◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Lipschitz matchbox manifolds

Steve Hurder

University of Illinois at Chicago www.math.uic.edu/~hurder

 \mathcal{F} is a C^1 -foliation of a compact manifold M.

Problem: Let *L* be a complete Riemannian smooth manifold without boundary. When is *L* quasi-isometric to a leaf of a C^1 -foliation \mathcal{F} of a compact smooth manifold *M*?

Definition: $\mathcal{Z} \subset M$ is minimal if it is closed, a union of leaves, and contains no proper subset with these two properties.

Theorem: [Cass, 1985] A leaf in a minimal set must be "quasi-homogeneous", and that this property is an invariant of the quasi-isometry class of a Riemannian metric on L.

The point of this talk is to discuss an analog of this result for the *geometry of Cantor minimal systems*.

Problem: Given a minimal pseudogroup $\mathcal{G}_{\mathfrak{X}}$ action on a Cantor set, can it be realized as the holonomy pseudogroup of a minimal set in a C^r -foliation, $r \geq 1$?

A minimal requirement is that:

Definition: A pseudogroup $\mathcal{G}_{\mathfrak{X}}$ acting on a Cantor set \mathfrak{X} is *compactly generated*, if there exists two collections of *clopen* subsets $\{U_1, \ldots, U_k\}$ and $\{V_1, \ldots, V_k\}$ of \mathfrak{X} and homeomorphisms $\{h_i: U_i \to V_i \mid 1 \le i \le k\}$ which generate all elements of $\mathcal{G}_{\mathfrak{X}}$.

 $\mathcal{G}^*_{\mathfrak{X}}$ is defined to be all compositions of the generators on the maximal domains for which the composition is defined.

Definition: The action of a compactly generated pseudogroup $\mathcal{G}_{\mathfrak{X}}$ on a Cantor set \mathfrak{X} is *Lipschitz* with respect to a metric $d_{\mathfrak{X}}$ on \mathfrak{X} , if there exists $C \geq 1$ such that for each $1 \leq i \leq k$ then for all $w, w' \in U_i = \text{Dom}(h_i)$ we have

$$C^{-1} \cdot d_{\mathfrak{X}}(w,w') \leq d_{\mathfrak{X}}(h_i(w),h_i(w')) \leq C \cdot d_{\mathfrak{X}}(w,w') \;.$$

We then say that $\mathcal{G}^*_{\mathfrak{X}}$ is *C*-Lipschitz with respect to $d_{\mathfrak{X}}$.

Proposition: Let $\mathcal{G}_{\mathfrak{X}}$ be a compactly-generated pseudogroup acting on a Cantor set \mathfrak{X} . If $\mathcal{G}_{\mathfrak{X}}$ is the defined by the restriction of the holonomy for a minimal set \mathcal{Z} of a C^1 -foliation to a transversal $\mathfrak{X} = \mathcal{Z} \cap \mathcal{T}$, then \mathfrak{X} has a metric $d_{\mathfrak{X}}$ with Lipschitz action.

There is a only one "Cantor set", but the Cantor set has many metrics, and need not be "locally homogeneous".

Two metrics $d_{\mathfrak{X}}$ and $d'_{\mathfrak{X}}$ are *Lipschitz equivalent*, if they satisfy a Lipschitz condition for some $C \ge 1$,

$$C^{-1} \cdot d_{\mathfrak{X}}(x,y) \leq d'_{\mathfrak{X}}(x,y) \leq C \cdot d_{\mathfrak{X}}(x,y) \text{ for all } x,y \in \mathfrak{X}$$
 (1)

The study of the *Lipschitz geometry* of the pair $(\mathfrak{X}, d_{\mathfrak{X}})$ investigates the geometric properties common to all metrics in the Lipschitz class of the given metric $d_{\mathfrak{X}}$.

Hausdorff dimension is an invariant of Lipschitz geometry.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem: There exist compactly-generated pseudogroups $\mathcal{G}_{\mathfrak{X}}$ acting minimally on a Cantor set \mathfrak{X} , such that there is no metric on \mathfrak{X} for which the generators of $\mathcal{G}_{\mathfrak{X}}$ satisfy a Lipschitz condition.

