Foliations Thurston Zebras to Cantor Geometries

Steve Hurder

University of Illinois at Chicago www.math.uic.edu/~hurder

October 17th, 2013

э

Foliations

In Spring 1974, William Thurston gave a colloquium at Rice University, and spent 20 minutes drawing a picture of a zebra on the blackboard. The message: this is what foliations are about, a very geometric subject!

Later, in graduate courses by

Franz Kamber, Philippe Tondeur, and also Kuo-Tsai Chen in 1977-79;

plus Riemannian geometry courses by

Richard Bishop and Stephanie Alexander;

more formal approaches emerged.

Still, the definition by Thurston has its attractions, though later his Zebra was replaced by a Chicago Institution:

(日) (同) (三) (三)

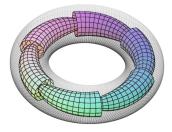
A Foly Cow!

Wikipedia: A foliation is a kind of clothing worn on a manifold, cut from a stripy fabric. On each sufficiently small piece of the manifold, these stripes give the manifold a local product structure. This product structure does not have to be consistent outside local patches: a stripe followed around long enough might return to a different, nearby stripe.

Forty years since the subject was energized by Thurston's works, 1971-75.

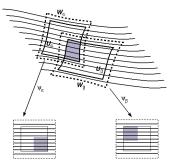
This was one theme at the meeting on *Geometry and Foliations 2013* last September in Tokyo: the contributions of Thurston and the subsequent developments of his ideas in the field. We ignored his famous comment, *that after his work [on foliations], all that was left to do was trivial.*

Historical paper by André Haefliger, available at *foliations.org*, *Naissance des feuilletages*, *d'Ehresmann-Reeb à Novikov*



Formal Definition

Definition: A foliation \mathcal{F} of a manifold M is a "uniform partition" of M into submanifolds of constant dimension p and codimension q. More precisely, a smooth manifold of dimension n is *foliated* if there is a covering of M by coordinate charts whose change of coordinate functions preserve the leaves:



Steve Hurder

Thurston Zebras to Cantor Geometries

Z	ebras		

A foliation \mathcal{F} of a compact manifold M is also ...

- a local geometric structure on M, given by a $\Gamma_{\mathbb{R}^q}\text{-}\mathsf{cocycle}$ for a "good covering". (Ehresmann, Haefliger)
- \bullet a dynamical system on M with multi-dimensional time.
- \bullet a groupoid $\mathcal{G}_{\mathcal{F}} \to M$ with fibers complete manifolds, the holonomy covers of leaves.

Each point of view has advantages and disadvantages.

Problem: How to distinguish and classify foliations?

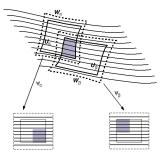
Convert to a discrete problem:

イロト イヨト イヨト

Pseudogroups

A section $\mathcal{T} \subset M$ for \mathcal{F} is an embedded submanifold of dimension q which intersects each leaf of \mathcal{F} at least once, and always transversally.

Covering by coordinate charts provides local sections, whose union is a global transversal \mathcal{T} . The transverse holonomy along *leafwise paths* for \mathcal{F} between points in \mathcal{T} generates the pseudogroup $\mathcal{G}_{\mathcal{F}}$.



Zebras			
Groupoids			
Definition	: The groupoid of $\mathcal{G}_\mathcal{F}$	is the space of germs	
	• • •		
	$\Gamma_{\mathcal{F}} = \{ [g]_x \mid g$	$\in \mathcal{G}_{\mathcal{F}} \& x \in D(g) \}, \ \mathcal{G}_{\mathcal{F}}$	
with source	e map $s[g]_x = x$ and	range map $r[g]_x = g(x) = y_x$	

Definition: The Haefliger groupoid Γ_q^r is the collection of all germs of local C^r -diffeomorphisms between open subsets of \mathbb{R}^q , endowed with the sheaf topology. The objects of Γ_q^r are points of \mathbb{R}^q , and morphisms are germs of local C^r -diffeomorphisms of \mathbb{R}^q .

The derivative defines a groupoid transformation $\nu \colon \Gamma_q^r \to GL(\mathbb{R}^q)$.

This space is universal, it is non-Hausdorff, and it is simply huge!

Zehras

• • • • • • • • • • • •

Haefliger-Thurston classification

 $B\Gamma_q^r$ = "classifying space" of (smooth) codimension q-foliations with transverse differentiability C^r , introduced by André Haefliger in 1970.

