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Recall from yesterday’s lecture:

Theorem:[Bing, 1960] If M is a 1-dimensional matchbox manifold
which is circle-like, then M is homeomorphic to a Vietoris solenoid.

Suppose that M is a matchbox manifold with leaf dimension
n ≥ 2. What is the analog of “circle-like”?

There are two extensions of this idea – the obvious extension, and
the other based on the observation that S1 is the unique closed
1-manifold.
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Definition: Let Y be a closed connected n-manifold. Then M is
Y -like, if for all ε > 0 there exists a continuous map fε : M→ Y
such that for each x ∈ Y , the inverse image f −1

ε (x) ⊂M has
diameter at most ε.

Let Y be a collection of closed connected manifolds.

Definition: M is Y-like, if for all ε > 0 there exists Yε ∈ Y and a
continuous map fε : M→ Yε such that for each x ∈ Yε, the inverse
image f −1

ε (x) ⊂M has diameter at most ε.

There are then two versions of Bing’s Theorem above to consider:

• Classify all of the matchbox manifolds which are Y -like.

• Classify all of the matchbox manifolds which are Y-like.
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Here are our two main results, which we discuss today.

Theorem: Let M be a Y-like matchbox manifold, where Y is the
collection of all closed manifolds. Then M is homeomorphic to a
weak solenoid.

Recall that M is homogeneous if for every x , y ∈M there exists a
homeomorphism h : M→M such that h(x) = y .

Theorem: Let M be a homogeneous matchbox manifold, then M
is homeomorphic to a normal solenoid.

The 1-dimensional case was shown by [Hagopian,1977], [Mislove &
Rogers, 1989], [Aarts, Hagopian & Oversteegen, 1991]

The case for Cantor bundles over Tn was shown by [Clark, 2002].
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The proofs of these results takes us into a deeper analysis of the
structure of matchbox manifolds.

There are two main techniques we discuss:

• Coding the orbits of the holonomy pseudogroup GX acting on
the transverse Cantor set X.

• The extension of the “Long Box Lemma” for flows by
Fokkink & Oversteegen, 2002, to the existence of “Reeb slabs” for
arbitrary matchbox manifolds.
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We first discuss the coding of the orbits of a pseudogroup GX
acting on a Cantor set X.

Consider first the special case where GX is generated by an
equicontinuous homeomorphism h : X→ X of a Cantor set.

The topology of a Cantor set is generated by the clopen subsets of
X. It follows that for ε′1 > 0 there exists a finite partition into
clopen subsets

X = W 1
1 ∪ · · · ∪W 1

k1

where diam(W 1
i ) < ε′1 for each 1 ≤ i ≤ k1.

The labeling of this partition is thought of as an alphabet,

B1 = {1, 2, . . . , k1}
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The coding function for the action of h : X→ X is defined as,
for x ∈ X and ` ∈ Z,

C 1
x (`) = i ⇐⇒ h`(x) ∈W 1

i

Proposition: Let h : X→ X be an equicontinuous action, and
W1 = {W 1

1 , . . . ,W
1
k1
} a clopen partition of X.

Then there exists δ1 > 0 so that for all x , y ∈ X with dX(x , y) < δ1

then C 1
x (`) = C 1

y (`) for all ` ∈ Z.

That is, the coding function x 7→ C 1
x is locally constant.

This is local stability of the orbit.
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Proof: Let ε1 = min{ε′1,min{dist(W 1
i ,W

1
j ) | i 6= j}}.

If x ∈W 1
i and dX(x , y) < ε1 then this implies y ∈W 1

i as well.

Let δ1 be the equicontinuous constant for ε1. So

dX(x , y) < δ1 =⇒ dX(h`(x), h`(y)) < ε1 for all ` ∈ Z

Combine these two facts to obtain that if dX(x , y) < δ1 then
C 1

x (`) = C 1
y (`) for all ` ∈ Z.
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Define a refinement of the partition W1 into the coding partition

V1 = {V 1
1 ,V

1
2 , . . . ,V

1
n1
}

where the coding function x 7→ C 1
x is constant on each V 1(i).

It follows that each V 1(i) is clopen. Also, observe that:

Lemma: The action of Z on X permutes the sets in V1.
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We then repeat this procedure recursively.

Set ε′2 = ε1/2

Choose a clopen partition of X which is a refinement of V1

W2 = {W 2
1 , . . . ,W

2
k2
} , diam(W 2

i ) < ε′2 for each 1 ≤ i ≤ k2.