Associated to such each point of such an action is a Cayley graph of its orbits, and these graphs have properties analogous to non-embeddable manifolds in C^1 -foliations. That is, they are highly irregular, and not "quasi-homogeneous" as defined by Cass.

Sketch of the proof, details are in: Lipschitz matchbox manifolds, arXiv:1309.1512. We begin by constructing a standard model for a shift space. First, introduce the Cantor set \mathfrak{X} , with metric $d_{\mathfrak{X}}$. Let $G_{\ell} = \mathbb{Z}/(2^{\ell} \mathbb{Z})$ be the cyclic group of order 2^{ℓ} . Let $p_{\ell+1} \colon G_{\ell+1} \to G_{\ell}$ be the natural quotient map. Set:

$$\mathfrak{X} \;=\; \lim_{\longleftarrow}\; \{p_{\ell+1}\colon {\mathcal G}_{\ell+1} o {\mathcal G}_{\ell}\} \;\subset \prod_{\ell \geq 1}\; {\mathbb Z}/(2^\ell\,{\mathbb Z})\;.$$

Metric on \mathfrak{X} : $\overline{x} = (x_1, x_2, x_3, \ldots)$ and $\overline{y} = (y_1, y_2, y_3, \ldots)$, then

$$d_{\mathfrak{X}}(\overline{x},\overline{y}) = \sum_{\ell=1}^{\infty} 3^{-\ell} \delta(x_{\ell},y_{\ell}),$$

where $\delta(x_{\ell}, y_{\ell}) = 0$ if $x_{\ell} = y_{\ell}$, and is equal to 1 otherwise.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Define action $A: \mathbb{Z} \times \mathfrak{X} \to \mathfrak{X}$, where \mathbb{Z} acts on each factor $\mathbb{Z}/(2^{\ell} \mathbb{Z})$ by translation.

Action of A on \mathbb{Z} on \mathfrak{X} is minimal.

Let $\sigma \colon \mathfrak{X} \to \mathfrak{X}$ be the shift map, $\sigma(x_1, x_2, \ldots) = (x_2, x_3, \ldots)$.

 σ is a 2-1 map, and so is not invertible.

 σ is a 3-times expanding map.

Partition \mathfrak{X} into clopen subsets, for i = 0, 1,

$$U_1(i) = \{(i, x_2, x_3, \ldots) \mid 0 \le x_j < 2^j , \ p_{j+1}(x_{j+1}) = x_j \ , \ j > 1\}.$$

diam_{\mathfrak{X}}($U_1(0)$) = diam_{\mathfrak{X}}($U_1(1)$) = $d_{\mathfrak{X}}(U_1(0), U_1(1)) = 1/3$. Inverse map $\tau_i = \sigma_i^{-1} \colon \mathfrak{X} \to U_1(i)$ given by the usual formula for the section, $\tau_i(x_1, x_2, x_3, \ldots) = (i, x_1, x_2, x_3, \ldots)$.

・ロト ・西ト ・ヨト ・ヨー うらぐ

・ロト・日本・モト・モート ヨー うへで

For
$$\overline{x}\in\mathfrak{X}$$
, set $\overline{x}_\ell=(x_1,\ldots,x_\ell).$
For $\ell\geq 1$, define the clopen neighborhood of \overline{x} ,

$$\begin{array}{lll} U_\ell(\overline{x}) &=& \{(x_1,\ldots,x_\ell,\xi_{\ell+1},\xi_{\ell+2},\ldots) \\ && \mid 0 \leq \xi_j < 2^j \ , \ p_{j+1}(\xi_{j+1}) = \xi_j \ , \ j > \ell\}. \end{array}$$

The restriction $\sigma^{\ell} \colon U_{\ell}(\overline{x}) \to \mathfrak{X} \text{ is } 1-1 \text{ and onto, } 3^{\ell}\text{-expansive.}$ $\operatorname{diam}_{\mathfrak{X}}(U_{\ell}(\overline{x})) = 3^{-\ell}/2.$

The key point: add a hypercontraction $\varphi \colon \mathbb{Z} \times \mathfrak{X} \to \mathfrak{X}$.

Choose two distinct points $\overline{y}, \overline{z} \in \mathfrak{X}$, and choose a sequence $\{\overline{x}_k \mid -\infty < k < \infty\} \subset \mathfrak{X} - \{\overline{y}, \overline{z}\}$ of distinct points with $\lim_{k \to \infty} \overline{x}_k = \overline{y}$ and $\lim_{k \to -\infty} \overline{x}_k = \overline{z}$.

