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Characteristic Classes

Let F be a Riemannian foliation of smooth manifold M with tangent
bundle TF of dimension p. Choose a Riemannian metric g on TM
which is projectable when restricted to the normal bundle Q = TF⊥.
Let ∇g be the basic connection on Q associated to this metric.

For each 1 ≤ i ≤ q/2 the closed Pontrjagin form pi(∇g) ∈ Ω4i(M)
determines the Pontrjagin class pi ∈ H4i(M).

If q = 2n and Q is oriented, there is also the Euler class χq ∈ Hq(M)
whose square χ2

q = pn.

The weight of an index I = (i1 < i2 < · · · < ik) is

|I| = 4(i1 + 2i2 + · · · + kik)

The degree of a monomial term pI = pi1 · · · pik is the weight of |I|.
In the case q is even, the degree of the monomial χq · pI is |I| + q.
We let P denote a monomial of either pI or χq · pI type.

THEOREM: (Pasternack) If degP > q then

P (∇g) = pi1(∇g) ∧ · · · ∧ pik(∇g) = 0

DEFINITION: If q = 2n, set

R[χq, p1, p2, . . . , pn−1]q ≡ R[χq, p1, p2, . . . , pn−1]/{P | degP > q}

and for q = 2n + 1, set

R[p1, p2, . . . , pn]q ≡ R[p1, p2, . . . , pn]/{P | degP > q}

COROLLARY: (Pasternack) There is a well-defined map

q = 2n, ∆∗:R[χq, p1, p2, . . . , pn−1]q → H∗(M)

q = 2n + 1, ∆∗:R[p1, p2, . . . , pn]q → H∗(M)
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Transgression Classes

Assume there is a trivialization s: ǫq = M × Rq ∼= Q.

Let ∇s be the associated flat connection for which s is parallel.

Set ∇t = (1 − t)∇g + t∇s with pi(∇t) ∈ Ω4i(M × R).

hi(∇g, s) =

∫ 1

0

pi(∇t) ∈ Ω4i−1(M)

dhi(∇g, s) = pi(∇g)

REMARK: i > q/4 =⇒ dhi(∇g, s) = 0.

If q = 2n, then also set

hχq(∇g, s) =

∫ 1

0

χq(∇t) ∈ Ωq−1(M)

DEFINITION: (q = 2n)

RWq = R[χq, p1, p2, . . . , pn−1]q ⊗ Λ
(
hχq , h1, . . . , hn−1

)

d(1 ⊗ hχq) = χq ⊗ 1, d(1 ⊗ pi) = pi ⊗ 1

DEFINITION: (q = 2n + 1)

RWq = R[p1, p2, . . . , pn]q ⊗ Λ(h1, . . . , hn)

d(1 ⊗ pi) = pi ⊗ 1

DEFINITION: The basic connection ∇g and framing s define the
map of DGA’s

∆(∇g, s):RWq → Ω(M)

pi → pi(∇g, s)

χq → χq(∇g, s)

hi → hi(∇g, s)

hχq → hχq(∇g, s)
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Secondary Classes

THEOREM: (Lazarov) Assume that Q has framing s. The map
on cohomology

∆∗(s):H∗(RWq) → H∗(M)

is independent of the choice of basic connection ∇g, and depends
only on the homotopy class of the framing s.

THEOREM: (Lazarov) Suppose that two sections s, s′ of Q are
related by a gauge transformation ϕ:M → SO(q),

s′(x) = s(x) · ϕ(x), x ∈ M

Then on the level of forms,

∆(∇g, s
′)(hi) = ∆(∇g, s)(hi) + ϕ∗(τi)

where τi ∈ Ω2i−1(SO(q)) is the transgressive class formed from the
Maurer-Cartan form. In particular, for i > q/4,

∆∗(s′)(hi) = ∆∗(s)(hi) + ϕ∗[τi] ∈ H2i−1(M)
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Some Questions

QUESTION 1: Given a class z ∈ H∗(RWq), is there a Riemannian
foliation of codimension q with framed normal bundle such that
∆∗(s)(z) 6= 0?