 $B\Gamma_q^r \cong \|\Gamma_q^r\| \equiv$ the "semi-simplicial fat realization" of the groupoid Γ_q^r .

For $r \geq 1$, there is a natural map $B\nu \colon B\Gamma_q^r \to BGL(\mathbb{R}^q) \cong BO(\mathbb{R}^q)$ classifying the normal bundle to the universal foliation on $B\Gamma_q^r$.

Observation: [Haefliger] The foliation on $B\Gamma_q^r$ has a single leaf.

 \Rightarrow this is a really strange (non-Hausdorff) space.

・ロト ・聞 ト ・ ヨト ・ ヨトー

• Theorem: (Haefliger) Each C^r -foliation \mathcal{F} on M of codimension q
determines a well-defined map $h_{\mathcal{F}} \colon M \to B\Gamma_q^r$ whose homotopy class in
uniquely defined by $\mathcal{F}.$
Proof: Philling Transversality, Cromov, "h Principle"

Proof: Phillips Transversality, Gromov "h-Principle"

• **Theorem:** (Thurston) Each "natural" map $h_{\mathcal{F}} \colon M \to B\Gamma_q^r \times BO_p$ corresponds to a C^r -foliation \mathcal{F} of codimension q on M, whose concordance class is determined by $h_{\mathcal{F}}$.

Proof: Draw lots of zebras; that is, very geometric at key steps...

Classification of \mathcal{F} on $M \leftrightarrow$ calculate homotopy sets $[M, B\Gamma_a^r]$

Zebras

《曰》 《圖》 《臣》 《臣》

Problem: Understand the homotopy type of the mysterious space $B\Gamma_a^r$!

Introduce $F\Gamma_q^r$, the homotopy fiber of the map $B\nu \colon B\Gamma_q^r \to BO(\mathbb{R}^q)$. $F\Gamma_q^r$ is a topological measure of the difference between having a tangent subbundle $F \subset TM$ of rank p, and a C^r -foliation \mathcal{F} on M with $F = T\mathcal{F}$.

Theorem: [Bott Vanishing Theorem, 1968]

$$B\nu^* \colon H^\ell(BO(\mathbb{R}^q);\mathbb{R}) \longrightarrow H^\ell(B\Gamma^r_q,\mathbb{R})$$

is the zero map for $r \geq 2$ and $\ell > 2q$.

 $F\Gamma_q^r$ for $r \ge 2$ is definitely not trivial. In contrast, there is the amazing **Theorem:** [Tsuboi, 1989] $F\Gamma_q^1$ has the weak homotopy type of a point.

・ロト ・聞 ト ・ ヨト ・ ヨトー

Godbillon-Vey class

Theorem: (Godbillon-Vey [1971]) For a C^2 -foliation of codimension q, there is a cohomology class $GV(\mathcal{F}) = \Delta(h_1 \cdot c_1^q) \in H^{2q+1}(M; \mathbb{R})$, whose value depends only on the homotopy class of $h_{\mathcal{F}} \colon M \to B\Gamma_q^2$. *Proof:*

- ► Assume \mathcal{F} has oriented normal bundle \Rightarrow there is a *q*-form ω with $ker(\omega) = T\mathcal{F}$.
- Froebenius Theorem implies the differential $d\omega = \eta \wedge \omega$ for 1-form η .
- Calculation shows $\eta \wedge (d\eta)^q$ is a closed form.
- $\blacktriangleright \ GV(\mathcal{F}) = [\eta \wedge (d\eta)^q] \in H^{2q+1}_{deR}(M) \cong H^{2q+1}(M;\mathbb{R}).$
- η is the *Reeb modular form* for \mathcal{F} .
- $h_1 = [\eta] \in H^1_{deR}(\mathcal{F})$ in leafwise cohomology is well-defined.
- $c_1 = [d\eta]$ represents the first *Chern class* of the normal bundle to \mathcal{F} .