Choose disjoint clopen neighborhoods $V_k \subset \mathfrak{X}$ of the points \overline{x}_k recursively.

$$\operatorname{diam}_{\mathfrak{X}}(V_k) = \operatorname{diam}_{\mathfrak{X}}(V_{-k}) < \rho_k/(3\ell_k!)$$

 ρ_k is distance between all previous choices.

Homeomorphism $\varphi \colon \mathfrak{X} \to \mathfrak{X}$ such that for all $-\infty < k < \infty$,

the restriction $\varphi_k \colon V_k \to V_{k+1}$ is a homeomorphism onto, and

 φ is defined to be the identity on the complement of the union $V = \cup \{V_k \mid -\infty < k < \infty\}.$

The map φ is a homeomorphism.

Let $\mathcal{G}_{\mathfrak{X}} = \langle A, \tau_1, \tau_2, \varphi \rangle$ be pseudogroup they generate.

Claim: There does not exists a metric $d'_{\mathfrak{X}}$ on \mathfrak{X} such that the generators $\{A, \tau_1, \tau_2, \varphi\}$ of $\mathcal{G}_{\mathfrak{X}}$ satisfy a Lipschitz condition.

Proof: If such a metric $d'_{\mathfrak{X}}$ exists, then some power of the contractions τ_i are contractions for the new metric $d'_{\mathfrak{X}}$.

But then the Lipschitz condition on φ becomes impossible, as the metrics $d_{\mathfrak{X}}$ and $d'_{\mathfrak{X}}$ are uniformly related on a fixed ϵ -tube around the diagonal.

What is going on?

The above result is equivalent to constructing a graph which cannot be embedded quasi-isometrically in a leaf of a foliation, because the hyper-contracting map φ corresponds to adding segments to the graph of the orbit of the affine model which violate the "quasi-homogeneous" property.

Let $\mathcal{G}_{\mathfrak{X}}$ be a minimal pseudogroup acting on a Cantor space \mathfrak{X} , and let $V \subset \mathfrak{X}$ be a clopen subset. $\mathcal{G}_{\mathfrak{X}}|V$ is defined as the restrictions of all maps in $\mathcal{G}_{\mathfrak{X}}$ with domain and range in V.

Definition: Let $\mathcal{G}_{\mathfrak{X}}$ be a minimal pseudogroup action on the Cantor set \mathfrak{X} via Lipschitz homeomorphisms with respect to the metric $d_{\mathfrak{X}}$. Likewise, let $\mathcal{G}_{\mathfrak{Y}}$ be a minimal pseudogroup action on the Cantor set \mathfrak{Y} via Lipschitz homeomorphisms with respect to the metric $d_{\mathfrak{Y}}$. Then

- (G_X, X, d_X) is Morita equivalent to (G_Y, Y, d_Y) if there exist clopen subsets V ⊂ X and W ⊂ Y, and a homeomorphism h: V → W which conjugates G_X|V to G_Y|W.
- (\$\mathcal{G}_{\mathcal{X}}\$, \$\mathcal{X}\$, \$d_{\mathcal{X}}\$) is Lipschitz equivalent to (\$\mathcal{G}_{\mathcal{Y}}\$, \$\mathcal{D}\$, \$d_{\mathcal{Y}}\$) if the conjugation \$h\$ is Lipschitz.

Problem: Given a compactly-generated pseudogroup $\mathcal{G}_{\mathfrak{X}}$ acting minimally on a Cantor set \mathfrak{X} , and suppose there exists a metric $d_{\mathfrak{X}}$ on \mathfrak{X} such that the generators are Lipschitz, when is there a Lipschitz equivalence to the pseudogroup defined by an exceptional minimal set of a C^1 foliation?

Problem: Classify the compactly-generated pseudogroups acting minimally on a Cantor set \mathfrak{X} , up to Lipschitz equivalence.

Definition: A matchbox manifold is a continuum with the structure of a smooth foliated space \mathfrak{M} , such that the transverse model space \mathfrak{X} is totally disconnected, and for each $x \in \mathfrak{M}$, the transverse model space $\mathfrak{X}_x \subset \mathfrak{X}$ is a clopen subset, hence is homeomorphic to a Cantor set.

