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Introduction Return equivalence

Let M be a minimal matchbox manifold.

• Find invariants of the homeomorphism type.

Recall that h : M1 →M2 a homeomorphism implies that h is a
foliated homeomorphism, so classification is actually about
classifying the foliation on M.

We can also ask for the weaker classification type:

• Find invariants of the topological orbit-equivalence type for M,
or for the action of the foliation pseudogroup GX.

We consider the first question in this lecture.
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Recall the Vietoris solenoid, defined by tower of coverings:

P ≡ · · · −→ S1 p`+1−→ S1 p`−→ · · · p2−→ S1 p1−→ S1

where each p` is a covering map of degree n` > 1. P is called a
presentation, and the solenoid is given as the inverse limit

SP ≡ lim
←−
{p`+1 : S1 → S1} ⊂

∏
`≥0

S1

Let P and Q be presentations, and let P be the infinite set of prime
factors of the integers in the set nP = {n1, n2, n3, . . .}, included
with multiplicity, and Q the same of mP = {m1,m2,m3, . . .}.
Theorem: [Bing, 1960; McCord, 1965] The solenoids SP and SQ
are homeomorphic if and only if there is a bijection between a
cofinite subset of P with a cofinite subset of Q.
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The proof is based on a general result for inverse limits. Assume
that we are given two presentations,

P = {p`+1 : M`+1 → M` | ` ≥ 0} , Q = {q`+1 : N`+1 → N` | ` ≥ 0}

where all spaces {M` | ` ≥ 0} and {N` | ` ≥ 0} are compact
oriented manifolds, and all bonding maps are orientation-preserving
coverings. These define weak solenoids SP and SQ.

Let ΠP` : SP → M` denote the fibration map onto the factor M` for
SP , and ΠQ` : SQ → N` that for SQ.

Choose basepoints x ∈ SP and y ∈ SQ. Then define basepoints

x` = ΠP` (x) ∈ M` and y` = ΠQ` (y) ∈ N` for ` ≥ 0.
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Theorem: [folklore] Given presentations P and Q, suppose there
exists increasing sequences of integers {0 ≤ m1 < m2 < · · · } and
{0 ≤ n1 < n2 < · · · } and homeomorphisms

f` : Mm`
→ Nn`−1

, g` : Nn`
→ Mm`

for ` ≥ 1, such that

• f`(xm`
) = yn`−1

and g`(yn`
) = xm`

• f` ◦ g` = qn`
n`−1

: Nn`
→ Nn`−1

• g` ◦ f`+1 = pm`
m`+1

: Mm`+1
→ Mm`

.

Then there is a homeomorphism f̂ : SP → SQ with f̂ (x) = y .

If the above conditions are satisfied, then we say that the
presentations P and Q are (pointed) tower equivalent.
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In order to use this result to prove that two weak solenoids are
homeomorphic, it is necessary to check an infinite number of
conditions to show the two spaces are homeomorphic.

In the case where all M` = N` = S1, then the classification of
Vietoris solenoids follows, as there is a unique oriented
homeomorphism from S1 to S1 up to isotopy, and an arbitrary
covering of the circle is homeomorphic to a circle, so the only
invariants to check are the covering degrees in the tower.

For manifolds of dimensions 2 or greater, it is also not so obvious
how to show that the hypotheses of the theorem are satisfied.
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Consider the example of normal solenoids defined by a tower of
coverings of the torus Tn. A covering of Tn is again a covering,
which is defined up to homeomorphism by the map on
fundamental groups,

(p`+1)# : Zn = π1(Tn, x`+1)→ π1(Tn, x`) = Zn

Given a presentation P, define q` = p1 ◦ · · · ◦ p`−1 ◦ p` : M` → M0

Γ` = image{(q`)# : π1(M`, x`)→ π1(M0, x0)}

Thus, for a presentation P given by coverings of Tn, the normal
solenoid SP is characterized by a tower of descending subgroups of
finite index, Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ · · · , where Γ`

∼= Zn.