QUESTION 1’: Given a class z ∈ H∗(RWq), is there a Riemannian
foliation of codimension q with framed normal bundle on a compact
manifold M such that ∆∗(s)(z) 6= 0?

QUESTION 2: Given a class z ∈ H∗(RWq), how does the value
of ∆∗(s)(z) ∈ H∗(M) depend upon “the geometry and topology”
of F?

QUESTION 3: (Molino, Tokyo 1993) How do the values of the
classes z ∈ H∗(RWq) relate to the Molino structure theory of F?
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Universal Classifying Spaces

An RΓq–structure on M is an open covering U = {Uα | α ∈ A} and
for each α ∈ A, there is given

(i) a smooth map fα:U → Rq

(ii) a Riemannian metric gα on Rq

such that the pull-backs f−1
α (TRq) → Uα define a vector bundle

Q → M with Riemannian metric g | Q = gα = f∗
αgα

THEOREM: (Haefliger) A Riemannian foliation F on M defines
an RΓq–structure on M . The homotopy class of the composition

hF :M ∼= BU → BRΓq

depends only on the integrable homotopy class of F.

The normal bundle to the universal RΓq–structure on BRΓq admits
a classifying map ν:BRΓq → BO(q). The homotopy fiber of ν is

the space BRΓq This classifies RΓq–structures with a (homotopy
class of) framing for Q.

M

P

O(q)

↓↑s

↓
hF ,s
−→

=

hF
−→ BRΓq

ν↓

BO(q)

BRΓq

BO(q)

=

=

ν↓

≃FRΓq

↓

BRΓq

↓

≃O(q)

↓

ΩBO(q)

↓

QUESTION 4: What is the homotopy type of BRΓq? of BRΓq?
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Homotopy Type of BRΓq

THEOREM: (Pasternack) BRΓ1 ≃ BRδ

THEOREM: (Lazarov) If q = 4k − 2,4k − 1, then

π4k−1(BRΓq) → Rℓ → 0, ℓ > 0

THEOREM: (Hurder) ν:BRΓq → BO(q) is a q-connected map.

That is, BRΓq is q − 1-connected.

Proof: Milnor’s remark =⇒ by the Phillips immersion theorem, an
RΓq–structure on Sℓ for 0 < ℓ < q corresponds to a Riemannian
metric defined on an open neighborhood retract Sℓ ⊂ U ⊂ Rq.

An RΓq–structure on an open set in Rq is explicitly homotopic to
the Euclidean metric on an open neighborhood retract Sℓ ⊂ V ⊂ Rq,
which is the “trivial” RΓq–structure.

Thus, the given RΓq–structure on Sℓ can be homotoped to a trivial

structure, hence represents the trivial RΓq–structure on Sℓ.

QUESTION 5: Is BRΓq q-connected for q 6= 4k − 1?

QUESTION 5’: What are the integrable homotopy invariants of
a 1–dimensional Riemannian foliation on an open manifold?
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Injectivity of the Pontrjagin Classes

THEOREM: (Thom) There is a compact, orientable Riemannian
manifold B of dimension q such that all of the Pontrjagin and Euler
classes up to degree q are independent in H∗(B).

If q is odd, then B can be chosen to be a connected manifold.

Proof: For q even, B is the disjoint union of all products of the
form

CPi1 × · · · × CPik × S1 × · · · × S1

with dimension q.

For q odd, B is the connected sum of all products of the form

CPi1 × · · · × CPik × S1 × · · · × S1

with dimension q.
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Injectivity of the Secondary Classes

THEOREM: (Hurder) There exists a compact manifold M and a
Riemannian foliation F on M with trivial normal bundle, such that
F is defined by a fibration over a compact manifold of dimension
q, and the secondary characteristic map injects:

∆∗(s):H∗(RWq) →֒ H∗(M)

Moreover, if q is odd, then M can be chosen to be connected.

Proof: Let B be the compact, orientable Riemannian manifold
defined in the proof of Thom’s Theorem.

Let M be the bundle of oriented orthonormal frames for TB.