Figure: Blue tips are points in Cantor set \mathfrak{X}_x

Matchbox dynamics converts the geometry of minimal Cantor pseudogroups into foliation geometry and dynamics.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Weak solenoids

Presentation is a collection $\mathcal{P} = \{p_{\ell+1} \colon M_{\ell+1} \to M_{\ell} \mid \ell \geq 0\}$,

- each M_{ℓ} is a connected compact simplicial complex, dimension n,
- each "bonding map" $p_{\ell+1}$ is a proper surjective map of simplicial complexes with discrete fibers.

The generalized solenoid

$$\mathcal{S}_{\mathcal{P}} \equiv \lim_{\longleftarrow} \{ p_{\ell+1} \colon M_{\ell+1} \to M_{\ell} \} \subset \prod_{\ell \geq 0} M_{\ell}$$

 $\mathcal{S}_{\mathcal{P}}$ is given the product topology.

Presentation is *stationary* if $M_{\ell} = M_0$ for all $\ell \ge 0$, and the bonding maps $p_{\ell} = p_1$ for all $\ell \ge 1$.

Solenoids

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition: $S_{\mathcal{P}}$ is a *weak solenoid* if for each $\ell \geq 0$, M_{ℓ} is a compact manifold without boundary, and the map $p_{\ell+1}$ is a proper covering map of degree $m_{\ell+1} > 1$.

Classic example: Vietoris solenoid, defined by tower of coverings:

$$\longrightarrow \mathbb{S}^1 \xrightarrow{n_{\ell+1}} \mathbb{S}^1 \xrightarrow{n_{\ell}} \cdots \xrightarrow{n_2} \mathbb{S}^1 \xrightarrow{n_1} \mathbb{S}^1$$

where all covering degrees $n_{\ell} > 1$.

Weak solenoids are the most general form of this construction.

Proposition: A weak solenoid is a *matchbox manifold*.

Remark: A generalized solenoid may be a matchbox manifold, such as for Williams solenoids, and Anderson-Putnam construction of finite approximations to tiling spaces.

Associated to a presentation: sequence of proper surjective maps

$$q_{\ell} = p_1 \circ \cdots \circ p_{\ell-1} \circ p_{\ell} \colon M_{\ell} \to M_0.$$

and a fibration map $\Pi_{\ell} \colon S_{\mathcal{P}} \to M_{\ell}$ obtained by projection onto the ℓ -th factor. $\Pi_0 = \Pi_{\ell} \circ q_{\ell} \colon S_{\mathcal{P}} \to M_0$ for all $\ell \ge 1$.

Choice of a basepoint $x \in S_{\mathcal{P}}$ gives basepoints $x_{\ell} = \prod_{\ell} (x) \in M_{\ell}$.

$$\mathcal{H}_{\ell} = image\{q_{\ell} \colon \pi_1(M_{\ell}, x_{\ell})
ightarrow \pi_1(M_0, x_0)\} \subset \mathcal{H}_0$$

Definition: $S_{\mathcal{P}}$ is a *McCord (or normal) solenoid* if for each $\ell \geq 1$, \mathcal{H}_{ℓ} is a normal subgroup of \mathcal{H}_{0} .

 \mathcal{P} normal presentation \implies fiber $\mathfrak{X}_x = (\Pi_0)^{-1}(x)$ of $\Pi_0 \colon \mathcal{S}_{\mathcal{P}} \to M_0$ is a Cantor group, and monodromy action of \mathcal{H}_0 on \mathfrak{X}_x is minimal.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A continuum Ω is *homogeneous* if its group of homeomorphisms is point-transitive. Alex Clark and I proved the following in 2010.

Theorem: Let \mathfrak{M} be a matchbox manifold.

- If $\mathfrak M$ has equicontinuous pseudogroup, then $\mathfrak M$ is homeomorphic to a weak solenoid as foliated spaces.
- \bullet If ${\mathfrak M}$ is homogeneous, then ${\mathfrak M}$ is homeomorphic to a McCord solenoid as foliated spaces.

This last result is a higher-dimensional version of the *Bing Conjecture* for 1-dimensional matchbox manifolds.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solenoids have many possible metrics. For a weak solenoid: Choose a metric d_{ℓ} on each X_{ℓ} .