For n ≥ 2, the classification of such infinite descending chains is a
topic of Descriptive Set Theory, and such chains they are far too
complicated to be “classified”. [Kechris, 2000], [Thomas, 2002]
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There is an alternate characterization of the Vietoris solenoids, due
to [Aarts and Fokkink, 1991].

Recall that a section C for a smooth non-singular flow,
ϕ : R×M → M, is an embedded submanifold, possibly with
boundary, τ : N → M such that:

• dim(N) = dim(M)− 1;

• the image of τ is everywhere transverse to the flow;

• the ϕ flow of every point x ∈ M intersects the interior of τ(N).
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For a matchbox manifold, the definition of a section C requires
more care, as there is no “natural” notion of transversality.

Aarts and Fokkink use the fibration structure of the Vietoris
solenoid, Π: SP → S1, where the fiber is identified with the
product space

Π−1(x0) =
∞∏
`=1

{Z/m` · Z}

The flow on the solenoid in minimal, so each cylinder set is a
clopen section, for `0 ≥ 1,

C = (i1, i2, . . . , i`0−1)×
∞∏

`=`0

{Z/m` · Z}

Introduce the first return mapping ϕC : C → C .
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Given a second presentation Q with associated set of covering
degrees mQ = {m1,m2, . . .}, let ψ denote the flow on SQ, and for
a cylinder set C ′ consider the induced flow ψC ′ : C

′ → C ′.

Definition: The flows ϕ on SP and ψ on SQ are return
equivalent, if there exists sections C and C ′ as above, and a
homeomorphism h : C → C ′, such that h ◦ ϕC = ψC ′ ◦ h.

Theorem: [Aarts and Fokkink, 1991] Let P and Q be
presentations for Vietoris solenoids, with indexing sets P and Q
respectively, consisting of primes. Then SP and SQ are
homeomorphic ⇔ they are return equivalent ⇔ there is a bijection
between a cofinite subset of P with a cofinite subset of Q.
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The proof that SP and SQ are homeomorphic ⇔ they are return
equivalent, uses simply that each space is homeomorphic to the
suspension of its the return map.

The proof that ϕC and ψC ′ are conjugate, for some choice of
sections by cylinder ⇔ there is a bijection between a cofinite
subset of P with a cofinite subset of Q, is a nice exercise.
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Let M be a matchbox manifold, and assume there is a choice of a
regular covering by foliated coordinate charts,

U = {ϕi : Ui → [−1, 1]n × Xi | 1 ≤ i ≤ k}

Identify Ti = ϕ−1i (0× Xi ) ⊂M with Xi and thus X with T ⊂M.

For x ∈M let Lx be the leaf of F containing x .

Definition: A (regular) section for M is a clopen subset C ⊂ T
such that for each x ∈ M, the intersection Lx ∩ C 6= ∅.
If M is minimal, then any clopen subset C ⊂ T is a section.
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Let GX be the pseudogroup for M associated to the covering,
acting on the Cantor set X. Given a regular section C ⊂ T, the
induced pseudogroup is defined by

GC = {h ∈ GX | Dom(h) ⊂ C ,Range(h) ⊂ C}

where we identify C with its image in X.
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Definition: Matchbox manifolds M1 and M2 are return equivalent
if there exists

• regular coverings of M1 and M2 by foliated coordinate charts,
with transversals T1 and T2,

• pseudogroups GX1 and GX2, respectively,

• sections C 1 ⊂ T1 and C 2 ⊂ T2,

• a homeomorphism h : C 1 → C 2 which conjugates GC1 to GC2 .

That is, for all g ∈ GC1 we have h ◦ g ◦ h−1 ∈ GC2 , and vice-versa.
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Proposition: Let M1 and M2 be a homeomorphic minimal
matchbox manifolds, with regular sections C 1,C 2. Then the
induced pseudogroups GC1 to GC2 are return equivalent.

Thus, the return equivalence is a homeomorphism invariant for the
class of minimal matchbox manifolds.

