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In this talk we consider:

* classification, up to return equivalence, minimal equicontinuous
actions of a finitely generated group I' on a Cantor space X.

* a new approach, based on the Steinitz orders of profinite groups
associated to the group action.

* two new classes of actions which are invariants of return
equivalence - frothy and turbulent actions.

First, we discuss the motivation for the study of return equivalence.



Consider P ={qy: My — My_1 | £ > 1}, where each M, is a
compact connected manifold without boundary of dimension
n>1, and gy is a proper covering map. The inverse limit

SPEII<—m {qg: Mg—)/\/lg_l} Celjl:) M,

is the solenoidal manifold associated to P. It is compact and
connected but not locally connected, has a fibration map
po: Sp — My and foliated by leaves which cover Mj.

For xo € My, the fiber Xy = po_l(xo) is a Cantor set, and the
monodromy along leaves gives an action of ' = 71 (Mo, x9) on Xo.

Problem: Classify the solenoidal manifolds up to homeomorphism.



Vietoris - van Dantzig Solenoid:
S() =lim {q¢:S' —»§' [ £>1}

where gy is a covering map of the circle S! of degree m; > 1. Let
m = (my, my,...) be the collection of covering degrees, then the
Steinitz degree of the covering map qo: S(m) — S! is the product

n[fﬁ]:mlm2m’:H p"(p) , OSn(p)SOO
pem

When m; = 2 for all i > 1 we get the Smale attractor:



Steinitz numbers are asymptotically equivalent, or MN[m] ~ M[A],
if there exists m, n > 1 with m - M[ni] = n - MN[nA].

[Bing, 1960] and [McCord, 1965] showed the following:

Theorem: Solenoids S(r) and S(7) are homeomorphic if and
only if M[m] ~ N{a].

Question: Does such a result hold for the case of solenoidal

manifolds with dimension greater than 17

e If solenoidal manifolds Sp and Spr are homeomorphic, then
their monodromy Cantor actions are return equivalent.

* Clark - Hurder - Lukina, "Classifying matchbox manifolds”,
Geom & Top, 23, 2019; arXiv:1311.0226.



Minimal equicontinuous Cantor actions:

e [ is a finitely generated group,
e ®: [ x X — X is a topological action.
e (X,I,®) is minimal if every orbit O(x) = {gx | g € '} is dense.

e (X,I,®) is equicontinuous with respect to a metric dy on X,
if for all € > 0 there exists § > 0, such that for all x,y € X and
g €T, we have that dx(x,y) < J implies dx(gx, gy) < e.

e X Cantor space then the clopen (closed and open) subsets
CO(X) form a basis for the topology.

Fact: X a Cantor space, a minimal action ®: ' x X — X is
equicontinuous if and only if the -orbit of every U € CO(X) is
finite for the induced action ®,.: ' x CO(X) — CO(X).



Two Models

The tree model, or arboreal actions, where I acts on a tree T
preserving a root vertex v, then X is identified with the ends of 7

The group chain model, where ' acts on the coset spaces
Xy =T/Ty where ;1 DT D .-+ is a descending chain of proper
subgroups, so [ acts on the inverse limit space

X=lim{Xg < Xo -}

Fact: The two models are equivalent.

e Group chain model yields solenoidal manifolds directly.



Definition: U C X is adapted to the action (X,I,®) if U is a
non-empty clopen subset, and for any g € ', if (g)(U)NU # 0
implies that ®(g)(U) = U.

e Given x € X and clopen set x € W, there is an adapted clopen
set U with x e U C W.

e For U adapted, the set of “return times” to U,
fry={gel|g-UNnU#0}

is a subgroup of I, called the stabilizer of U.

e Hy=®(ly) C Homeo(U) is the monodromy of Iy



Definition: Minimal equicontinuous Cantor actions (X1,1, ®1)
and (X3, 2, ®2) are return equivalent if there exists an adapted set
Ui C X, for the action ®; and an adapted set U, C X5 for the
action ®,, and a homeomoprhism h: U; — U, which induces an
isomorphism of the monodromy groups H, with Hy,.

Basic Problem: Classify the minimal equicontinuous Cantor
actions up to return equivalence.

T

Easier Problem: Find properties of minimal equicontinuous
Cantor actions which are return invariant.