Choose a series $\{a_{\ell} \mid a_{\ell} > 0\}$ with total sum $< \infty$.

Define a metric on \mathfrak{X}_x by setting, for $u, v \in \mathfrak{X}_x$ so

$$u = (x_0, u_1, u_2, \ldots)$$
 and $v = (x_0, v_1, v_2, \ldots)$,

$$d_{\mathfrak{X}}(u,v) = a_1 d_1(u_1,v_1) + a_2 d_1(u_2,v_2) + \cdots$$

Simple example: Vietoris solenoids.

Let m_{ℓ} be the covering degrees for a presentation \mathcal{P} with base $M_0 = \mathbb{S}^1$, given by $m_{\ell} = 2$ for ℓ odd, and $m_{\ell} = 3$ for ℓ even. Let n_{ℓ} be the covering degrees for a presentation \mathcal{Q} with base $M_0 = \mathbb{S}^1$, given by $\{n_1, n_2, n_3, \ldots\} = \{2, 3, 2, 2, 3, 2, 2, 2, 2, 3, \ldots\}$. The ℓ -th cover of degree 3 is followed by 2^{ℓ} covers of degree 2. Sequences are equivalent for Baer classification of solenoids. But for the metrics they define, the solenoids $\mathcal{S}_{\mathcal{P}}$ and $\mathcal{S}_{\mathcal{Q}}$ are not Lipschitz equivalent as matchbox manifolds.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem: [Clark & Hurder, 2009] For all $r \ge 1$, there exists irreducible solenoids over \mathbb{T}^n for all $n \ge 1$ which can be realized as minimal sets of C^r -foliations.

Problem: Classify the McCord solenoids which arise as foliation minimal sets, up to Lipschitz equivalence.

- For subshifts of finite type, it is one of the standard equivalences.
- For more genera invariant sets in dynamical systems, such as solenoids, this appears to be a completely open question.

References

- O. Attie and S. Hurder, Manifolds which cannot be leaves of foliations, Topology, 35(2):335–353, 1996.
- D. Cass, Minimal leaves in foliations, Trans. Amer. Math. Soc., 287:201-213, 1985.
- A. Clark and S. Hurder, Embedding solenoids in foliations, Topology Appl., 158:1249-1270, 2011.
- A. Clark and S. Hurder, Homogeneous matchbox manifolds, Trans. Amer. Math. Soc., 365:3151–3191, 2013, arXiv:1006.5482v2.
- A. Clark, S. Hurder and O. Lukina, Voronoi tessellations for matchbox manifolds, Topology Proceedings, 41:167–259, 2013, arXiv:1107.1910v2.
- A. Clark, S. Hurder and O. Lukina, Shape of matchbox manifolds, submitted, August 2013, arXiv:1308.3535.
- A. Clark, S. Hurder and O. Lukina, Classifying matchbox manifolds, preprint, October 2013.
- S. Hurder, Lectures on Foliation Dynamics: Barcelona 2010, Foliations: Dynamics, Geometry and Topology, Advanced Courses in Mathematics CRM Barcelona, to appear 2013.
- S. Hurder and O. Lukina, Entropy and dimension for graph matchbox manifolds, in preparation, 2013.
- Á. Lozano-Rojo, *The Cayley foliated space of a graphed pseudogroup*, in XIV Fall Workshop on Geometry and Physics, Publ. R. Soc. Mat. Esp., Vol. 10, pages 267–272, R. Soc. Mat. Esp., Madrid, 2006.
- Á. Lozano-Rojo and O. Lukina, *Suspensions of Bernoulli shifts*, **Dynamical Systems. An International Journal**,to appear 2013; arXiv:1204.5376.
- O. Lukina, Hierarchy of graph matchbox manifolds, Topology Appl., 159:3461-3485, 2012; arXiv:1107.5303v3.
- O. Lukina, Hausdorff dimension of graph matchbox manifolds, in preparation, 2013.
- P.A. Schweitzer, Surfaces not quasi-isometric to leaves of foliations of compact 3-manifolds, in Analysis and geometry in foliated manifolds (Santiago de Compostela, 1994), World Sci. Publ., 1995, pages 223–238.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank you for your attention.