Without the assumption that the foliations are minimal, there are
examples which show that return equivalence is not transitive.
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Conjecture: Minimal matchbox manifolds M1 and M2 with the
same leaf dimension are homeomorphic if and only if they are
return equivalent.

Sadly, this is very false, for several basic reasons.

First, consider a minimal action ϕ : Γ× X→ X, where Γ is a
finitely generated group.

Let M0,N0 be closed n manifolds such that there exists surjections
of their fundamental groups

ρ1 : π1(M0, x0)→ Γ , ρ2 : π1(N0, y0)→ Γ
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The suspension construction gives minimal matchbox manifolds
with conjugate holonomy pseudogroups

M1 = M̃0 × X/(w , x) ∼ (w · γ, ρ1(γ−1) · x) , γ ∈ π1(M0, x0)

M2 = Ñ0 × X/(w , x) ∼ (w · γ, ρ1(γ−1) · x) , γ ∈ π1(N0, y0)

where M̃0 is the universal overing of M0, and π1(M0, x0) acts on
the right on M̃ by deck translation, and similarly Ñ0 is the
universal covering for N0 with the right action of π1(N0, y0).

But unless some covering of M0 is homeomorphic to some covering
of N0, these spaces can not be homeomorphic.

For example, let M0 = T2 and N0 = Σ2 be the surface of genus 2,
and use any minimal action ϕ of Z2 on a Cantor set X.
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On the other hand, we have the following generalization of the
result of Aarts and Fokkink:

Theorem: Let M1 and M2 be weak solenoids, with presentations
P and Q with base manifolds M0 = N0 = Tn. Then M1 and M2

are return equivalent if and only if they are homeomorphic.

The proof uses two key properties of the torus Tn, which are
trivially true for the test case with M0 = S1.

Definition: A manifold Y is aspherical if its universal covering Ỹ
is a contractible space.
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We also require that M0 is strongly Borel:

Definition: A closed manifold Y is strongly Borel if the collection
AY ≡ 〈Y 〉 of all finite covers of Y forms a Borel collection. That
is, it satisfies the conditions:

• Each Y ∈ AB is aspherical,

• Any closed manifold X homotopy equivalent to some Y ∈ AB is
homeomorphic to Y , and

Examples of strongly Borel closed manifolds include the torus Tn

for all n ≥ 1, all closed infra-nilmanifolds, and all closed
Riemannian manifolds Y with negative sectional curvatures.
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Theorem: Let M1 and M2 be equicontinuous matchbox
manifolds which are Y -like, where Y is a strongly Borel closed
manifold. Assume that both M1 and M2 have a leaf which is
simply connected. Then M1 and M2 are return equivalent if and
only if they are homeomorphic.

We sketch the proof of this result for the case Y = Tn, and with
the assumption that each space has a simply connected leaf, as
this will illustrate the key ideas and issues.
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We assume there are given presentations

P = {p`+1 : M`+1 → M` | ` ≥ 0} , Q = {q`+1 : N`+1 → N` | ` ≥ 0}

For the case where M0 = N0 = Tn, then all the spaces considered
are coverings of Tn hence are again Tn.

Let ΠP` : SP → M` denote the fibration map onto the factor M` for
SP , and ΠQ` : SQ → N` that for SQ.

Choose basepoints x ∈ SP and y ∈ SQ and define basepoints

x` = ΠP` (x) ∈ M` and y` = ΠQ` (y) ∈ N` for ` ≥ 0.

Let Λ1 = π1(M0, x0) and Λ2 = π1(N0, y0).
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Introduce the Cantor fibers:

• X1 = Π−11 (x0) ⊂M1 where Π1 : M1 → M0

• X2 = Π−12 (y0) ⊂M2 where Π2 : M2 → N0

Then the fibration structure for Mi defines a holonomy
representation ρi : Λi → Homeo(X1), and Mi is homeomorphic to
the suspension space for this action on X1, for i = 1, 2.