The basepoint map π:M → B defines a fibration

SO(q) → M → B

with fiber over x ∈ B the group SO(q) of orthonormal frames in
TxB.

F is the foliation defined by the fibration. The Riemannian metric
on B lifts to the transverse metric on the normal bundle Q = π−1TB.
s is the canonical framing of Q.

The basic connection ∇g and framing s define the map of DGA’s

∆(∇g, s):RWq → Ω(M)

Consider a fiber Lx = π−1(x) – the normal bundle restricted to Lx

is trivial, as it is just the constant lift of TxB. Thus, the basic
connection ∇g is the connection associated to the product bundle.

The connection ∇s for which the canonical framing is parallel,
equals the connection defined by the Maurer-Cartan form on SO(q).
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By Chern-Weil theory, the forms hi(∇g, s) and hχq(∇g, s) restricted
to Lx are closed, and their classes in cohomology define free exterior
generators for the cohomology H∗(SO(q)).

The characteristic map on forms

∆(∇g, s):RWq → Ω(M)

induces a map of the basic spectral sequence,

∆∗,∗
p :E∗,∗

2 (RWq) → E∗,∗
p (M)

At the E2 stage, this is

∆∗,∗
2 :RWq → H∗(SO(q)) ⊗ H∗(B)

which is injective by construction.

Pass to the E∞–limit to obtain that

∆∗(s):H∗(RWq) → H∗(M)

induces an injective map of associated graded algebras, hence it is
also injective.

Note that in this proof:

• All leaves are compact.

• The “geometry” of F (seems) to make no difference.

• The image of the “basis” classes are integral

∆∗(s)(hJpI) = ∆∗(s)(hj1∧· · ·∧hiℓ·pi1 · · · pik) ∈ {H∗(M,R) ← H∗(M,Z)}

QUESTION 1”: Does there exists a compact connected manifold
M and a Riemannian foliation F with even codimension and trivial
normal bundle, such that the secondary characteristic map ∆∗(s)
injects?
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Variable and Rigid Classes

The secondary classes of a foliation are divided into two types,
variable and rigid.

The variable classes are most sensitive to geometry and dynamics.

The rigid classes seem to be topological in nature.

A basis element

hJpI = hj1 ∧ · · · ∧ hiℓ · pi1 · · · pik

is a rigid class if it lies in the image of

H∗(RWq+1) → H∗(RWq)

The variable classes are the cokernel of this map.

A rigid class is invariant for a deformation Ft, 0 ≤ t ≤ 1 through
Riemannian foliations: The family Ft defines a Riemannian foliation
F × [0,1] on M × [0,1] of codimension q + 1, and the rigid classes
are defined for F × [0,1] so restrict to the same class at the ends.

The variable classes do not have this property, so a priori may vary
non-trivially under deformation.

The variable classes exist only when q = 4k − 2 or q = 4k − 1.

A spanning set for the variable classes is obtained by considering
all terms

hj1 · pi1 · · · pik ∈ RWq

of degree 4k − 1, where j1 ≤ iℓ for all ℓ. We then extend this set to
include all terms hj1 ∧ · · · ∧ hiℓ · pi1 · · · pik where jℓ > ji for ℓ > 1.
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Integrality

The integrality of the secondary classes in the proof of the non-
triviality theorem illustrates a general property of the secondary
classes:

THEOREM: (Hurder) Let F be a Riemannian foliation of codi-
mension q on M with trivial normal bundle. Suppose there exists
a manifold B of dimension q and a submersion π:M → B whose
fibers define F.

If q = 2n is even, then the image of the basis classes hJpI are
rational

∆∗(s)(hJpI) ∈ Image {H∗(M,Q) → H∗(M,R)}

When deg pI = q, the image of ∆∗(s)(hJpI) lies in the image of the
integral cohomology.

If q = 2n + 1 is odd, then the image of the rigid basis classes are
rational

∆∗(s)(hJpI) ∈ Image {H∗(M,Q) → H∗(M,R)}

When deg pI = 2n + 2, the image of ∆∗(s)(hJpI) lies in the image
of the integral cohomology.

