Lipschitz matchbox manifolds

Steve Hurder

University of Illinois at Chicago www.math.uic.edu/~hurder
\mathcal{F} is a C^{1}-foliation of a compact manifold M.
Problem: Let L be a complete Riemannian smooth manifold without boundary. When is L quasi-isometric to a leaf of a C^{1}-foliation \mathcal{F} of a compact smooth manifold M ?

Definition: $\mathcal{Z} \subset M$ is minimal if it is closed, a union of leaves, and contains no proper subset with these two properties.

Theorem: [Cass, 1985] A leaf in a minimal set must be "quasi-homogeneous", and that this property is an invariant of the quasi-isometry class of a Riemannian metric on L.

The point of this talk is to discuss an analog of this result for the geometry of Cantor minimal systems.

Problem: Given a minimal pseudogroup $\mathcal{G}_{\mathfrak{X}}$ action on a Cantor set, can it be realized as the holonomy pseudogroup of a minimal set in a C^{r}-foliation, $r \geq 1$?

A minimal requirement is that:
Definition: A pseudogroup $\mathcal{G}_{\mathfrak{X}}$ acting on a Cantor set \mathfrak{X} is compactly generated, if there exists two collections of clopen subsets $\left\{U_{1}, \ldots, U_{k}\right\}$ and $\left\{V_{1}, \ldots, V_{k}\right\}$ of \mathfrak{X} and homeomorphisms $\left\{h_{i}: U_{i} \rightarrow V_{i} \mid 1 \leq i \leq k\right\}$ which generate all elements of $\mathcal{G}_{\mathfrak{X}}$.
$\mathcal{G}_{\mathfrak{X}}^{*}$ is defined to be all compositions of the generators on the maximal domains for which the composition is defined.

Definition: The action of a compactly generated pseudogroup $\mathcal{G}_{\mathfrak{X}}$ on a Cantor set \mathfrak{X} is Lipschitz with respect to a metric $d_{\mathfrak{X}}$ on \mathfrak{X}, if there exists $C \geq 1$ such that for each $1 \leq i \leq k$ then for all $w, w^{\prime} \in U_{i}=\operatorname{Dom}\left(h_{i}\right)$ we have

$$
C^{-1} \cdot d_{\mathfrak{X}}\left(w, w^{\prime}\right) \leq d_{\mathfrak{X}}\left(h_{i}(w), h_{i}\left(w^{\prime}\right)\right) \leq C \cdot d_{\mathfrak{X}}\left(w, w^{\prime}\right) .
$$

We then say that $\mathcal{G}_{\mathfrak{X}}^{*}$ is C-Lipschitz with respect to $d_{\mathfrak{X}}$.
Proposition: Let $\mathcal{G}_{\mathfrak{X}}$ be a compactly-generated pseudogroup acting on a Cantor set \mathfrak{X}. If $\mathcal{G}_{\mathfrak{X}}$ is the defined by the restriction of the holonomy for a minimal set \mathcal{Z} of a C^{1}-foliation to a transversal $\mathfrak{X}=\mathcal{Z} \cap \mathcal{T}$, then \mathfrak{X} has a metric $d_{\mathfrak{X}}$ with Lipschitz action.

There is a only one "Cantor set", but the Cantor set has many metrics, and need not be "locally homogeneous".

Two metrics $d_{\mathfrak{X}}$ and $d_{\mathfrak{X}}^{\prime}$ are Lipschitz equivalent, if they satisfy a Lipschitz condition for some $C \geq 1$,

$$
C^{-1} \cdot d_{\mathfrak{X}}(x, y) \leq d_{\mathfrak{X}}^{\prime}(x, y) \leq C \cdot d_{\mathfrak{X}}(x, y) \text { for all } x, y \in \mathfrak{X}(1)
$$

There is a only one "Cantor set", but the Cantor set has many metrics, and need not be "locally homogeneous".

Two metrics $d_{\mathfrak{X}}$ and $d_{\mathfrak{X}}^{\prime}$ are Lipschitz equivalent, if they satisfy a Lipschitz condition for some $C \geq 1$,

$$
C^{-1} \cdot d_{\mathfrak{X}}(x, y) \leq d_{\mathfrak{X}}^{\prime}(x, y) \leq C \cdot d_{\mathfrak{X}}(x, y) \text { for all } x, y \in \mathfrak{X}
$$

The study of the Lipschitz geometry of the pair ($\mathfrak{X}, d_{\mathfrak{X}}$) investigates the geometric properties common to all metrics in the Lipschitz class of the given metric $d_{\mathfrak{X}}$.
Hausdorff dimension is an invariant of Lipschitz geometry.

