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Motivation

van Dantzig – Vietoris solenoid, defined by tower of coverings:

P ≡ · · · −→ S1 p`+1−→ S1 p`−→ · · · p2−→ S1 p1−→ S1

where each p` is a proper covering map of degree n` > 1.

SP ≡ lim
←−
{p`+1 : S1 → S1} ⊂

∏
`≥0

S1

SP is given the (relative) product topology.

P is called a presentation for SP . Set nP = {n1, n2, n3, . . .}.
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Van Dantzig - Vietoris solenoid [1930]
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Proposition: The homeomorphism type of SP depends only on
the set of integers nP .

Let P and Q be sequences of positive integers, and let P be the
infinite set of prime factors of the integers in the set nP , included
with multiplicity, and Q the same of nQ.

Theorem: [Bing, 1960; McCord, 1965; Aarts and Fokkink, 2004]
The solenoids SP and SQ are homeomorphic if and only if there is
bijection between a cofinite subset of P and a cofinite subset of Q.

Question: What are the invariants of homeomorphism type, for
continua defined by inverse limits of manifold-like spaces?
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Branched manifolds

Y is a branched n-manifold if it is a connected union of
n-manifolds whose boundaries meet transversally.

Here are examples from [Williams, 1974] of how a branched
1-manifold and branched 2-manifold may look:
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Y -like spaces

Y is a finite simplicial space.

P ≡ · · · −→ Y
p`+1−→ Y

p`−→ · · · p2−→ Y
p1−→ Y

Each p` is a surjection. Set

SP ≡ lim
←−
{p`+1 : Y → Y } ⊂

∏
`≥0

Y

SP with the (relative) product topology is a Y -like space.

Problem: Give invariants of the homeomorphism type of SP .
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Smooth Y-like spaces

Y` compact branched n-manifolds, ` ≥ 0.

P ≡ · · · −→ Y`+1
p`+1−→ Y`

p`−→ · · · p2−→ Y1
p1−→ Y0

Each p` is a proper covering map of branched manifolds. Set:

SP ≡ lim
←−
{p`+1 : Y → Y } ⊂

∏
`≥0

Y

SP with the (relative) product topology is a smooth Y-like space.

Theorem: The geometric entropy is defined for SP and is an
invariant of the homeomorphism type of SP .
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Matchboxes manifolds

Definition: A matchbox manifold is a continuum with the
structure of a smooth foliated space M, such that the transverse
model space X is totally disconnected, and for each x ∈M, the
transverse model space Xx ⊂ X is a clopen subset, hence is
homeomorphic to a Cantor set.

Figure: Blue tips are points in Cantor set Xx
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Definition: M is an n-dimensional matchbox manifold if:

• M is a continuum ≡ a compact, connected metric space;

• M admits a covering by foliated coordinate charts
U = {ϕi : Ui → [−1, 1]n × Xi | 1 ≤ i ≤ k};

• each Xi is a clopen subset of a totally disconnected space X;

• plaques Pi (z) = ϕ−1
i ([−1, 1]n × {z}) are connected, z ∈ Xi ;

• for Ui ∩ Uj 6= ∅, each plaque Pi (z) intersects at most one
plaque Pj(z ′), and change of coordinates along intersection is
smooth diffeomorphism;

+ some other technicalities.
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Eaxamples of matchbox manifolds:

• Exceptional minimal sets for foliations of compact manifolds;

• Inverse limit spaces defined by a sequence of proper coverings of
compact branched manifolds;

• Expanding attractors for Axiom A dynamical systems;

• Tiling spaces associated to aperiodic, locally-finite tilings of
Euclidean space;

• Suspensions of minimal pseudogroup actions on a Cantor set,
such as those obtained from the Ghys-Kenyon construction for
infinite graphs.
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Foliation pseudogroup

Let M be a matchbox manifold, with a choice of a regular covering
by foliated coordinate charts,

U = {ϕi : Ui → [−1, 1]n × Xi | 1 ≤ i ≤ k}

Identify Ti = ϕ−1
i (0× Xi ) ⊂M with Xi and thus X with T ⊂M.

Let GX be the pseudogroup for M generated by the collection of
transition maps

G0
X ≡ {hi ,j | Ui ∩ Uj 6= ∅}

The pseudogroup structure, or the pseudogroup action on a
transverse Cantor set, is what distinguishes the study of inverse
limits with a matchbox structure over other types of inverse limits.
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The maps hi ,j are pictured as this:
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Let G∗X be the collection of all compositions of elements of G0
X on

the open domains for which the composition is defined.

