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Foliations

William Thurston colloquially compared a foliation to the stripes
on a zebra. In Chicago, we have a better comparison:

Foly Cow!
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Wikipedia: A foliation is a kind of clothing worn on a manifold,
cut from a stripy fabric. On each sufficiently small piece of the
manifold, these stripes give the manifold a local product structure.
This product structure does not have to be consistent outside local
patches: a stripe followed around long enough might return to a
different, nearby stripe.
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A third definition is to give some of the basic examples, such as the

Reeb foliation

Historical paper by André Haefliger, available at foliations.org,

Naissance des feuilletages, d’Ehresmann-Reeb à Novikov
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Definition: A foliation F of a manifold M is a “uniform partition”
of M into submanifolds of constant dimension p and codimension
q. More precisely, a smooth manifold of dimension n is foliated if
there is a covering of M by coordinate charts whose change of
coordinate functions preserve the horizontal level sets.
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A leaf L of a foliation is formed by taking one plaque in a
coordinate chart, then taking the increasing union of all plaques
that successively intersect the previous collection.

A foliation F of a compact manifold M is also . . .

• a local geometric structure on M, given by a ΓRq -cocycle for a
“good covering”. (Ehresmann, Haefliger)

• a dynamical system on M with multi-dimensional time.

• a groupoid GF → M with fibers complete manifolds, the
holonomy covers of leaves.

Each point of view has advantages and disadvantages.
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Question: Given a connected open manifold L without boundary,
is there a foliation F of a compact manifold M for which L is
homeomorphic to a leaf of F?

The geometry and topology of a leaf L is determined by the
combinatorics of the intersections of the plaques in a finite
covering of M by foliation charts.

The question above is analogous to asking about the topological
and geometrical properties of finitely generated groups.

For foliations, the possibilities are much more extensive!
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Example: Let Γ be the fundamental group of a compact
connected manifold X . Suppose that Γ has an effective action on a
compact manifold Y . This gives an injective representation
ρ : Γ→ Homeo(Y ). For the universal covering L = X̃ → X , form

MΓ = {X̃ × Y }/(x , y) ∼ (x · γ−1, ρ(γ) · y)

Then MΓ has a foliation with leaf L. The geometry and the
topology of the leaf L thus is closely related to that of Γ.

The construction requires a finitely generated group Γ and a
faithful representation into Homeo(Y ). For example, if Y = S1,
then this places strong restrictions on Γ.
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Theorem: [John Cantwell & Lawrence Conlon, Topology 1987]

Let L be an open, connected surface without boundary. Then L is
diffeomorphic to a leaf of a smooth foliation F of a compact
3-manifold M.

Proof: The manifold L is homeomorphic to R2 − K where K is a
compact, totally disconnected set. They then construct a foliation
with a leaf whose ends are homeomorphic to K .
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Theorem: [Étienne Ghys, Topology 1985]

For all d ≥ 3, there exists a non-compact manifold W of
dimension d , which is not homeomorphic to a leaf of any foliation
of codimension-one of a compact manifold M.

Proof: If such a foliation F exists, then M compact implies the
end of W must be recurrent on itself. Choose the connected sum
components Wi cleverly: choose an increasing list of primes
{pi | i = 1, 2, . . .}, let Wi = S3/(pi · Z) be the lens space with
fundamental group Z/(pi · Z). Reeb Stability implies that in a
codimension one manifold, each compact region Wi has a product
neighborhood, so W cannot be end recurrent.
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That’s it, for what is known about non-leaves.

Consider the geometric version of this question.

Let (X , dX ) and (Y , dY ) be metric spaces.

A homeomorphism f : X → Y is said to be a quasi-isometry if
there exists constants λ ≥ 1 and C > 0 so that for all x , x ′ ∈ X

λ−1 · dX (x , x ′)− C ≤ dY (f (y), f (y ′)) ≤ λ · dX (x , x ′) + C

Proposition: [Plante, Annals of Math 1976] Let L be a leaf of a
foliation F of a compact manifold M. Then L has a complete
Riemannian metric, unique up to quasi-isometry, with C = 0.
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In his 1974 ICM address, Dennis Sullivan asked:

Question: Let L be a complete Riemannian smooth manifold
without boundary. When is L quasi-isometric to a leaf of a
C r -foliation FM of a compact smooth manifold M, for r ≥ 1?

To answer this, you need some property of complete Riemannian
manifolds which is an invariant of quasi-isometry, and which
distinguishes when the manifold is a leaf.