Theorem: There exist compactly-generated pseudogroups $\mathcal{G}_{\mathfrak{X}}$ acting minimally on a Cantor set \mathfrak{X}, such that there is no metric on \mathfrak{X} for which the generators of $\mathcal{G}_{\mathfrak{X}}$ satisfy a Lipschitz condition.

Associated to such each point of such an action is a Cayley graph of its orbits, and these graphs have properties analogous to non-embeddable manifolds in C^{1}-foliations. That is, they are highly irregular, and not "quasi-homogeneous" as defined by Cass.

Sketch of the proof, details are in:
Lipschitz matchbox manifolds, arXiv:1309.1512.

We begin by constructing a standard model for a shift space.
First, introduce the Cantor set \mathfrak{X}, with metric $d_{\mathfrak{X}}$.
Let $G_{\ell}=\mathbb{Z} /\left(2^{\ell} \mathbb{Z}\right)$ be the cyclic group of order 2^{ℓ}.
Let $p_{\ell+1}: G_{\ell+1} \rightarrow G_{\ell}$ be the natural quotient map. Set:

$$
\mathfrak{X}=\lim _{\longleftarrow}\left\{p_{\ell+1}: G_{\ell+1} \rightarrow G_{\ell}\right\} \subset \prod_{\ell \geq 1} \mathbb{Z} /\left(2^{\ell} \mathbb{Z}\right)
$$

Metric on $\mathfrak{X}: \bar{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ and $\bar{y}=\left(y_{1}, y_{2}, y_{3}, \ldots\right)$, then

$$
d_{\mathfrak{X}}(\bar{x}, \bar{y})=\sum_{\ell=1}^{\infty} 3^{-\ell} \delta\left(x_{\ell}, y_{\ell}\right),
$$

where $\delta\left(x_{\ell}, y_{\ell}\right)=0$ if $x_{\ell}=y_{\ell}$, and is equal to 1 otherwise.

Define action $A: \mathbb{Z} \times \mathfrak{X} \rightarrow \mathfrak{X}$, where \mathbb{Z} acts on each factor $\mathbb{Z} /\left(2^{\ell} \mathbb{Z}\right)$ by translation.
Action of A on \mathbb{Z} on \mathfrak{X} is minimal.
Let $\sigma: \mathfrak{X} \rightarrow \mathfrak{X}$ be the shift map, $\sigma\left(x_{1}, x_{2}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right)$.
σ is a $2-1$ map, and so is not invertible.
σ is a 3-times expanding map.
Partition \mathfrak{X} into clopen subsets, for $i=0,1$,

$$
U_{1}(i)=\left\{\left(i, x_{2}, x_{3}, \ldots\right) \mid 0 \leq x_{j}<2^{j}, p_{j+1}\left(x_{j+1}\right)=x_{j}, j>1\right\} .
$$

$\operatorname{diam}_{\mathfrak{X}}\left(U_{1}(0)\right)=\operatorname{diam}_{\mathfrak{X}}\left(U_{1}(1)\right)=d_{\mathfrak{X}}\left(U_{1}(0), U_{1}(1)\right)=1 / 3$.
Inverse map $\tau_{i}=\sigma_{i}^{-1}: \mathfrak{X} \rightarrow U_{1}(i)$ given by the usual formula for the section, $\tau_{i}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(i, x_{1}, x_{2}, x_{3}, \ldots\right)$.

For $\bar{x} \in \mathfrak{X}$, set $\bar{x}_{\ell}=\left(x_{1}, \ldots, x_{\ell}\right)$.
For $\ell \geq 1$, define the clopen neighborhood of \bar{x},

$$
\begin{aligned}
U_{\ell}(\bar{x})= & \left\{\left(x_{1}, \ldots, x_{\ell}, \xi_{\ell+1}, \xi_{\ell+2}, \ldots\right)\right. \\
& \left.\mid 0 \leq \xi_{j}<2^{j}, p_{j+1}\left(\xi_{j+1}\right)=\xi_{j}, j>\ell\right\} .
\end{aligned}
$$

The restriction $\sigma^{\ell}: U_{\ell}(\bar{x}) \rightarrow \mathfrak{X}$ is $1-1$ and onto, 3^{ℓ}-expansive. $\operatorname{diam}_{\mathfrak{X}}\left(U_{\ell}(\bar{x})\right)=3^{-\ell} / 2$.