・ロト ・聞 ト ・ヨト ・ヨト

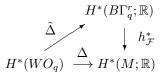
ebras	Lie Groups		Cantor Geometries
	Theorem: [Roussarie, 1971] The G foliation \mathcal{F} on the unit sphere bund curvature $\kappa = -1$ is non-zero.		
	Proof: \mathcal{F} is also described as the fosubgroup of upper triangular matric tangent bundle viewed as the coset • η is the contact form associated • Calculate $\eta \wedge d\eta$ is a multiple of	es in $SL(\mathbb{R}^2)$, acting on space $M=T^1\Sigma_g=\Gamma\backslash$ to the geodesic flow on	the unit $SL(\mathbb{R}^2).$
	Theorem: [Thurston, 1971] For each of codimension-one on \mathbb{S}^3 with GV		
	<i>Proof:</i> Glue foliations as above toge flows on unit tangent bundles to Rid fundamental domains in \mathbb{H}^2 (the slocontrolled)	emann surfaces defined	by

æ

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Secondary Classes

Theorem: (Bott-Haefliger, Gelfand-Fuks, Kamber-Tondeur [1972]) For each codimension q, and $r \ge 2$, there is a non-trivial space of secondary invariants $H^*(WO_q)$ and functorial characteristic map whose image contains the Godbillon-Vey class



The image of Δ depends only on the homotopy class of $h_{\mathcal{F}} \colon M \to B\Gamma_q^2$.

Cartan approach of Kamber & Tondeur

- \mathcal{F} determines a "partially flat connection" ∇ on the $GL(\mathbb{R}^q)$ -bundle of frames orthogonal to the foliation tangent bundle $T\mathcal{F} \subset TM$.
- Construct a graded DGA, the "truncated Weil algebra" $W(gl(\mathbb{R}^q), O(q))_{2q}$ with $H^*(W(gl(\mathbb{R}^q), O(q))_{2q}) \cong H^*(WO_q)$.
- Calculate characteristic map $H^*(W(gl(\mathbb{R}^q), O(q))_{2q}) \to H^*(B\Gamma_q^2; \mathbb{R})$ using foliations defined by locally homogeneous spaces $M = \Gamma \backslash G$, where G is a semi-simple Lie group of higher rank, with foliation defined by right cosets of a Borel subgroup $P \subset G$.
- Key observation is that the non-triviality of the characteristic map follows from non-vanishing of the normal Euler class associated to the action of Γ on the compact quotient space X = G/P.

This became the model for almost all examples constructed in the 1970's of foliations which had non-trivial maps to $B\Gamma_a^2$.

Foliation dynamics

• A continuous dynamical system on a compact manifold M is a flow $\varphi \colon M \times \mathbb{R} \to M$, where the orbit $L_x = \{\varphi_t(x) = \varphi(x,t) \mid t \in \mathbb{R}\}$ is thought of as the "time evolution" of the point $x \in M$. The trajectories of the points of M are necessarily *points*, *circles* or *lines* immersed in M, and the study of their aggregate and statistical behavior is the subject of foliation dynamics and ergodic theory for flows.

• Foliation dynamics, ergodic theory for foliations of leaf dimension ≥ 2 . Replace the concept of time-ordered trajectories with multi-dimensional futures for points. The study of the dynamics of \mathcal{F} asks for properties of the limiting and statistical behavior of the collection of its leaves, and for ergodic theory look for measurable invariants.

Growth of leaves

An ergodic property of foliations: Riemannian metric on M yields complete Riemannian metrics on leaves.

For $x \in M$ and leaf L_x , consider leafwise balls of radius R,

$$B_{\mathcal{F}}(x,R) = \{ y \in L_x \mid d_{\mathcal{F}}(x,y) \le R \}$$
$$Gr(\mathcal{F},x) = \limsup_{R \to \infty} \frac{\ln\{\operatorname{Vol}_{L_x}(B_{\mathcal{F}}(x,R))\}}{R} < \infty$$

 $Gr(\mathcal{F}, x)$ is measurable orbit invariant.

 L_x has exponential growth if $Gr(\mathcal{F}, x) > 0$.

Sullivan Conjecture: [1975] If $GV(\mathcal{F}) \neq 0$ then the set of leaves with exponential growth is non-empty.

Theorem: [Hurder, Jour. Diff. Geom. 1984]

If $GV(\mathcal{F}) \neq 0$ for \mathcal{F} a codimension $q \geq 1$ foliation, then the set of leaves with exponential growth has positive Lebesgue measure.

Idea of Proof: Uses joint work with James Heitsch, inspired by work of Gerard Duminy, and *cocycle tempering* à la *Pesin Theory*.

The *Reeb modular class* $[\eta] \in H^1_{deR}(\mathcal{F})$ is an ergodic property of \mathcal{F} , and the operator norm of $[\eta]$ has estimate,

$$\|[\eta]\| \sim \int_M Gr(\mathcal{F}, x) \, dvol_M(x)$$

Thurston Zebras to Cantor Geometries

Steve Hurder

	Ergodic Theory	

More refined ergodic invariants, use cocycles in spirit of Zimmer program.