Define the coding function x 7→ C 2
x as before, and we obtain the

refined coding partition of V1

V2 = {V 2
1 ,V

2
2 , . . . ,V

2
n2
}

and an alphabet B2 = {1, 2, . . . , n2}.
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Repeat to obtain refined coding partitions V1 ⊃ V2 ⊃ V3 ⊃ · · ·
where each V `

i ∈ V` satisfies diam(V `
i ) < ε` ≤ ε0/2`.

We have shown:

Proposition: Let h : X→ X be an equicontinuous
homeomorphism. Then for every ε > 0, there exists a periodic
homeomorphism hε : X→ X so that

dX(h`(x), h`ε(x) < ε for all x ∈ X, ` ∈ Z

For the case where X is the fiber of a Vietoris solenoid
Π: SP → S1, the conclusion of that the holonomy map h is
approximated by periodic maps, is equivalent to the conclusion
that SP is ε-approximated by circles.
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The above construction easily extends to the case of group actions:

Theorem: Let ϕ : Γ× X→ X be an equicontinuous action, where
Γ is a finitely generated group. Then there exists, for ` ≥ 1,

• finite set B` with cardinality |B`| = n` →∞;

• continuous surjection ψ` : X→ B`, whose fibers X`b ≡ ψ
−1
` (b)

satisfy diam(X`b) ≤ ε` where ε` → 0 as `→∞;

• representation ρ` : Γ→ Perm(B`) with image a finite group Gε

so that for all γ ∈ Γ and x ∈ X,

ρ`(γ)(ψ`(x)) = ψ`(ϕ(γ)(x))

But we do not know if there exists a lift of the representations
ρ` : Γ→ Perm(B`) to ϕ` : Γ→ Homeo(X) which are intertwined
by the map ψ`.
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Now consider the general case of the holonomy pseudogroup of a
matchbox manifold. Assume there is a fixed a regular covering by
foliated coordinate charts

U = {ϕi : Ui → [−1, 1]n × Xi | 1 ≤ i ≤ k}

• Set X = X1 ∪ · · · ∪ Xk

The local transition maps define a compactly generated
pseudogroup GX, where:

• For Ui ∩Uj 6= ∅ we have hi ,j (x) = y if x ∈ Xi and y ∈ Xj so that
the plaques they define satisfy Pi (x) ∩ Pj (y) 6= ∅.
The collection G0

X ≡ {hi ,j | Ui ∩ Uj 6= ∅} generates GX.
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The plan is to extend the orbit coding technique to the action of
the pseudogroup GX on the Cantor set X.

One problem is that for h ∈ GX the domain Dom(h) of h is only
assumed to be a clopen subset of X, and need not be X.

The following result follows from the definition of equicontinuity:

Proposition: Let GX be an equicontinuous finitely generated
pseudogroup. Then for all ε > 0, there exists δε > 0 such that for
all h ∈ GX and x ∈ Dom(h), we have

B(x , δε) ⊂ Dom(h) and diam(h(B(x , δε)) ≤ ε
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Theorem: Let GX be an equicontinuous finitely generated
pseudogroup which acts minimally on X. Then there exists

• finite set B` with cardinality |B`| = n` →∞;

• continuous surjection ψ` : X→ B`, whose fibers X`b ≡ ψ
−1
` (b)

satisfy diam(X`b) ≤ ε` where ε` → 0 as `→∞;

• a “pseudogroup representation” ρ` : GX → Perm′(B`) such that
ψ` intertwines the action of GX.

By the notation Perm′(B`), we mean that, if ψ ∈ Perm′(B`), then
there are subsets Xψ,Yψ ⊂ B` for which ψ : Xψ → Yψ is a
bijection. That is, ψ is a partial isometry for the set B`.

For h ∈ GX and x ∈ Dom(h) with x ∈ V `
i , then claim of the proof

is then that ρ`(h)(i) = j is well-defined, where h(x) ∈ V `
j .

Well-defined means, for all x ′ ∈ Dom(h), we have h(x ′) ∈ V `
j .
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We next discuss the analog of the “Long Box Lemma”, for the
case of n-dimensional matchbox manifolds, where n ≥ 1.

Identify Ti = ϕ−1
i (0× Xi ) ⊂M with Xi and thus X with T ⊂M.

For x ∈M, let Lx be the leaf of F containing x .

Proposition: Let M be a minimal matchbox manifold, U ⊂ T a
clopen subset, and x ∈M. Then N(Lx ,U) = Lx ∩U is a net in Lx .

That is, there exists constants 0 < A(x ,U) < B(x ,U) so that

• for every y 6= z ∈ N(Lx ,U) we have dLx (y , z) ≥ A(x ,U);

• for every y ∈ Lx there exists z ∈ N(Lx ,U) so that
dLx (y , z) ≤ B(x ,U).
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Example: Let M be a 1-dimensional minimal matchbox manifold
defined by a flow, then for an open section U ⊂ T ⊂M, the set
N(Lx ,U) ⊂ R is the set of return times for the orbit starting at x .