Proof: Use standard rational homotopy techniques and functorial-
ity of the characteristic maps to show that an integral (or rational)
model of RWq factors through the rational de Rham complex of M .

The restriction on the types of classes for q odd is essential. The
proof uses “rigidity” properties of the classes, but applied within the
level of DGA’s and not to a geometric deformation of the foliation.

15



Compact Hausdorff Foliations

DEFINITION: A foliation of a manifold M is compact Hausdorff
if every leaf of F is a compact manifold, and the leaf space M/F
is a Hausdorff space.

THEOREM: (Epstein, Millet) A compact Hausdorff foliation F is
Riemannian – there exists a transverse holonomy invariant Rieman-
nian metric on the normal bundle Q for F.

THEOREM: (Hurder) Let F be a compact Hausdorff foliation of
codimension q on M with trivial normal bundle. If hJpI is a rigid
class, or if q is even and hJpI is any basis element, then

∆∗(s)(hJpI) ∈ Image {H∗(M,Q) → H∗(M,R)}
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Super-rigidity and Riemannian Foliations

THEOREM: Suppose that M is a compact manifold with funda-
mental group Γ. Assume that Γ is an irreducible lattice of real-rank
r. (e.g., Γ = SL(r + 1,Z)) Then every Riemannian foliation of M
of codimension q < r is compact Hausdorff.

When the codimension q > r where r is the real-rank of Γ, then
Dupont and Kamber have obtained rationality results for certain of
the secondary classes, when F is a point foliation. See “Cheeger-
Chern-Simons classes of transversally symmetric foliations,” Math.
Ann. 295 (1993)
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Continuous Variation

Consider S3 as the Lie group SU(2) with Lie algebra spanned by

X =

[
i 0
0 −i

]
, Y =

[
0 i
i 0

]
, Z =

[
0 −1
1 0

]

.

THEOREM: (Chern-Simons) Let gu be the Riemannian metric on
S3 where the parallel Lie vector fields {u ·X, Y, Z} is an orthonormal
basis. Then for Fu the point-foliation on S3 with transverse metric
gu, ∆∗(s)(h1) ∈ H3(M) is a non-constant function of u.

THEOREM: (Lazarov) Let q = 4k − 2. Then for every non-
zero z ∈ H4k−1(RWq), there is a family of Riemannian foliations
Ft with trivial normal bundle on a compact manifold M such that
the images of the class ∆(s)(z) ∈ H4k−1(M) is a non-constant
continuous function of t.

Lazarov proved much more – he showed the complete independent
variation of all classes in these degrees.

THEOREM: (Lazarov) Let q = 4k−2. The universal characteristic
map

∆∗:Hq+1(RWq) → Hq+1(BRΓq)
is injective, and all classes in the image “vary independently”.

The geometry of deformation examples involves either:

• For q = 4k−1, a deformation of the transverse Riemannian metric
on Q. This is analyzed via Cheeger-Chern-Simons’ theory.

• For q = 4k − 2, a geometric deformation of the foliation Ft in a
neighborhood of a singular set. This is analyzed via residue theory.
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Molino Theory

Let F be a Riemannian foliation of codimension q on a compact
manifold M , with oriented normal bundle Q.

Let π:P → M be the bundle of oriented orthonormal frames in Q,
with fiber group SO(q).

The foliation F is covered by a Riemannian foliation F̂ on P of the
same dimension.

THEOREM: (Molino) The closures of the leaves of F̂ define a

Riemannian foliation G = F̂ of P with all leaves compact and no
holonomy. Thus, G is defined by a fibration P → W .

As F̂ is SO(q)-invariant, the foliation G and is also SO(q)-invariant,
W is a SO(q)-space, and the quotient map P → W is SO(q)-
equivariant.

For a leaf L̂ of F̂, the restriction of F̂ to the closure L̂ in P is a Lie
G-foliation with all leaves dense. That is, for each x ∈ P there is a
connected Lie group Gx, a complete manifold Zx with fundamental

group Γx = π(Zx, x) and universal cover Z̃x, and representation

ρx: Γx → Gx so that the quotient space (Z̃x ×Gx)/Γx
∼= L̂ as foliated

manifolds. The identification is given by a natural map induced

from the Lie algebra of Gx realized as basic vector fields for F̂.