The key point: add a hypercontraction $\varphi: \mathbb{Z} \times \mathfrak{X} \rightarrow \mathfrak{X}$.
Choose two distinct points $\bar{y}, \bar{z} \in \mathfrak{X}$, and choose a sequence $\left\{\bar{x}_{k} \mid-\infty<k<\infty\right\} \subset \mathfrak{X}-\{\bar{y}, \bar{z}\}$ of distinct points with $\lim _{k \rightarrow \infty} \bar{x}_{k}=\bar{y}$ and $\lim _{k \rightarrow-\infty} \bar{x}_{k}=\bar{z}$.

The key point: add a hypercontraction $\varphi: \mathbb{Z} \times \mathfrak{X} \rightarrow \mathfrak{X}$.
Choose two distinct points $\bar{y}, \bar{z} \in \mathfrak{X}$, and choose a sequence $\left\{\bar{x}_{k} \mid-\infty<k<\infty\right\} \subset \mathfrak{X}-\{\bar{y}, \bar{z}\}$ of distinct points with $\lim _{k \rightarrow \infty} \bar{x}_{k}=\bar{y}$ and $\lim _{k \rightarrow-\infty} \bar{x}_{k}=\bar{z}$.
Choose disjoint clopen neighborhoods $V_{k} \subset \mathfrak{X}$ of the points \bar{x}_{k} recursively.
$\operatorname{diam}_{\mathfrak{X}}\left(V_{k}\right)=\operatorname{diam}_{\mathfrak{X}}\left(V_{-k}\right)<\rho_{k} /\left(3 \ell_{k}!\right)$
ρ_{k} is distance between all previous choices.

The key point: add a hypercontraction $\varphi: \mathbb{Z} \times \mathfrak{X} \rightarrow \mathfrak{X}$.
Choose two distinct points $\bar{y}, \bar{z} \in \mathfrak{X}$, and choose a sequence $\left\{\bar{x}_{k} \mid-\infty<k<\infty\right\} \subset \mathfrak{X}-\{\bar{y}, \bar{z}\}$ of distinct points with $\lim _{k \rightarrow \infty} \bar{x}_{k}=\bar{y}$ and $\lim _{k \rightarrow-\infty} \bar{x}_{k}=\bar{z}$.
Choose disjoint clopen neighborhoods $V_{k} \subset \mathfrak{X}$ of the points \bar{x}_{k} recursively.
$\operatorname{diam}_{\mathfrak{X}}\left(V_{k}\right)=\operatorname{diam}_{\mathfrak{X}}\left(V_{-k}\right)<\rho_{k} /\left(3 \ell_{k}!\right)$
ρ_{k} is distance between all previous choices.
Homeomorphism $\varphi: \mathfrak{X} \rightarrow \mathfrak{X}$ such that for all $-\infty<k<\infty$, the restriction $\varphi_{k}: V_{k} \rightarrow V_{k+1}$ is a homeomorphism onto, and φ is defined to be the identity on the complement of the union $V=\cup\left\{V_{k} \mid-\infty<k<\infty\right\}$.
The map φ is a homeomorphism.

Let $\mathcal{G}_{\mathfrak{X}}=\left\langle A, \tau_{1}, \tau_{2}, \varphi\right\rangle$ be pseudogroup they generate.
Claim: There does not exists a metric $d_{\mathfrak{X}}^{\prime}$ on \mathfrak{X} such that the generators $\left\{A, \tau_{1}, \tau_{2}, \varphi\right\}$ of $\mathcal{G}_{\mathfrak{X}}$ satisfy a Lipschitz condition.
Proof: If such a metric $d_{\mathfrak{X}}^{\prime}$ exists, then some power of the contractions τ_{i} are contractions for the new metric $d_{\mathfrak{X}}^{\prime}$.
But then the Lipschitz condition on φ becomes impossible, as the metrics $d_{\mathfrak{X}}$ and $d_{\mathfrak{X}}^{\prime}$ are uniformly related on a fixed ϵ-tube around the diagonal.