Derivative map gives measurable cocycle $D\nu \colon \Gamma_{\mathcal{F}} \to GL(\mathbb{R}^n)$

For any parabolic subgroup $P\subset GL(\mathbb{R}^n)$ get an action on homogeneous space $X_P=GL(\mathbb{R}^n)/P$

Theorem: [Hurder & Katok, Annals of Math 1987]

- $[D\nu]_e \in H^1_{erg}(\Gamma_{\mathcal{F}}; X_P)$ is ergodic invariant
- Equivalence relation defined by \mathcal{F} measurably amenable $\Rightarrow [D\nu]_e = 0$.
- If $[D\nu]_e = 0$ then many of the secondary classes vanish.

Conclusion:

 $B\Gamma_q^2$ Foliation Classification \Leftrightarrow Foliation Dynamics & Ergodic Properties.

Foliation Dynamics & Ergodic Theory

Major theme of work in the field since 1980:

• Random walks on leaves, leafwise harmonic measures [Garnett, 1980] , [Ghys, 1995], [Candel, 2003], [Deroin & Klepsyn, 2007], [Deroin, Klepsyn & Navas, 2007]

- Foliation geometric entropy [Ghys, Langevin & Walczak, 1988]
- Lyapunov spectrum and foliation dynamics [Hurder, Walczak, 1988]
- Rigidity of Anosov systems [Hurder & Katok, 1990], [Hurder, 1992], [Katok, Spatzier, et al, 1993 onwards]
- Regularity of weak stable foliations [Hasselblatt, 1992 onwards], [Pugh, Shub &Wilkinson, 1997 onwards], etc

(日) (同) (三) (三)

Mather-Thurston Theorem

 $\operatorname{Diff}_c(\mathbb{R}^q) = \operatorname{compactly supported} C^{\infty} \operatorname{-diffeomorphisms of} \mathbb{R}^q.$

 $\operatorname{Diff}_{c}^{d}(\mathbb{R}^{q}) = \operatorname{Diff}_{c}(\mathbb{R}^{q})$ with discrete topology. HUGE!

Most amazing "unknown" theorem:

Theorem: [Mather & Thurston, 1974] There is a natural map $\sigma : \operatorname{Diff}_c^d(\mathbb{R}^q) \to \Omega^q F\Gamma_q^\infty$ which induces isomorphisms on homology

 $H^*(\Sigma^q \operatorname{Diff}_c^d(\mathbb{R}^q); \mathbb{Z}) \cong H^*(F\Gamma_q^\infty)$

 $F\Gamma_q^{\infty}$ is the homotopy fiber of the universal map $B\nu \colon B\Gamma_q^r \to BO(\mathbb{R}^q).$

Question: What are the cycles in $H^*(\Sigma^q \text{Diff}^d_c(\mathbb{R}^q); \mathbb{Z})$?

Propose to construct cycles using dynamical systems!

< ロ > < 四 > < 回 > < 回 > < 回 > 、

Lipschitz Cantor Geometries

Only one "Cantor set", call it $\mathfrak X,$ but has many metrics:

 $d_{\mathfrak{X}}$ and $d'_{\mathfrak{X}}$ are Lipschitz equivalent, if they satisfy a Lipschitz condition:

 $C^{-1} \cdot d_{\mathfrak{X}}(x,y) \leq d'_{\mathfrak{X}}(x,y) \leq C \cdot d_{\mathfrak{X}}(x,y) \text{ for all } x,y \in \mathfrak{X}$

Definition: A compactly generated pseudogroup $\mathcal{G}_{\mathfrak{X}} = \langle g_1, \ldots, g_k \rangle$ acting on a Cantor set \mathfrak{X} is *Lipschitz* with respect to a metric $d_{\mathfrak{X}}$ on \mathfrak{X} , if there exists $C \geq 1$ such that for each $1 \leq i \leq k$ then

 $C^{-1} \cdot d_{\mathfrak{X}}(w, w') \le d_{\mathfrak{X}}(h_i(w), h_i(w')) \le C \cdot d_{\mathfrak{X}}(w, w'), \ \forall w, w' \in \text{Dom}(g_i).$

Definition: Lipschitz Cantor Geometry investigates properties of minimal Lipschitz pseudogroups actions on metric Cantor sets $(\mathfrak{X}, d_{\mathfrak{X}})$.