The assumption that each space Mi has a simply connected leaf
implies that the map ρi is injective.
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The assumption that M1 is return equivalent to M2 implies that
there exists clopen subsets C i ⊂ Xi and a homeomorphism
h : C 1 → C 2 which conjugates the holonomy pseudogroups GC1

and GC2 .

Lemma: For i = 1, 2, there exists choices of C i such that

GC i = ΛC i = {g ∈ Λi | ρi (C
i ) = Ci}

Moreover, the restricted map ρi : ΛC i → Homeo(C i ) is injective.

The proof of this uses the usual properties of clopen sets in a
Cantor set.

This implies that the conjugating map h induces an isomorphism
between the images ρi (ΛC i ) ⊂ Homeo(C i ).

Thus, h induces an isomorphism h# : ΛC1 → ΛC2 .
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Recall that Λ1 = π1(M0, x0) and Λ2 = π1(N0, y0). Thus,

• ΛC1 ⊂ Λ1 defines a covering space M ′0 → M0

• ΛC2 ⊂ Λ2 defines a covering space N ′0 → N0

By the assumption that M0 and N0 are Tn (or better, that they are
strongly Borel) the isomorphism h# between the fundamental
groups of their coverings induces a homeomorphism h′ : M ′0 → N ′0
which is compatible with the actions of the fundamental groups on
the fibers C1 and C2.

The conclusion that M1 is homeomorphic to M2 now follows:

• Mi is homeomorphic to the suspension of the action ρi on the
space C i by the fundamental groups ΛC i .

• The homeomorphisms h′ : M ′0 → N ′0 and h : C 1 → C 2 define a
foliated bundle isomorphism, hence a homeomorphism of their
suspension spaces.
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This above sketch of proof skips many technical details.

Sketch reveals the parallels with the proof in [Aarts and Fokkink,
1991]. See [Clark, Hurder, Lukina, 2013] for all gory details, and
other interesting points in the proof.

For example, in the case where Y = Tn and the spaces are Y -like,
the assumption that there is a simply connected leaf can be
omitted, due to the simple algebraic structure of Zn.

It is possible this assumption can be omitted in all cases, as the
hypothesis that the spaces are Y -like may imply the algebraic
splitting condition that is required.
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It is natural to ask if the result remains true if Y is a branched
manifold. For example, [Kwapisz, 2011] proves such a conjugation
result for the tiling spaces associated to substitution tilings of Rn.

Definition: A matchbox manifold M is an expanding if there
exists a self-homeomorphism h : M→M which is strictly
expanding on leaves.

Conjecture: Let M1 and M2 be Y -like and expanding, where Y
is a branched manifold. Then M1 and M2 are homeomorphic if
and only if they are return equivalent.

This seems likely to be true.

What is certainly true, is that the classification problem requires
more invariants of return equivalence for Cantor pseudogroups.



Introduction Return equivalence

References

J.M. Aarts and R. Fokkink, The classification of solenoids, Proc. Amer. Math. Soc., 111:1161–1163, 1991.

J.M. Aarts and M. Martens, Flows on one-dimensional spaces, Fund. Math., 131:39–58, 1988.

R.H. Bing, A simple closed curve is the only homogeneous bounded plane continuum that contains an arc, Canad.
J. Math., 12:209–230, 1960.

A. Clark, S. Hurder and O. Lukina, Shape of matchbox manifolds, Indagationes Mathematicae, 25:,2014;
arXiv:1308.3535.

A. Clark, S. Hurder and O. Lukina, Classifying matchbox manifolds, preprint, October 2013.

A. Kechris, On the classification problem for rank 2 torsion-free abelian groups, J. London Math. Soc. (2),
62:437–450, 2000.

J. Kwapisz, Rigidity and mapping class group for abstract tiling spaces, Ergodic Theory Dynam. Systems,
31:1745–1783, 2011.

C. McCord, Inverse limit sequences with covering maps, Trans. Amer. Math. Soc., 114:197–209, 1965.

S. Thomas, On the complexity of the classification problem for torsion-free abelian groups of finite rank, Bull.
Symbolic Logic, 7:329–344, 2001.


	Introduction
	Return equivalence