Let $\mathcal{G}_{\mathfrak{X}}=\left\langle A, \tau_{1}, \tau_{2}, \varphi\right\rangle$ be pseudogroup they generate.
Claim: There does not exists a metric $d_{\mathfrak{X}}^{\prime}$ on \mathfrak{X} such that the generators $\left\{A, \tau_{1}, \tau_{2}, \varphi\right\}$ of $\mathcal{G}_{\mathfrak{X}}$ satisfy a Lipschitz condition.
Proof: If such a metric $d_{\mathfrak{X}}^{\prime}$ exists, then some power of the contractions τ_{i} are contractions for the new metric $d_{\mathfrak{X}}^{\prime}$.
But then the Lipschitz condition on φ becomes impossible, as the metrics $d_{\mathfrak{X}}$ and $d_{\mathfrak{X}}^{\prime}$ are uniformly related on a fixed ϵ-tube around the diagonal.

What is going on?
The above result is equivalent to constructing a graph which cannot be embedded quasi-isometrically in a leaf of a foliation, because the hyper-contracting map φ corresponds to adding segments to the graph of the orbit of the affine model which violate the "quasi-homogeneous" property.

Let $\mathcal{G}_{\mathfrak{X}}$ be a minimal pseudogroup acting on a Cantor space \mathfrak{X}, and let $V \subset \mathfrak{X}$ be a clopen subset. $\mathcal{G}_{\mathfrak{X}} \mid V$ is defined as the restrictions of all maps in $\mathcal{G}_{\mathfrak{X}}$ with domain and range in V.

Definition: Let $\mathcal{G}_{\mathfrak{X}}$ be a minimal pseudogroup action on the Cantor set \mathfrak{X} via Lipschitz homeomorphisms with respect to the metric $d_{\mathfrak{X}}$. Likewise, let $\mathcal{G}_{\mathfrak{Y}}$ be a minimal pseudogroup action on the Cantor set \mathfrak{Y} via Lipschitz homeomorphisms with respect to the metric $d_{\mathfrak{Y}}$. Then

- $\left(\mathcal{G}_{\mathfrak{X}}, \mathfrak{X}, d_{\mathfrak{X}}\right)$ is Morita equivalent to $\left(\mathcal{G}_{\mathfrak{Y}}, \mathfrak{Y}, d_{\mathfrak{Y}}\right)$ if there exist clopen subsets $V \subset \mathfrak{X}$ and $W \subset \mathfrak{Y}$, and a homeomorphism $h: V \rightarrow W$ which conjugates $\mathcal{G}_{\mathfrak{X}} \mid V$ to $\mathcal{G}_{\mathfrak{Y}} \mid W$.
- $\left(\mathcal{G}_{\mathfrak{X}}, \mathfrak{X}, d_{\mathfrak{X}}\right)$ is Lipschitz equivalent to $\left(\mathcal{G}_{\mathfrak{Y}}, \mathfrak{Y}, d_{\mathfrak{Y}}\right)$ if the conjugation h is Lipschitz.

Problem: Given a compactly-generated pseudogroup $\mathcal{G}_{\mathfrak{X}}$ acting minimally on a Cantor set \mathfrak{X}, and suppose there exists a metric $d_{\mathfrak{X}}$ on \mathfrak{X} such that the generators are Lipschitz, when is there a Lipschitz equivalence to the pseudogroup defined by an exceptional minimal set of a C^{1} foliation?

Problem: Given a compactly-generated pseudogroup $\mathcal{G}_{\mathfrak{X}}$ acting minimally on a Cantor set \mathfrak{X}, and suppose there exists a metric $d_{\mathfrak{X}}$ on \mathfrak{X} such that the generators are Lipschitz, when is there a Lipschitz equivalence to the pseudogroup defined by an exceptional minimal set of a C^{1} foliation?

Problem: Classify the compactly-generated pseudogroups acting minimally on a Cantor set \mathfrak{X}, up to Lipschitz equivalence.

Definition: A matchbox manifold is a continuum with the structure of a smooth foliated space \mathfrak{M}, such that the transverse model space \mathfrak{X} is totally disconnected, and for each $x \in \mathfrak{M}$, the transverse model space $\mathfrak{X}_{x} \subset \mathfrak{X}$ is a clopen subset, hence is homeomorphic to a Cantor set.