Work with coauthors Alex Clark and Olga Lukina during past 5 years has studied properties of *matchbox manifolds*, which are *foliated spaces* with transversal Cantor model \mathfrak{X} , and holonomy is pseudogroup action on \mathfrak{X} .

Zebras	Lie Groups	Ergodic Theory	Cantor Geometries

Definition: C^r Cantor Geometry, $r \ge 1$, investigates the properties of Cantor actions satisfying:

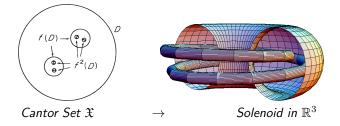
- $\mathfrak{X} \subset \mathbb{R}^q$ is an embedding,
- $\mathcal{G}_{\mathfrak{X}} = \langle g_1, \ldots, g_k \rangle$ is generated by restrictions of C^r -diffeomorphisms on some open neighborhood of $\mathfrak{X} \subset U \subset \mathbb{R}^q$.

Why study these objects?

- Interesting in their own right invariant sets for C^2 -dynamical systems.
- For $r \geq 2$, examples which yield non-trivial classes in $H^*(F\Gamma_q^r; \mathbb{R})$, not in the image of the usual secondary characteristic maps.

・ロ・・ 日本・ ・ 日本・ ・ 日本

Smoothly embedded solenoids



The holonomy along leaves of \mathcal{F} "twist" to the points of \mathfrak{X} .

Pseudogroup maps on \mathfrak{X} extend to open neighborhoods of \mathfrak{X} .

Solenoids naturally arise as hyperbolic attractors of smooth flows. [Smale, 1967], [Gambaudo, Sullivan, Tresser, 1990 – onwards]

・ロト ・同ト ・ヨト ・ヨ

Theorem: [Clark & Hurder, 2011] For $p \ge 1$ and $q \ge 2n$, there exists commuting diffeomorphisms $\varphi_i \colon \mathbb{S}^q \to \mathbb{S}^q$, $1 \le i \le p$, so that the suspension of the induced action \mathbb{Z}^p on \mathbb{S}^q yields a smooth foliation \mathcal{F} with solenoidal minimal set \mathcal{S} , such that:

- The leaves of ${\mathcal F}$ restricted to ${\mathcal S}$ are all isometric to ${\mathbb R}^p$
- The isotropy groups of periodic orbits form a profinite series

 $\cdots \Gamma_i \subset \cdots \Gamma_1 \subset \Gamma_0 = \mathbb{Z}^n$

- $\mathfrak{X} \cong \lim_{i \to \infty} (\Gamma_0 / \Gamma_i)$ is an "adic-completion" of \mathbb{Z}^p .
- Every open neighborhood of $\mathfrak X$ contains periodic open domains for the action of $\mathbb Z^p$ on $\mathbb S^q$

Question: What is relation to the quest?
Theorem: [Heitsch's Thesis, 1970]
The Bott Vanishing Theorem is false for $\mathbb Z$ coefficients.
The Dott vanishing Theorem is faise for Z coefficients.

Example: Let $(\mathbb{Z}/p\mathbb{Z})^m$ act on \mathbb{D}^{2m} via rotations $\{\varphi_1, \ldots, \varphi_m\}$ with period p on each of the *m*-factors of \mathbb{D}^2 .

Form the suspension flat bundle $\mathbb{E} = \mathbb{S}^{\infty} \times \mathbb{D}^{2m} / \varphi$. Then

 $\nu_{\mathbb{E}}^* \colon H^*(BSO(2m); \mathbb{Z}/p\mathbb{Z}) \to H^*(B\Gamma_{2m}^+; \mathbb{Z}/p\mathbb{Z}) \to H^*(\mathbb{E}; \mathbb{Z}/p\mathbb{Z})$

is injective. Let $p \to \infty$, then observe associated $\lim_{1 \to \infty} 1$ not zero, so Pontrjagin classes do not vanish in $H^*(B\Gamma^2_a; \mathbb{Z})$.

<ロト <部ト < 注入 < 注入

Cantor Geometries

For any open neighborhood $Z \subset U$ of the solenoidal minare infinite sequences of "Heitsch Examples" embedded	
The restricted foliation $\mathcal{F} U$ yields a map $h_Z\colon B\Gamma_{U \mathcal{F}}$ –	$\rightarrow B\Gamma_q^{\infty}.$
Theorem: Let S be the solenoidal minimal set above. homotopy class of $h_Z \colon B\Gamma_{U \mathcal{F}} \to B\Gamma_q^2$ is non-trivial.	Then the

Moreover, for $\ell > q/2$ there is a natural surjection

$$h_Z^* \colon H^{4\ell-1}(B\Gamma_q^2;\mathbb{R}) \to \mathcal{H}^{4\ell-1}(\mathcal{S},\mathcal{F};\mathbb{R})$$

Proof: The Cheeger-Simons classes derived from $H^*(BSO(q);\mathbb{R})$ are in the image of h_Z^* ...