The rate of volume growth for L – polynomial, subexponential, or
exponential – is a quasi-invariant property of L. There exists
foliations for which all of these types of growth occur.
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There have been two types of obstructions, to date:

• For leaves with subexponential growth, the average Euler class

[Phillips & Sullivan, Topology 1981]

and the average Pontrjagin classes

[Januszkiewicz, Topology 1984]

• The coarse entropy of a complete Riemannian manifold

[Attie & Hurder, GTDS Seminar 1995, Topology 1996]

In this talk, we recall the definition of coarse entropy, and relate it
to recent work of Olga Lukina.
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We begin with a discussion of graph spaces.

Let G be a metric graph of finite type k . That is, there is a
countable set of vertices V (G) and edges E (G) such that:

• each edge e ∈ E (G) connects to two vertices, ∂+e, ∂−e ∈ V (G);

• each vertex v ∈ V (G) is connected to at least one edge;

• each vertex v ∈ V (G) is connected to no more than k edges;

• each edge has length 1.

The space G is given the path length metric, denoted dG .

Denote the closed ball by BG(v ,R) = {x ∈ G | dG(v , x) ≤ R}.
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Definition: For R > 0, an R-quasi-tiling of G consists of:

• a collection of vertices {v1, . . . , vµ}
• a countable set of isometries {fi : BG(v`i

,R)→ G | i ∈ I}
• so that the union of their images equals G.

Let H(G, dG ,R) denote the least number µ of vertices in an
R-quasi-tiling of G.

If no R-quasi-tiling exists, set H(G, dG ,R) =∞.



Introduction Topology Geometry Entropy Foliations Dimension

Example: Let G be the Cayley graph of a finitely presented group
Γ. Then H(G, dG ,R) = 1.

Consider BG(v ,R) as an open neighborhood of the graph with
base vertex vi in the box metric on pointed graphs.

If BG(v ′,R) is the ball around another vertex v ′ which is isometric
to BG(v ,R), then the pointed graph (G, v ′) is considered to be at
most e−R distance from (G, v).

The number H(G, dG ,R) counts the number pointed trees which
are e−R -distinct up to isometry in this box metric.
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Let #v (S) be the number of vertices in a subgraph S ⊂ G.

Example: Let G(F2) be the tree for the free group F2 = Z ∗ Z.
Then #v (BG(v0,R)) equals the number of words in F2 with length
at most R, hence is an exponential function of R.

Fix a base vertex v0 ∈ V (G).

Define the pattern entropy of the graph (G, dG)

h(G, dG) = lim sup
R→∞

ln{H(G, dG ,R)}
#v (BG(v0,R))

Proposition: The property h(G, dG) > 0 is well-defined.



Introduction Topology Geometry Entropy Foliations Dimension

In Lukina’s work, the sets BG(v ,R) are identified if they agree
up to translation by the (isometric) group action.

In the above definition, the sets BG(v ,R) are identified is they are
simply isometric. The number of sets needed to cover may be less.

The invariant H(G, dG ,R) gives an uper bound estimate on the
box dimension of the space of graphs, which gives an upper bound
for its Hausdorff dimension.



Introduction Topology Geometry Entropy Foliations Dimension

With pseudogroup action:

6∼=

e



Introduction Topology Geometry Entropy Foliations Dimension

Without pseudogroup action

∼=

e
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Let M be a compact Riemannian manifold, and F a foliation.

Fix a Riemannian metric on TM, with metric dM

Given a leaf L ⊂ M, the inclusion induces a “leafwise” Riemannian
metric whose associated path metric dL is complete.

Example: Let F be the foliation defined by the flow of irrational
slope on T2. Then each leaf is isometric to the Euclidean line R,
so has unbounded diameter, while T2 has bounded diameter.

By Plante, the quasi-isometry class of the metric dL on L is unique.
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We want to extend the notion of pattern entropy for graphs, to a
type of pattern entropy for leaves.

For leaves of foliations, there is no reason why the corresponding
notion of pattern entropy, defined analogously to the above, should
be independent of the choices of Riemannian metric on M and
covering of M by foliation charts, or even why the invariant should
be finite at all.

The solution is to “coarsify” the pattern entropy.

That is, we allow a controlled amount of distortion in our tiling
patterns, and then let this coarsening tend to infinity.
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Let (X , dX ) and (Y , dY ) be metric spaces.

For ε > 0 we say that a subset Z ⊂ Y is ε-dense, if for every
y ∈ Y there exists z ∈ Z with dY (y , z) < ε.

A set map f : X → Y is said to be a λ-coarse isometry if, for all
x , x ′ ∈ X ,

λ−1 · dX (x , x ′)− λ ≤ dY (f (y), f (y ′)) ≤ λ · dX (x , x ′) + λ

and the image f (X ) ⊂ Y is λ > 0 dense.
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f : X → Y is coarse isometry if it is λ-coarse isometry for some λ.

Example: The inclusion Zn ⊂ Rn is a λ-coarse isometry for λ ≥ 1.