Figure: Blue tips are points in Cantor set \mathfrak{X}_{x}

Matchbox dynamics converts the geometry of minimal Cantor pseudogroups into foliation geometry and dynamics.

Weak solenoids

Presentation is a collection $\mathcal{P}=\left\{p_{\ell+1}: M_{\ell+1} \rightarrow M_{\ell} \mid \ell \geq 0\right\}$,

- each M_{ℓ} is a connected compact simplicial complex, dimension n,
- each "bonding map" $p_{\ell+1}$ is a proper surjective map of simplicial complexes with discrete fibers.

The generalized solenoid

$$
\mathcal{S}_{\mathcal{P}} \equiv \lim _{\leftarrow}\left\{p_{\ell+1}: M_{\ell+1} \rightarrow M_{\ell}\right\} \subset \prod_{\ell \geq 0} M_{\ell}
$$

$\mathcal{S}_{\mathcal{P}}$ is given the product topology.
Presentation is stationary if $M_{\ell}=M_{0}$ for all $\ell \geq 0$, and the bonding maps $p_{\ell}=p_{1}$ for all $\ell \geq 1$.

Definition: $\mathcal{S}_{\mathcal{P}}$ is a weak solenoid if for each $\ell \geq 0, M_{\ell}$ is a compact manifold without boundary, and the map $p_{\ell+1}$ is a proper covering map of degree $m_{\ell+1}>1$.
Classic example: Vietoris solenoid, defined by tower of coverings:

where all covering degrees $n_{\ell}>1$.
Weak solenoids are the most general form of this construction.
Proposition: A weak solenoid is a matchbox manifold.
Remark: A generalized solenoid may be a matchbox manifold, such as for Williams solenoids, and Anderson-Putnam construction of finite approximations to tiling spaces.

Associated to a presentation: sequence of proper surjective maps

$$
q_{\ell}=p_{1} \circ \cdots \circ p_{\ell-1} \circ p_{\ell}: M_{\ell} \rightarrow M_{0} .
$$

and a fibration map $\Pi_{\ell}: \mathcal{S}_{\mathcal{P}} \rightarrow M_{\ell}$ obtained by projection onto the ℓ-th factor. $\Pi_{0}=\Pi_{\ell} \circ q_{\ell}: \mathcal{S}_{\mathcal{P}} \rightarrow M_{0}$ for all $\ell \geq 1$.

Choice of a basepoint $x \in \mathcal{S}_{\mathcal{P}}$ gives basepoints $x_{\ell}=\Pi_{\ell}(x) \in M_{\ell}$.

$$
\mathcal{H}_{\ell}=\operatorname{image}\left\{q_{\ell}: \pi_{1}\left(M_{\ell}, x_{\ell}\right) \rightarrow \pi_{1}\left(M_{0}, x_{0}\right)\right\} \subset \mathcal{H}_{0}
$$

Definition: $\mathcal{S}_{\mathcal{P}}$ is a McCord (or normal) solenoid if for each $\ell \geq 1$, \mathcal{H}_{ℓ} is a normal subgroup of \mathcal{H}_{0}.
\mathcal{P} normal presentation \Longrightarrow fiber $\mathfrak{X}_{x}=\left(\Pi_{0}\right)^{-1}(x)$ of $\Pi_{0}: \mathcal{S}_{\mathcal{P}} \rightarrow M_{0}$ is a Cantor group, and monodromy action of \mathcal{H}_{0} on \mathfrak{X}_{x} is minimal.

A continuum Ω is homogeneous if its group of homeomorphisms is point-transitive. Alex Clark and I proved the following in 2010.

Theorem: Let \mathfrak{M} be a matchbox manifold.

- If \mathfrak{M} has equicontinuous pseudogroup, then \mathfrak{M} is homeomorphic to a weak solenoid as foliated spaces.
- If \mathfrak{M} is homogeneous, then \mathfrak{M} is homeomorphic to a McCord solenoid as foliated spaces.

This last result is a higher-dimensional version of the Bing Conjecture for 1-dimensional matchbox manifolds.

