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1981–1983: Institute for Advanced Study

In Spring 1982, news arrived at the IAS of Gérard Duminy’s breakthrough:

THEOREM: [Duminy] Let F be a C 2-foliation of codimension one on a
compact manifold M. If the Godbillon-Vey class GV (F) ∈ H3(M) is
non-trivial, then F has a resilient leaf, and hence an uncountable set of
leaves with exponential growth.

In a seminar that Spring at the IAS, including Paul, Larry Conlon, James
Heitsch, the speaker and others, Duminy’s hand-written manuscript with
the proof was presented and dissected.

This seed inspired 25 years of subsequent work.
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Fundamental problems – 1982 & today:

Question 1: How do you construct foliations on a given manifold M?
Must there exist any at all?

Question 2: How do the geometry and topology of the leaves of a
foliation F appear? Are there restrictions on the geometry of a manifold
which is (quasi-isometric to) a leaf, imposed by the topology of M and the
dynamical properties of F?

Question 3: How do you keep track of all the foliations on a given
manifold M? Is it possible to classify foliations on M modulo some natural
equivalence relation, like foliation preserving diffeomorphism, or Morita
equivalence?

Question 3’: Is it possible to classify (almost all) foliations on M based
on their dynamical behavior?
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Foliation dynamics

A continuous dynamical system on a compact manifold M is a flow
ϕ : M × R→ M, where the orbit Lx = {ϕt(x) = ϕ(x , t) | t ∈ R} is
thought of as the time trajectory of the point x ∈ M. The trajectories
of the points of M are necessarily points, circles or lines immersed in
M, and the study of their aggregate and statistical behavior is the
subject of ergodic theory for flows.

In foliation dynamics, we replace the concept of time-ordered
trajectories with multi-dimensional futures for points. The study of
the dynamics of F asks for properties of the aggregate and statistical
behavior of the collection of its leaves.
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Classifying spaces:

Let q denote the codimension of the foliation F , so q = m − p where p is
the leaf dimension.

BΓr
q denotes the “classifying space” of codimension q, C r -foliations

introduced by André Haefliger in 1970.

Theorem: (Haefliger [1970]) Each C r -foliation F on M of codimension q
determines a well-defined map hF : M → BΓr

q whose homotopy class in
uniquely defined by F .

Theorem: (Thurston [1975]) Each “natural” map hF : M → BΓr
q × BOp

yields a C r -foliation F on M with concordance class determined by hF .

The topological type of BΓr
q is analyzed using the “linearization” of the

normal structure along the leaves – the Bott connection and its invariants.
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Secondary classes
Assume F is C r -foliation with r ≥ 2.

Theorem: (Godbillon-Vey [1971]) For each codimension q, there is a
secondary invariant GV (F) = ∆(h1c

q
1 ) ∈ H2q+1(M; R).

Theorem: (Bott-Haefliger, Gelfand-Fuks, Kamber-Tondeur [1972]) For
each codimension q, there is a non-trivial space of secondary invariants
H∗(WOq) and functorial characteristic map whose image contains the
Godbillon-Vey class

H∗(BΓq; R)

?�
�
�3

h∗F
∆̃

∆
H∗(WOq) −→ H∗(M; R)

The study of these maps has been the principle source of information
about the (non-trivial) homotopy type of BΓr

q for r ≥ 2.
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Homotopy chaos

Again, assume that F is C r -foliation with r ≥ 2.

Theorem: (Bott–Heitsch [1972]) BΓr
q does not have finite topological

type for q ≥ 2.

Theorem: (Thurston [1972]) π3(BΓr
1) surjects onto R.

Theorem: (Heitsch [1978]) There are continuous families of foliations
with non-trivial variations of their secondary classes for q ≥ 3.

Theorem: (Rasmussen [1980]) There are continuous families of foliations
with non-trivial variations of their secondary classes for q = 2.

Corollary: BΓr
q has uncountable topological type for all q ≥ 1.

Theorem: (Hurder [1980]) For q ≥ 2, πn(BΓr
q)→ Rkn → 0 where

k2q+1 6= 0, and in general, kn has a subsequence kn`
→∞

Secondary classes measure some uncountable aspect of foliation geometry.
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C 1+α is essential

In contrast, Takashi Tsuboi proved the following amazing result:

Theorem: (Tsuboi [1989]) The classifying map of the normal bundle
ν : BΓ1

q → BO(q) is a homotopy equivalence.

The proof is a technical tour-de-force, using Mather-Thurston type
techniques for the study of BΓ, along with (to paraphrase) “smearing
along orbits in acyclic models”.
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Ergodic theory & secondary classes

Mizutani, Morita and Tsuboi [1981], Duminy & Sergiescu [1981], and
Duminy [1982] developed techniques of localizing the Godbillon-Vey class
to open saturated subsets, first for foliations of depth 1, and then for
arbitrary depth. Heitsch & Hurder [1984] extended the localization
technique to saturated measurable subsets. Then add two key ideas:

Idea 1: (Heitsch & Hurder) The normal derivative cocycle used to define
the forms ∆(hI ) appearing in the secondary class ∆(hI cJ) is only required
to be smooth along leaves, and measurable transversally. Thus, the
contribution of ∆(hI ) can be estimated using ergodic theory techniques for
the measurable equivalence relation defined by F .