Example: Let M be a 2-dimensional minimal matchbox manifold
defined by an action of R2, then for an open section U ⊂ T ⊂M,
the set N(Lx ,U) ⊂ R2 is a net in R2.

Proposition: Let M be a minimal matchbox manifold whose
leaves are without holonomy, then the minimum spacing constant
A(x ,U) tends to ∞ as diam(U)→ 0.

Remark: If Lx ⊂M is a leaf with holonomy, then A(x ,U) is
bounded above by half the length of the shortest leafwise path
with non-trivial germinal holonomy.
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Associated to a net N ⊂ L in a complete Riemannian manifold with
metric dL there is a Voronoi decomposition into cells defined by

V (L,N, y) = {z ∈ L | dL(y , z) ≤ dL(y ,w) for all w ∈ N,w 6= y}

Proposition:

• If y 6= y ′ ∈ N then int(V (L,N, y)) ∩ int(V (L,N, y ′)) = ∅

• L =
⋃

y∈N

V (L,N, y)
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Cantor sections to a solenoid
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Voronoi cells in R2
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Definition: A Reeb slab for M is a foliated inclusion,

φ : K × C→M

• where K ⊂ L is a connected subset of a leaf

• C is a Cantor set

• K × C is given the product foliation.

• the images ψ(x × C) ⊂M are Cantor transversals to F
For flows, these are sometimes called “long boxes”.

The key property is that the long box are bi-foliated, where the
transverse foliation to the leaves of F are Cantor foliations.

We next state the most technical result of this construction, which
is a form of “Reeb Stability Theorem” for matchbox manifolds.
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Theorem: M an equicontinuous matchbox manifold.

Let ψ` : X→ B` be the surjection whose fibers X`b ≡ ψ
−1
` (b)

satisfy diam(X`b) ≤ ε`. We assume that ε` is sufficiently small.

Fix basepoint x0 ∈ V `
1 . For each coding partition V `

i = ψ−1
` (i)

where 1 ≤ i ≤ ni choose xi ∈ Lx0 ∩ V `
i

Let N` ⊂ Lx0 be the net this defines. For each y ∈ N` let
V (Lx0 ,N`, y) ⊂ Lx0 be the associated Voronoi cell.

Then there is a collection of Reeb slabs

φi : V (Lx0 ,N`, y)× V `
i → R(`, i) ⊂M

whose intersections are “neat” along boundaries: boundary of
R(`, i) is contained in the union of boundaries of R(`, j), and the
transverse Cantor foliations on R(`, i) agree on overlaps.

These conditions are compatible for refinements V`′ ⊂ V`.



Introduction Coding Slabs Solenoids

Reeb slabs fitting together along boundaries
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The details of the above constructions are extremely technical, and
appear in the authors’ three papers. They yield:

Theorem: Let M be an equicontinuous matchbox manifold. Then
M is homeomorphic to a weak solenoid.

We sketch the idea of the proof.

By the above constructions, for ε` > 0 sufficiently small, there is a
decomposition of M into Reeb slabs, for which the Cantor
foliations are compatible on overlaps.

Use the Cantor foliations to project onto the core Voronoi cells,
whose union defines a manifold M`. We obtain a map
Π` : M→ M` which restricts to a covering map on leaves of F .

The nesting condition for the clopen sets in the coding partitions
V ` implies that these projections are compatible, so they define a
weak solenoid structure on M.
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Definition: A metric space X has the Effros property if for every
ε > 0 there exists δ > 0 such that for all x , y ∈ X with
dX (x , y) < δ, there exists a homeomorphism h : X → X such that
h(x) = y , and dX (z , h(z)) < ε for all z ∈ X .

This is otherwise know as micro-transitivity.

Theorem: [Effros,1965] The group Homeo(M) is micro-transitive.

This seems to be a very mysterious property - almost magic! -
though perhaps the most clear explanation for it is the proof by
[Ancel, 1987] which reduces it to a consequence of the Open
Mapping Theorem in Functional Analysis.
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A continuous map h : M→M maps path components into path
components, thus:

h : M→M homeomorphism =⇒ h is a foliated homeomorphism

Thus, the conclusion of the Effros Theorem is about the stability
for foliated homeomorphisms.

The Effros property was used by [Aarts, Hagopian, Oversteegen,
1991] to prove equicontinuity for flows.

It is a technical exercise in foliation holonomy maps to conclude
the analogous result for holonomy pseudogroups:

Proposition: M homogeneous implies M is equicontinuous.

