element v € I, then there are a finite-index subgroup " C T and a
C°°-diffeomorphism h: M — M, homotopic to identity, such that
p(y)oh=hoa(y) forally eI’

* A. Brown, F. Rodriguez Hertz and Z. Wang, Global smooth and
topological rigidity of hyperbolic lattice actions, Ann. of Math.
(2), 186:913-972, 2017.
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When the dimension m of M is less than n, there are no non-trivial
representations p: SL(n,Z) — GL(m,R). The Zimmer Conjecture
then becomes a generalized version of Witte's Theorem for St.

Theorem. Given a subgroup I' C SL(n,Z) of finite index, and a
closed manifold M with dimension m < n — 1, then every
C?-action a: [ x M — M is finite.

* A. Brown, D. Fisher and S. Hurtado, Zimmer's conjecture for
actions of SL(m,Z), Invent. Math., 221:1001-1060, 2020.
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There have been many more results in the period between 1990
and today. The introduction to the paper by Brown, Rodriguez
Hertz, and Wang gives a nice overview, as of 2015.

Moreover, the action continues with the conference:

e Group Actions and Rigidity: Around the Zimmer Program
Introductory school: Rigidity, Dynamics and Geometric Structures
April 15 to 19, 2024 - CIRM, Marseille Luminy
https://indico.math.cnrs.fr/event/9764/

This is part of a thematic semester

e Group Actions and Rigidity: Around the Zimmer Program, Paris
April 15th to July 5th, 2024
https://indico.math.cnrs.fr/category/619/
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