Idea 2: (Hurder & Katok) Before passing to cohomology or homotopy,
“smear along orbits the linearization data” for BΓr

q. More precisely, use
the ergodic theory and dynamical data for the foliation to “optimally
temper” the normal derivative cocycle.
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Pseudogroups & Groupoids

Every foliation admits a discrete model by choosing a section T ⊂ M, an
embedded submanifold of dimension q which intersects each leaf of F at
least once, and always transversally. The holonomy of F yields a
compactly generated pseudogroup GF acting on T .

Definition: A pseudogroup of transformations G of T is compactly
generated if there is

a relatively compact open subset T0 ⊂ T meeting all leaves of F
a finite set Γ = {g1, . . . , gk} ⊂ G such that 〈Γ〉 = G|T0;

gi : D(gi )→ R(gi ) is the restriction of g̃i ∈ G with D(g) ⊂ D(g̃i ).

Definition: The groupoid of G is the space of germs

ΓG = {[g ]x | g ∈ G & x ∈ D(g)} , ΓF = ΓGF

with source map s[g ]x = x and range map r [g ]x = g(x) = y .
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Derivative cocycle

Assume (G, T ) is a compactly generated pseudogroup, and T has a
uniform Riemannian metric. Choose a uniformly bounded, Borel
trivialization, TT ∼= T × Rq, TxT ∼=x Rq for all x ∈ T .

Definition: The normal cocycle Dϕ : ΓG × T → GL(Rq) is defined by

Dϕ[g ]x = Dxg : TxT ∼=x Rq → TyT ∼=y Rq

which satisfies the cocycle law

D([h]y ◦ [g ]x) = D[h]y · D[g ]x
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Pseudogroup word length

Definition: For g ∈ ΓG , the word length ‖[g ]‖x of the germ [g ]x of g at x
is the least n such that

[g ]x = [g±1
i1
◦ · · · ◦ g±1

in
]x

Word length is a measure of the “time” required to get from one point on
an orbit to another.
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Asymptotic exponent

Definition: The transverse expansion rate function at x is

λ(G, n, x) = max
‖[g ]‖x≤n

ln
(
max{‖Dxg‖, ‖Dyg−1‖}

)
‖[g ]‖x

≥ 0

Definition: The asymptotic transverse growth rate at x is

λ(G, x) = lim sup
n→∞

λ(G, n, x) ≥ 0

This is essentially the maximum Lyapunov exponent for G at x .
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Expansion classification

M = E ∪ P ∪H

where each are F–saturated, Borel subsets of M, defined by:

1 Elliptic points: E ∩ T = {x ∈ T | ∀ n ≥ 0, λ(G, n, x) ≤ κ(x)}
i.e., “points of bounded expansion”

2 Parabolic points: P ∩ T = {x ∈ T − (E ∩ T ) | λ(G, x) = 0}
i.e., “points of slow-growth expansion”

3 Partially Hyperbolic points: H ∩ T = {x ∈ T | λ(G, x) > 0}
i.e., “points of exponential-growth expansion” or non-uniformly,
partially hyperbolic transverse dynamics
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E ∼ measurable Riemannian structure

Theorem: There exists a measurable Riemannian metric on the normal
bundle Q | E which is holonomy invariant.

Proof. Introduce the space of fiberwise Riemannian metrics
S = GL(Q)/O(q)→ M on which the derivative cocycle Dϕ acts
isometrically on the fiberwise symmetric spaces GL(Qx)/O(q).

A measurable section σ : E → S corresponds to a measurable transverse
metric on E , and the action of Dϕ extends to an action on such sections.
Let σ0 be a smooth metric on Q restricted to E .

For x ∈ E there is an upper bound on the distance between σ0(x) and
[g ]x · σ0(x) for all [g ]x ∈ ΓG . Hence we can use a center of mass
construction to obtain a section σ which is invariant. �
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Examples with M = E

Example: F is Riemannian ⇒ M = E .

Is this the only example?

Question: If M = E , must F be Riemannian?

In the case where F is defined by a smooth measure-preserving action of a
higher rank lattice Γ on a compact manifold, this is a well-known (old)
question of Robert Zimmer, which has recently been shown true by David
Fisher and Gregory Margulis if Γ has Property T.
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P ∼ almost invariant metric

Theorem: For all ε > 0, there exists a measurable Riemannian metric σε
on the normal bundle Q | P which is ε-holonomy invariant.