Corollary: If M is homogeneous, then it is homeomorphic to a
weak solenoid.
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How much of the above remains valid when M is just a minimal
matchbox manifold?

First, there is a bit of omission in the above, as the case where the
foliation has a leaf with non-trivial germinal holonomy requires
additional treatment. It is necessary to pass to the holonomy cover
of the leaf Lx0 , then form the Reeb slabs for the covering, and
project down again. These projections of Reeb slabs only match up
on boundaries, if GX acts equicontinuously.

There is a more fundamental issue though with the construction of
the coding functions for expansive actions. The coding partitions
need not be clopen sets, even in the case of group actions, and not
just for pseudogroups.
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The solution is to code only for restricted words in the
pseudogroup, where we code for the orbits of a ball of radius 2`

GX(2`) = {h ∈ G∗X | ‖h‖ ≤ 2`}

then use the Reeb slabs for a Voronoi decomposition associated to
a finer leafwise net.

The technical details of this occupy our most recently published
paper.

The following gives a generalization of the results of [Anderson and
Putnam, 1998] and [Sadun, 2003], that the tiling space for an
aperiodic, locally finite tiling defined by a substitution is
homeomorphic to a generalized solenoid.
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Theorem: Let M be a minimal matchbox manifold, whose
foliation F is without germinal holonomy. Then M is
homeomorphic to a generalized solenoid

M ∼= SP ≡ lim
←−
{p`+1 : M`+1 → M`} ⊂

∏
`≥0

M`

where the spaces M` are branched manifolds, obtained from the
quotients of the Reeb slabs defined by the coding.
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Theorem: Let M be a Y-like matchbox manifold. Then M is
equicontinuous, hence is homeomorphic to a weak solenoid.

By assumption, for any ε > 0 there exists a closed manifold Mε

and surjection fε : M→ Mε whose fibers have diameters less than
ε. It follows from the construction of the Reeb slabs, that the
holonomy group cannot expand by more than ε.
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Two mysteries:

Mystery 1: What can be said for the case of a minimal matchbox
manifold M, where there are leaves of F which have non-trivial
holonomy, possibly of infinite order.

It is a puzzle whether the inverse limit results can be obtained even
for the case of an action ϕ : Γ× X→ X where there are points
x ∈ X for which the isotropy group Γx is infinite.

Mystery 2: Suppose that Y is a branched n-manifold, for n ≥ 1.
Let M be a Y -like matchbox manifold. Is M homeomorphic to the
inverse limit of surjective maps f : Y → Y ?

This would give a generalization of the result by [Williams, 1974]
that an attractor of an Axiom A diffeomorphism has this structure.



Introduction Coding Slabs Solenoids

References

J.M. Aarts, C.L. Hagopian and L.G. Oversteegen, The orientability of matchbox manifolds, Pacific. J. Math.,
150:1–12, 1991.

F.D. Ancel, An alternative proof and applications of a theorem of E. G. Effros, Michigan Math. Jour., 34:39–55,
1987.

J. Anderson and I. Putnam, Topological invariants for substitution tilings and their associated C∗-algebras,
Ergodic Theory Dyn. Syst., 18:509–537, 1998.

R.H. Bing, A simple closed curve is the only homogeneous bounded plane continuum that contains an arc, Canad.
J. Math., 12:209–230, 1960.

A. Clark, A generalization of Hagopian’s theorem and exponents, Topology Appl., 117:273–283, 2002.

A. Clark and S. Hurder, Homogeneous matchbox manifolds, Trans. Amer. Math. Soc., 365:3151–3191, 2013.

A. Clark, S. Hurder and O. Lukina, Voronoi tessellations for matchbox manifolds, Topology Proceedings,
41:167–259, 2013.

A. Clark, S. Hurder and O. Lukina, Shape of matchbox manifolds, Indag. Math., 25:669–712,2014

A. Clark, S. Hurder and O. Lukina, Y -like matchbox manifolds, in preparation, 2014.

E.G. Effros, Transformation groups and C∗-algebras, Annals Math. (2), 81:38–55, 1965.

C. Hagopian, A characterization of solenoids, Pacific J. Math., 68:425–435, 1977.

L. Sadun, Tiling spaces are inverse limits, J. Math. Phys., 44:5410–5414, 2003.

E.S. Thomas, Jr. One-dimensional minimal sets, Topology, 12:233–242, 1973.

R.F. Williams, Expanding attractors, Inst. Hautes Études Sci. Publ. Math., 43:169–203, 1974.



Introduction Coding Slabs Solenoids

Thank you for your attention.
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