These solenoidal cycles are just the simplest type of iterated braids. There are many more C^2 Cantor geometries...

イロト イヨト イヨト イヨト

Cantor Geometries

Zebras	Lie Groups	Ergodic Theory	Cantor Geometries
	After 40 years, the study of the cl	assification problem for	foliations has
	produced wide-ranging new techni	iques, and new perspect	ives on
	traditional and more recent topics	in dynamics.	
	As for the quest to "find" $B\Gamma_{q}^{r}$ –	not even close to under	standing this
	mysterious space!		0
	injetenede opdeel		

Thank you for your attention!

References

R. Bott, On a topological obstruction to integrability, In Global Analysis (Proc. Sympos. Pure Math., Vol. XVI, Berkeley, Calif., 1968), Amer. Math. Soc., 1970:127–131.

R. Bott and J. Heitsch, A remark on the integral cohomology of $B\Gamma_q$, Topology, 11:141-146, 1972.

K.-T.Chen, Iterated integrals of differential forms and loop space homology, Ann. of Math. (2), 97:217-246, 1973.

A. Clark and S. Hurder, Embedding solenoids in foliations, Topology Appl., 158:1249-1270, 2011.

A. Clark and S. Hurder, Homogeneous matchbox manifolds, Trans. Amer. Math. Soc., 365:3151-3191, 2013, arXiv:1006.5482v2.

C. Godbillon and J. Vey, Un invariant des feuilletages de codimension 1, C.R. Acad. Sci. Paris, 273:92-95, 1971.

M. Gromov, Stable mappings of foliations into manifolds Math. USSR Izv., 33:671-694, 1969.

A. Haefliger, Feuilletages sur les variétés ouvertes, Topology, 9:183-194, 1970.

A. Haefliger, Homotopy and integrability, In Manifolds-Amsterdam 1970, Lect. Notes in Math. Vol. 197, Springer-Verlag, 1971:133-163.

A. Haefliger, Naissance des feuilletages, d'Ehresmann-Reeb à Novikov, In Géométrie au vingtième siècle : 1930-2000, Hermann, Éditeurs des Sciences et des Arts. Paris. Available at http://www.unige.ch/math/folks/haefliger/Feuilletages.odf

S. Hurder, Dual homotopy invariants for G-foliations, Topology, 20:365-387, 1981.

S. Hurder, The Godbillon measure of amenable foliations, Jour. Differential Geom., 23:347-365, 1986.

S. Hurder and A. Katok, Ergodic Theory and Weil measures for foliations, Ann. of Math. (2), 126:221-275, 1987.

S. Hurder, Lectures on Foliation Dynamics: Barcelona 2010, Foliations: Dynamics, Geometry and Topology, Advanced Courses in Mathematics CRM Barcelona, to appear 2013.

S. Hurder, Lipshitz matchbox manifolds, preprint, arXiv:1309.1512.

J.N. Mather, Loops and foliations, In Manifolds-Tokyo 1973, Univ. Tokyo Press, Tokyo, 1975, 175-180.

J.N. Mather, On the homology of Haefliger's classifying space, In Differential topology (Varenna, 1976), 1979, 71–116.

A. Phillips, Foliations on open manifolds. I, II, Comment. Math. Helv., 43:204-211, 1968; 44:367-370, 1969.

F.W. Kamber and Ph. Tondeur, Foliated bundles and characteristic classes, Lect. Notes in Math. Vol. 493, Springer-Verlag, 1975.

W.P. Thurston, Noncobordant foliations of S³ Bull. Amer. Math. Soc. 78:511-514, 1972.

W.P. Thurston, Foliations and groups of diffeomorphisms Bull. Amer. Math. Soc. 80:304-307, 1974.

W.P. Thurston, The theory of foliations of codimension greater than one Comment. Math. Helv. 49:214-231, 1974.

W.P. Thurston, Existence of codimension-one foliations Ann. of Math. (2) 104: 249-268, 1976.

T. Tsuboi, On the foliated products of class C¹, Ann. of Math. (2), 130:227-271, 1989.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