T

Fun Problem: Find interesting examples of minimal
equicontinuous Cantor actions.



e Properties

* Steinitz orders
* Stable & Wild

* Frothy & Turbulent

e Examples
*x Odometer Actions

* Heisenberg Actions



—

X, T, ®) minimal equicontinuous Cantor action

®(I') € Homeo(X) is equicontinuous subgroup,

closure &(®) = (') C Homeo(X) is profinite group.
&(®) acts transitively on X, so have o B(P)x X = X
Isotropy subgroup D (®, x) = {g € &(P) | CTD(E)(X) = x}
* D(®, x) is finite, or Cantor group

* D(P,x) ~D(P,y) for x,y € X

* X = 6(9)/D(P,x)

—
—
—
—

The closure ®(I) is also called the Ellis group of the action.

Problem: How does dynamics of action (X,I, ®) depend on
subgroup ©(®, x)? Or more precisely, on the left (adjoint) action
of D(P, x) on B(P)/D(P, x)?



Steinitz numbers:

Example: Suppose a and b are Steinitz numbers, with

a:Hp”(p) 7 b:Hpm(P)

pem pe™

where 7 is the set of distinct prime numbers.

LCM(a, b) Hpmax{n p),m(p)}
pem

Definition: A" = {n; | i € Z} collection of positive integers.

LCM(N) = H p"P) . 0< n(p) < oo

pem

is least common multiple as Steinitz number



Steinitz order:

& a profinite group

M C & open normal subgroup then & /M is finite group.
Definition: $ C & be a closed subgroup of the profinite group &.

N : H] = LCM{#{6/(91-9)} | M C & clopen normal subgroup}

is the relative Steinitz order of §) in &.

e Steinitz order of & is M[®] = MN[& : {e}].

e Steinitz numbers M ~ M, (asymptotic equivalence)

<= m- [y = n- Ty for integers m,n > 1

* J.S. Wilson, Chapter 2, Profinite groups, London
Mathematical Society Monographs. New Series, Vol. 19, 1998.



Theorem: (X,I,®) minimal equicontinuous Cantor action, then
the asymptotic relative Steinitz order M,[&(P) : D(P)] is an
invariant of return equivalence class of the action.

Corollary: Asymptotic Steintiz order of tower of coverings is an
invariant of the homeomorphism class of solenoidal manifold.

Definition: Prime spectrum of & is the collection
m(M[B]) = {p prime | p divides M[B]}

Theorem: (X,I,®) minimal equicontinuous Cantor action, then
the prime spectra 7(M[&(P)]) and 7(M[D(P)]) are invariants of
return equivalence of the action, modulo finite sets of primes.

Remark: Classification problem can be considered in terms of
prime spectra of actions.



Regularity properties of Cantor actions:

Here are alternate versions of topologically free actions
which are valid for I profinite group.

e (X,I,®) is quasi-analytic <=

for any clopen subset U C X & any g €T, if ®(g)(U) = U and
®(g)|U is the identity, then ®(g) is the identity on all of X.

e (X,I,®)is locally quasi-analytic <=

if there exists € > 0 such that for any adapted subset U C X with
diam(U) < € & any g € T with ®(g)(U) = U, if there exists
clopen V C U with (V) = V and the restriction ®(g)|V is the
identity, then ®(g)|U is the identity on all of U.



Definition: (X,T,®) is stable if the profinite action
®: &(P) x X — X is locally quasi-analytic.

Theorem: Stable property is an invariant of return equivalence.

Remark: The classification problem for stable actions essentially
reduces to a problem in algebra.

* Cortez - Medynets, “Orbit equivalence rigidity of equicontinuous
systems”, Journal Lond. Math. Soc. (2), 94, 2016.

* Hurder - Lukina, “Orbit equivalence and classification of weak
solenoids”, Indiana Univ. Math. Journal, Vol. 69, 2020;
arXiv:1803.02098.

* Hurder - Lukina, “Nilpotent Cantor actions”; arXiv:1905.07740.



Definition: (X,T,®) is wild if the profinite action

®: B(P) x X — X is not locally quasi-analytic.

Wild Cantor actions include:

e actions of weakly branch groups on their boundaries

* Bartholdi - Grigorchuk - Sunik, “Branch groups”, Handbook of
algebra, Vol. 3, 2012.

e actions of higher rank arithmetic lattices on quotients of their
profinite completions

% Hurder- Lukina, “Wild solenoids”, Transactions A.M.S., 371,
2019; arXiv:1702.03032.

e subgroups of wreath product groups acting on trees

% Alvarez Lépez - Barral Lijé - Lukina - Nozawa, “Wild Cantor
actions”, J. Math. Soc. Japan, to appear; arXiv:2010.00498.



Classifying nilpotent Cantor actions:

(X,T,®) is a nilpotent Cantor action <
e minimal & equicontinuous,

e [ contains a finitely-generated nilpotent subgroup of finite index.

Question: How do the dynamical properties of nilpotent Cantor
actions differ from those of Z"-odometers?