Proof. Much the same as above, but using tempering of cocycles and
techniques from the papers:

• [Hurder & Katok 1987] “Ergodic theory and Weil measures for
foliations”, Ann. of Math. (2) 126 (1987)

• [Hurder & Langevin 2004] “Dynamics and the Godbillon-Vey Class of C 1

Foliations”, Jour. Diff. Geometry (to appear)
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Examples with M = P

Example: Let F be defined by the suspension of an irrational rotation
diffeomorphism of S1 which is not C 1-conjugate to a rotation. (q = 1)

Example: Let F be defined by the suspension of the action of a f.g.
subgroup Γ ⊂ G on G/Λ where G is non-abelian simply connected
nilpotent Lie group, and G/Λ is compact manifold. (q > 1)

Example: A foliation F is distal if its pseudogroup (GF , T ) is distal: that
is, for all x 6= y ∈ T there exists εx ,y > 0 such that

dT (g(x), g(y)) ≥ εx ,y for all g ∈ GF

For example, all compact foliations are distal.

Theorem: If F is distal and C1+α for some α > 0, then M = P.
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Examples with M = P

Theorem: (Clark & Hurder [2006]) Suppose that F has a compact leaf L
with H1(L,R) 6= 0, and there is a saturated open neighborhood L ⊂ U
such that F | U is a product foliation. Then there is an arbitrarily small
smooth perturbation F ′ of F such that F ′ has a solenoidal minimal set
K ⊂ U, where the leaves of F ′ | K all cover L. Moreover, if F is distal,
then F ′ is distal.

Problem: If M = P, does there exists a structure theory for the minimal
sets of F? For example, must such K admit a topological Lie group
structure transversally, or have a factor with this property?
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Secondary classes and dynamics

Recall that a secondary class yI cJ ∈ H∗(WOq) is residual if cJ has degree
2q. The two results above then imply:

Theorem: (Hurder) If yI cJ ∈ H∗(WOq) is a residual secondary class (e.g.,
Godbillon-Vey type) then the localizations ∆(yI cJ)|E = 0 and
∆(yI cJ)|P = 0. Hence, if ∆(yI cJ) non-zero implies that H has positive
Lebesgue measure.

Thus, understanding the dynamical meaning of the residual secondary
classes requires understanding the dynamics of foliations which have
non-uniformly, partially hyperbolic behavior on a set of positive measure.
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H ∼ codimension one

Theorem: [Hurder (2005)] Let G be a compactly generated
C 1+α-pseudogroup, where the Hölder exponent α > 0, and T has
dimension one. The for every minimal set K ⊂ T the intersection K ∩H
has Lebesgue measure zero.

Combining this with results from Poincaré-Bendixsion Theory for
C 2-foliations, one gets:

Theorem: [Hurder 2005] Let F be a C 2-foliation of codimension q = 1
with GV (F) 6= 0. Then there is an open subset U ⊂ M with

• U is saturated by the leaves of F ,
• U contains the support of the cohomology class GV (F)
• U contains a dense collection of chaotic laminations.
• F|U is expansive
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Geometric entropy

Given a subset X ⊂ T , S = {x1, . . . , x`} ⊂ X is (n, ε)-separated if

∀ xi 6= xj , ∃ g ∈ G|X such that ‖g‖xi ≤ n & dT (g(xi ), g(xj)) ≥ ε

Then set

h(X , n, ε) = max #{S | S ⊂ X is (n, ε) separated}

Definition: (Ghys, Langevin, Walczak [1986])

h(G) = lim
ε→0

{
lim sup
n→∞

ln h(T , n, ε)
n

}
The geometric entropy of F is h(F) = h(GF ).

Proposition: If G contains a Markov subpseudogroup, then h(G) > 0.
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Local entropy

Local entropy for measure-preserving transformations was introduced by
Brin & Katok at a talk in Rio de Janeiro in 1981. There is a very useful
version of this notion for pseudogroups.

Let B(x , δ) ⊂ T denote the open δ–ball about x ∈ T .

Definition: The local entropy of G at x is

hloc(G, x) = lim
δ→0

{
lim
ε→0

{
lim sup
n→∞

ln h(B(x , δ), n, ε)

n

}}

Example: G generated by an expanding map f : N → N of a compact
manifold N, then hloc(G, x) = hloc(f , x) is the usual local entropy of f .

Proposition: (Hurder [2005]) G a finitely-generated pseudogroup:

h(G) = sup
x∈T

hloc(G, x)
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Entropy and chaos and H

Theorem: (Hurder [2005]) Let K ⊂ T be a minimal set such that
hloc(G, x) > 0 for some x ∈ K. Then K ∩H 6= ∅.

Problem: If H has positive Lebesgue measure and G is C 1+α for some
α > 0, show that hloc(G, x) > 0 for almost every x ∈ H.

Problem: Characterize the set {x ∈ T | hloc(G, x) > 0} – what are its
properties? Is there an estimate for its Hausdorff dimension in terms of
cohomology invariants of F?

Problem: Extend our understanding of the relation between cohomology
invariants and properties of foliation dynamical systems to codimension
greater than one.

No Problem: Happy Birthday, Paul!!
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