Example: Ghys “non-leaf” W is coarse-isometric to N.

A quasi-isometry is a coarse isometry, and a composition of coarse
isometries is again a coarse isometry.

Question: Let F be foliation of a compact manifold M. What can
be said about the set of coarse isometry classes of leaves if F?

Question: If the set of coarse isometry classes of leaves of F is
finite, what can be said about its topology/dynamics/geometry?
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Definition: Fix λ ≥ 0,R > 0. An (λ,R)-coarse-tiling of a
complete Riemannian manifold L consists of:

• a collection of points {x1, . . . , xµ} ⊂ L

• a countable set of λ-coarse isometries
{fi : BL(x`i

,R)→ L | i ∈ I}
• such that the union of their images is λ-dense in L.

Let Hc (L, dL, λ,R) denote the least number µ of points in an
(λ,R)-coarse-tiling for L.

If no (λ,R)-coarse-tiling for L exists, set Hc (L, dL, λ,R) =∞.
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Define the λ-coarse entropy

hλ(L, dL) = lim sup
R→∞

ln{Hc (L, dL, λ,R)}
Vol(BL(x0,R))

and the coarse entropy

hc(L, dL) = lim sup
λ→∞

hλ(L, dL)

Lemma: hc (L, dL) is a coarse invariant of the metric space (L, dL).



Introduction Topology Geometry Entropy Foliations Dimension

Theorem: Let (L, dL) be a simply-connected complete Riemannian
manifold which is coarse-isometric to a leaf of a C 1-foliation of a
compact manifold. Then hc (L, dL) = 0.

Hence, if hc (L, dL) > 0, then (L, dL) is not coarse-isometric to a
leaf of a C 1-foliation of a compact manifold.

Idea of proof: Reeb stability theorem implies that for any compact
subset K of a leaf of F there is a product neighborhood whose
diameter ε > 0 can be made arbitrarily small. Fix ε > 0 small, so
that all compact leaves in such a neighborhood are λ-coarse
isometric, for some λ depending only on the geometry of F .
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Given R > 0, cover M by a finite collection product neighborhoods
whose core compact sets have the form BF (xi ,R), for some
{x` | 1 ≤ ` ≤ µ}. The C 1-hypothesis on F implies that its
holonomy maps are Lipschitz, and so by the properties of
holonomy, the number of these neighborhoods required is
estimated above by e−kR for some k.

Thus, each leaf has at most exponential growth for the number of
coarse isometry types as a function of R.
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Explicit constructions of complete manifolds with h(L, dL) > 0
typically use an inductive combinatorial process.

The simplest construction was given by Abdelghani Zeghib, while
listening to my talk in Tokyo (1993). The talk described a more
“sophisticated” construction, using topological invariance of the
Pontrjagin classes (and joint with Oliver Attie).

See [Attie & Hurder, 1996] for the complicated construction.

See [Zeghib, 1994] for the elegant construction, obtained by
attaching to H2, random sequences of “bubbles” with increasing
diameters, attached at points of H2 tending to infinity.

Key observation is that large bubbles are coarsely flat, so are
coarse invariants of the geometry.
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A complete Riemannian manifold with h(L, dL) > 0 must be very
wild at infinity. An alternate way to “measure” this complexity is
to discretize the geometry.

Let NL ⊂ L be a net. Then the inclusion (NL, dL) ⊂ (L, dL) is a
coarse isometry.

For example, let F be a foliation of a compact Riemannian
manifold M. Let T ⊂ M be the union of the transversals defined
by a covering of M by foliation charts. Then for a leaf L ⊂ M,
NL = L ∩ T is the net defined by the choice of transversal.

Definition: The Cayley graph of a leaf G(L) has vertices
V (L) = NL, and an edge between two vertices if their
corresponding plaques in the coordinate charts overlap. See
[Lozano-Rojo, 2006] for example. We declare all edges to have
length 1 as before, and give G(L) the path length metric dG(L).
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Proposition: The inclusion (NK , dG(L)) ⊂ (L, dL) is a coarse
isometry. Hence, hc (G(L), dG(L)) = hc (L, dL).

For the Cayley graph GL and λ ≥ 1, define the scaled metric
dL,λ = λ−1 · dL. The Cantor set KL of subtrees of this graph is
given the induced scaled metric.

(KL, dL,λ) is a form of “universal transversal” for the discretized
“dynamics” of the space L.

Theorem: If hc (L, dL) > 0, then for λ sufficiently large, the box
dimension of the metric space {KL, dL,λ} is infinite.

Question: How are the λ-coarse pattern counting functions
hλ(L, dL) related to the dynamical properties of F? It is dominated
by the geometric entropy function for the pseudogroup dynamics.
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