Theorem: [Hurder - Lukina, 2021] Let (X,I, ®) be a nilpotent
Cantor action. Then

prime spectrum 7(M[&(P)]) is finite = action is stable

Problem: Show there exist wild nilpotent Cantor actions.



Two more properties:

Definition: A wild Cantor action (X,I, ®) is said to be frothy if

D(P) = H H; , where each H; is a finite group.
i=1

Definition: A wild Cantor action (X,I, ®) is said to be turbulent
if the set of points with non-trivial holonomy has full measure.

This notion has applications to the study of I.R.S.’s

* Groger - Lukina, “Measures and regularity of group Cantor
actions”, Discrete Contin. Dynam. Sys.-A, 41(5) 2021;
arXiv:1911.00680.



Examples:

e Toroidal Actions

e Heisenberg (nilpotent) Actions
* Stable
* Wild
* Frothy

* Turbulent



Classic odometers: Choose two disjoint sets of distinct primes,

Wf:{CI17QZ7-~-} P 7.‘—OO:{prQa"'}

where 7r and 7o, can be chosen to be finite or infinite sets.
Choose multiplicities n(g;) > 1 for the primes in 7¢.

For each £ > 0, define a subgroup of [ = 7Z by

= (g Wy ... gl plpl . pfn|nez),

The completion T of Z with respect to this group chain admits a
product decomposition into its Sylow p-subgroups

I1 z/a"z - ] Ze . =(N[])=mUms
i=1

PEToo

Z-action on X =T is free, so certainly topologically free & stable.



Heisenberg odometers: H C GL(Z?3)

1
H = 0 |a,b,ceZ ;. (1)
0

(el R V)
= o 0

The group operation * in coordinates (a, b, ¢), (a’, b', ¢’) € Z3,

(a,b,c)*(a,b, 'Y= (a+a,b+b,c+ +ab)

The normal subgroups and representations of 7 are described in

* Lightwood - Sahin - Ugarcovici, “The structure and spectrum of
Heisenberg odometers”, Proc. Amer. Math. Soc., 142(7), 2014.

* Danilenko - Lemarnczyk, “Odometer actions of the Heisenberg
group”, J. Anal. Math., 128, 2016.



Our interest is in group chains in H which are not normal.
Here is a very useful result:

Theorem: Let T be a profinite completion of a finitely-generated
nilpotent group I'. Then there is a topological isomorphism

H F(p) )

pem(N[r])

1%

’ll
where F(p) C T denotes the Sylow p-subgroup of T fora prime p.

Thus the action of T can be analyzed for each prime.

Conversely, actions of H can be constructed prime by prime.



A model action of a finite p-group:
Fix a prime p > 2.
For n > 1 and 0 < k < n, we have the following finite groups:

1 a ¢
Gpn = 0 1 b||3bcecZ/p"Z
0 01
1 pka o
Hpnk = 0 1 0||aez/p"Z
0 0 1

Xp.nk = Gp.n/Hpnk

The isotropy group of the action of G, , on X, , i at the coset
eHp n i of the identity element is Hp , «.



Construction of a wild example:

Let 7mr and 7, be two disjoint collections of primes, with 7 an
infinite set and 7, arbitrary, possibly empty.

Enumerate 7 = {q1, g2, ...} and choose integers 1 < r; < n; for
1<i<oo.

Enumerate moo = {p1, p2, ...}, again with the convention that if ¢
is greater than the number of primes in 7, then we set py = 1.

For each ¢ > 1, define the integers

My = qi'q?---q-pips---ph
Ny = q'g?---q)" - pips--pf .



For £ > 1, define a subgroup of H, in the coordinates above,
He = {(aMy, bNp, cNy) | a,b,c € Z} ,

Its core subgroup is given by C; = {(aNg, bNy, cNy) | a, b, c € Z}.

For k; = n; — r; we then have

I 6. D = T Mok

)
i=1 j=1 i=1

o0

1%
1%

Hoo =

The Cantor space Xy, = ﬁoo/Doo associated to the group chain
{H¢ | £ > 1} is given by

[e.e]

Xoo 2 ] X x [ #
i=1

Jj=1



Let x; € Xg,.n; k; denote the coset of the identity element.

For each £ > 1, we define a clopen set in X

H{X:} X H Xgoms: % | Hepy -
j=1

i=0+1

e This action is wild.
e If the set m, is empty, then the action is frothy as well.

e With proper choices of integers 1 < r; < n; for 1 < i < o0, the
action will be turbulent.
Details of calculations and more examples are in the paper

* Hurder-Lukina, “The prime spectrum of solenoidal manifolds”,
2021; arXiv:2103.06825