The for a leaf L̂ ⊂ P which covers a leaf L ⊂ M , π(L̂) = L.

Let Fx denote the fiber of π:M → B containing x. We identify
Fx with SO(q) where x corresponds to the identity element. Then

Hx = L̂ ∩ Fx is a closed subspace of Fx, and is identified with a
subgroup of SO(q).

The set of leaf closures L for F define a singular foliation F on M .

Plus more. . .
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Regular Riemannian Foliations

DEFINITION: A Riemannian foliation of a compact manifold M
is regular if the set of leaf closures form a non-singular foliation F.

EXAMPLE: A Riemannian foliation with every leaf compact is
regular. These are the compact Hausdorff foliations.

Assume that M is compact and the normal bundle Q to F is framed.

Let L be a leaf of F with closure L.

Let L̂ a leaf of F̂ which covers L.

The Molino structure theory gives L̂ ∼= (Z̃x × Gx)/Γx so

L ∼= (Z̃x × Gx/Hx)/Γx

where Hx ⊂ Gx is a closed subgroup.

The normal bundle of F restricted to L is identified with the bundle
associated to the adjoint representation of Γx on m = Tx(Gx/Hx)

The restriction of Q to L decomposes into Q = Q1 ⊕ Q2 where
Q1 is tangent to L and Q2 is orthogonal to L. Let q2 denote the
codimension of F, hence equal to the dimension of Q2.

LEMMA: If F is regular, then Q2 is finitely covered by a trivial
bundle.

Proof: F is a Riemannian foliation with all leaves compact, hence
is compact Hausdorff. The holonomy of each leaf L of F is finite,
so there is a finite covering of L on which the restriction of Q2 is
trivial.

COROLLARY: The Pontrjagin forms of Q vanish in degrees greater

than the codimension q2 of F.
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Rationality and Vanishing for Regular Foliations

THEOREM: Let F be a regular Riemannian foliation of codi-
mension q on M with trivial normal bundle. Suppose that the
leaf closures F define a foliation of codimension q2 < q. Then
∆∗(s)(hJpI) = 0 ∈ H∗(M,R) if deg pI > q2.

THEOREM: Let F be a regular Riemannian foliation of codimen-
sion q on M with trivial normal bundle. If hJpI is a rigid class, or if
q is even and hJpI is any basis element, then

∆∗(s)(hJpI) ∈ Image {H∗(M,Q) → H∗(M,R)}

The requirement on dimension and rigid class is required, as the
following example shows.

EXAMPLE: Let S3 have the point foliation Fu with transverse
metric gu such that ∆∗(s)(h1) ∈ H3(M) is a non-constant function
of u.

Let B be a compact oriented Riemannian manifold of dimension 8
such that p2(TB) 6= 0. Let P → B be the bundle of oriented frames
for TB. Then P has a codimension 8 foliation F ′ with trivial normal
bundle for which ∆∗(h2 · p2) 6= 0 ∈ H15(P ).

The product manifold V = S3 × P has a family of Riemannian
foliations F ′′

u = Fu × F ′ of codimension 11, whose normal bundle
is framed by the sum of the framings of the normal bundles on
each factor. Then the class ∆∗(s)(h1 ∧ h2 · p2) ∈ H18(V ) and is a
non-constant function of u.

Note that h1 · p2 is a variable class, so also is h1 ∧ h2 · p2.
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Vanishing for Regular Foliations

The last result is a vanishing theorem for all of the secondary classes
if the topology of M is restricted.

THEOREM: Let F be a regular Riemannian foliation of codimen-
sion q on M with trivial normal bundle. Suppose that π1(M) is
finite, and the leaf closures F define a foliation of codimension
q2 < q. Then ∆∗(s)(hJpI) = 0 ∈ Hm(M,R) where M has dimen-
sion m. That is, all of the secondary characteristic numbers for F
vanish.
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