Solenoids have many possible metrics. For a weak solenoid:
Choose a metric d_{ℓ} on each X_{ℓ}.
Choose a series $\left\{a_{\ell} \mid a_{\ell}>0\right\}$ with total sum $<\infty$.
Define a metric on \mathfrak{X}_{x} by setting, for $u, v \in \mathfrak{X}_{x}$ so
$u=\left(x_{0}, u_{1}, u_{2}, \ldots\right)$ and $v=\left(x_{0}, v_{1}, v_{2}, \ldots\right)$,

$$
d_{\mathfrak{X}}(u, v)=a_{1} d_{1}\left(u_{1}, v_{1}\right)+a_{2} d_{1}\left(u_{2}, v_{2}\right)+\cdots
$$

Simple example: Vietoris solenoids.
Let m_{ℓ} be the covering degrees for a presentation \mathcal{P} with base $M_{0}=\mathbb{S}^{1}$, given by $m_{\ell}=2$ for ℓ odd, and $m_{\ell}=3$ for ℓ even.

Let n_{ℓ} be the covering degrees for a presentation \mathcal{Q} with base $M_{0}=\mathbb{S}^{1}$, given by $\left\{n_{1}, n_{2}, n_{3}, \ldots\right\}=\{2,3,2,2,3,2,2,2,2,3, \ldots\}$. The ℓ-th cover of degree 3 is followed by 2^{ℓ} covers of degree 2 .

Sequences are equivalent for Baer classification of solenoids.
But for the metrics they define, the solenoids $\mathcal{S}_{\mathcal{P}}$ and $\mathcal{S}_{\mathcal{Q}}$ are not Lipschitz equivalent as matchbox manifolds.

Theorem: [Clark \& Hurder, 2009] For all $r \geq 1$, there exists irreducible solenoids over \mathbb{T}^{n} for all $n \geq 1$ which can be realized as minimal sets of C^{r}-foliations.

Problem: Classify the McCord solenoids which arise as foliation minimal sets, up to Lipschitz equivalence.

- For subshifts of finite type, it is one of the standard equivalences.
- For more genera invariant sets in dynamical systems, such as solenoids, this appears to be a completely open question.

References

O. Attie and S. Hurder, Manifolds which cannot be leaves of foliations, Topology, 35(2):335-353, 1996.
D. Cass, Minimal leaves in foliations, Trans. Amer. Math. Soc., 287:201-213, 1985.
A. Clark and S. Hurder, Embedding solenoids in foliations, Topology Appl., 158:1249-1270, 2011.
A. Clark and S. Hurder, Homogeneous matchbox manifolds, Trans. Amer. Math. Soc., 365:3151-3191, 2013, arXiv:1006.5482v2.
A. Clark, S. Hurder and O. Lukina, Voronoi tessellations for matchbox manifolds, Topology Proceedings, 41:167-259, 2013, arXiv:1107.1910v2.
A. Clark, S. Hurder and O. Lukina, Shape of matchbox manifolds, submitted, August 2013, arXiv:1308.3535.
A. Clark, S. Hurder and O. Lukina, Classifying matchbox manifolds, preprint, October 2013.
S. Hurder, Lectures on Foliation Dynamics: Barcelona 2010, Foliations: Dynamics, Geometry and Topology, Advanced Courses in Mathematics CRM Barcelona, to appear 2013.
S. Hurder and O. Lukina, Entropy and dimension for graph matchbox manifolds, in preparation, 2013.

Á. Lozano-Rojo, The Cayley foliated space of a graphed pseudogroup, in XIV Fall Workshop on Geometry and Physics, Publ. R. Soc. Mat. Esp., Vol. 10, pages 267-272, R. Soc. Mat. Esp., Madrid, 2006.
Á. Lozano-Rojo and O. Lukina, Suspensions of Bernoulli shifts, Dynamical Systems. An International Journal,to appear 2013; arXiv:1204.5376.
O. Lukina, Hierarchy of graph matchbox manifolds, Topology Appl., 159:3461-3485, 2012; arXiv:1107.5303v3.
O. Lukina, Hausdorff dimension of graph matchbox manifolds, in preparation, 2013.
P.A. Schweitzer, Surfaces not quasi-isometric to leaves of foliations of compact 3-manifolds, in Analysis and geometry in foliated manifolds (Santiago de Compostela, 1994), World Sci. Publ., 1995, pages 223-238.

Thank you for your attention.