Definition: For g ∈ G∗, the word length ‖g‖ ≤ m if g can be
expressed as the composition of at most m elements of G0

X.

That is, ‖g‖ ≤ m implies that g = hi` ◦ · · · hi1 for ` ≤ m.

The inclusion T ⊂M induces a metric dT on the transversal, and
hence a metric dX on X.
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Geometric entropy

The geometric entropy for pseudogroup actions was introduced in
[Ghys, Langevin & Walczak, 1988], to give a measure of the
“exponential complexity” of the orbits of the holonomy
pseudogroup for a foliation.

Let ε > 0 and ` > 0.

A subset E ⊂ X is said to be (dX, ε, `)-separated if for all
w ,w ′ ∈ E ∩ Xi there exists g ∈ G∗X with w ,w ′ ∈ Dom(g) ⊂ Xi ,
and ‖g‖w ≤ ` so that dX(g(w), g(w ′)) ≥ ε.
Ifw ∈ Xi and w ′ ∈ Xj for i 6= j then they are (ε, `)-separated.

The “expansion growth function” is:

h(GX, dX, ε, `) = max{#E | E ⊂ X is (dX, ε, `)-separated}
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The (geometric) entropy is the asymptotic exponential growth type
of the expansion growth function:

h(GX, dX, ε) = lim sup
`→∞

ln {h(GX, dX, ε, `)} /`

h(GX, dX) = lim
ε→0

h(GX, dX, ε)

Then 0 ≤ h(GX, dX) ≤ ∞.

Properties of entropy – see [Ghys, Langevin & Walczak, 1988].

Proposition: Let GX be a compactly generated pseudogroup,
acting on the compact space X with the metric dX. Then h(GX, dX)
is independent of the choice of metric dX, so we can write h(GX).
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Let X0 ⊂ X be a clopen subset which intersects every orbit of the
action of GX, and let h(GX,X0) denote the restricted entropy.

Proposition:

• h(GX) = 0⇐⇒ h(GX,X0) = 0

• h(GX) > 0⇐⇒ h(GX,X0) > 0

• h(GX) =∞⇐⇒ h(GX,X0) =∞
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Theorem: Let M1 and M2 be matchbox manifolds. If there exists
a homeomorphism h : M1 →M2 then the entropies h(GX1) and
h(GX2) have the same nature: they are both either zero, positive
and finite, or infinite.

Proof: Uses ideas from

[Classifying matchbox manifolds, Clark, Hurder, Lukina, 2013].

[Lipschitz mathchbox manifolds, Hurder, 2013].

• h induces a Morita equivalence between actions of GX1 and GX2

• By a change of metric on X1 the map h induces a Lipschitz
Morita equivalence.

• Entropy is independent of metric.

• Result follows by relation of entropy for Lipschitz Morita
equivalent pseudogroup actions.
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Example: Let M be homeomorphic to a Vietoris solenoid, then
h(GX) = 0.

Example: Let M be homeomorphic to a Denjoy generalized
solenoid, then h(GX) = 0.

Using the results of the 2010 thesis of Aaron Brown, we have:

Example: Let M be homeomorphic to an 2-dimensional attractor
for an Axiom A diffeomorphism f : M → M for a compact
3-manifold, then h(GX) > 0.
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There is a sharper form of the invariance of the entropy.

Let Mi be a matchbox manifold with presentation Pi for i = 1, 2.

Assume that the base branched manifold for Pi is Y0 for each.

Let Πi : Mi
∼= SPi

→ Y0 be the projection map.

A homeomorphism h : M1 →M2 is base preserving if Π2 ◦ h = Π1.

Theorem: Let Mi be a matchbox manifold with Mi
∼= SPi

for a
presentation Pi for i = 1, 2. If there exists a base preserving
homeomorphism h : M1 →M2 then h(GX1) = h(GX2).
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Question: Let M ∼= SP for a presentation P by branched
n-manifolds. How is h(GX) related to the properties of the
presentation P?

Definition: Let M ∼= SP for a presentation P by branched
n-manifolds. We say that P is chaotic if the typical leaf L ⊂M
contains a quasi-isometrically embedded tree with exponential
growth rate.

Theorem: Let M ∼= SP for a presentation P by branched
n-manifolds. Then h(GX) > 0 if and only if P is chaotic.

Problem: Give properties of the bonding maps of a Y -like
presentation P by branched n-manifolds which suffices to imply
that P is chaotic?
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Thank you for your attention.
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