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Introduction

Dynamics of flows

Consider a non-singular C1-vector field Vona compact n-manifold
M, and its flow ¢;: M — M defined for all values of t.

Definition: A point x € M is non-wandering if its future and past
orbits return infinitely often to a neighborhood of the point.

Q C M denotes the set of all non-wandering points for the system.

A closed subset 9t C M is minimal if it is flow invariant, and the
orbit of every point in 9t is dense in 1.
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Main Problems:
e Describe the topology of the non-wandering set Q.
e Describe the dynamics of the flow on Q.

e Describe the minimal sets of the flow, and their dynamics.

This program has been carried out for C!-flows that satisfy
Smale's Axiom A property, for example, and for Morse-Smale
flows. Otherwise, simple questions such as what is the topology of
the minimal sets for a flow are intractable.

Alternate approach: ask whether every flow is C!-close to one of
these standard types, as in the Palis Conjectures.
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Example: a hyperbolic attractor

A Smale solenoid gives an example of a hyperbolic attractor:

Let M =S! x D% The map g : S x D? — S x D? is defined by
g0, (y1,y2)) = (20, % ov1+ 3 L cos®, 10y2 + Lsing).
Let C = {0} x D? be a section.

Then g"(M) N C is the union of 2" disjoint disks.

A =(1,>18"(M) is a hyperbolic attractor (called the Smale attractor):
There are expanding (S!) and contracting (ID?) directions.

C N Ais a Cantor set, and (CNA, g) is a dynamical system
on a totally disconnected set C NA.
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Dynamics of foliations

Consider an integrable distribution F C TM on a compact
n-manifold M, and the foliation F whose leaves consist of the
connected submanifolds of M which are tangent to F.

Definition: A point x € M is non-wandering if the leaf L, through
x returns infinitely often to a neighborhood of the point.

Q C M denotes the set of all non-wandering points for the system.

The complement M — Q consists of the proper leaves of F.

A closed subset 9t C M is minimal if it is a union of leaves, and
each leaf L C 9 is dense in M.

For example, a compact leaf is minimal.
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Main Problems:

e Describe the topology of the non-wandering set Q.

e Describe the dynamics of F.

e Describe the minimal sets 9t of F - what is their topology?
e Describe the dynamics of F|1.

This program has been investigated in the case of C?-foliations of
codimension-one, in particular by Richard Sacksteder, John
Cantwell & Larry Conlon, and Gilbert Hector.

Question: What hope is there to obtain meaningful results for
C’-foliations with codimension g > 1, and r > 17

e S. Hurder, Lectures on Foliation Dynamics,
Foliations: Dynamics, Geometry and Topology,
Advanced Courses in Mathematics CRM Barcelona, Springer, 2014.
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Look at special cases:
e Minimal sets with positive entropy
e Minimal sets with equicontinuous or distal dynamics

e Exceptional minimal sets

A minimal set 9 is exceptional if its intersections with open
transversals 7 C M to F have closures which are Cantor sets.

The dynamics of F|9 is equicontinuous if for each transversal T
to F has a metric such that the induced return map of the
foliation to the set 7 N 9N is equicontinuous.

This is analogous to saying that F |91 is a topological Riemannian
foliation, except that when 9 is exceptional, there is no normal
bundle to F|9.

Question: Can we classify the equicontinuous foliations on
exceptional minimal sets?
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Matchbox manifolds

A compact connected metrizable space 91 is a n-dimensional
matchbox manifold if it admits an atlas {U; }1<j<,, where U; is an
open set equipped with a homeomorphism

©i :U,' — [—1, 1]” X X,',
and U; = ;1((—1,1)" x X;, where X; is totally disconnected.
The term a matchbox manifold is due to Aarts

and Martens 1988, who studied 1-dimensional
matchbox manifolds (for n = 1).

A 4
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Theorem: [Clark & Hurder, 2012] Let 9% be an equicontinuous
matchbox manifold. Then:

e There exists an open transversal 7 such that the induced
return map on 7 N M is given by an equicontinuous action of a
finitely generated group I on a Cantor set X.

e I is foliated homeomorphic to a weak solenoid S which admits
a Cantor fibration 7: & — My over a compact manifold My with
fiber X.

Theorem: [Clark, Hurder & Lukina, 2013] An equicontinuous 9t
is classified (up to foliated homeomorphism) by the induced
holonomy action ¢: I' x X — X on a transversal Cantor set X.

Problem: Understand the group of self-homeomorphisms of an
n-dimensional matchbox manifold, and the maps between
matchbox manifolds.
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Solenoids
Let My be a connected closed manifold, and, recursively, let
f' 1 M; — M;_1 be a finite-to-one covering map. Then
My = h;n{fl’—l : M — Mi—l} = {(}/0,}/1,}/2, . ) | f;l—l(y/) = }/i—l}

is a compact connected metrizable space called a solenoid.

Let x; € M;, then the cylindrical clopen set (the fiber)

Fi = {(ﬂ(xi), ce s Xiy Yigls - --) € My} is a Cantor set .

Theorem (McCord 1966): A solenoid is a matchbox manifold.
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Example: Let M; = T", and let f,LI :T" — T" be a proper
covering. The inverse limit Ty, is an abelian topological group.

Theorem: [Bowen & Franks 1976, Gambaudo & Tresser
1990] If S is a solenoid with base S!, and the degrees of the
covering maps tend to oo sufficiently fast, then S is homeomorphic
to the minimal set of a smooth flow on a 3-manifold.

Theorem: [Clark & Hurder 2010] If S is a solenoid with base
T", and the degrees of the covering maps tend to oo sufficiently
fast, and are not too wild as matrices, then S is homeomorphic to
the minimal set of a smooth foliation.

For other classes of solenoids, it remains an open problem, whether
they can be realized as minimal sets of C"-foliations for r > 1.

Problem: Study the properties of solenoids as equicontinuous
dynamical systems.
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Let m: § — Mp be a weak solenoid defined by the system of maps
{fg: Mi = My | i > 0}. Choose a basepoint xg € My, and
basepoints x € M; such that f;j(x;) = xo then let

x=limx; e X =71"1(x)CS.

Define G = Gy = 7r1(l\/lo,x_o), and let G; C G be the subgroup
defined by G; = Image{(fo’)#: 7’l'1(M,',X,‘) — 7T1(M0,X0)}.

The collection {Gj};>o forms a group chain in G.

Each X; = Gy/G; is a finite set with a left action of G. It is a

group if G; is normal in G. The Cantor fiber of S is identified with
X = M {X,' — X,'_l} = hﬁ {G/G, — G/G,‘_l} = Goo

The left G-action ®: G — Aut(X) is minimal and equicontinuous.
We say that (X, G) is an equicontinuous minimal Cantor action.
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Homogeneous solenoids

A topological space 91 is homogeneous if for every x,y € N there
is a homeomorphism h : 9t — 9 such that h(x) = y.

McCord 1965: If G; is a normal subgroup of G for all i > 0, then
G/G; is a group, and Gy is a profinite group. Then My, is
homogeneous.

Example: Let M; = T", and let f,’_l : T" — T" be a proper

covering. Then the inverse limit T, is a homogeneous matchbox
manifold.

Are there solenoids which are non-homogeneous?
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Non-homogeneous solenoids

Schori 1966: Not all solenoids are homogeneous.

@2

el

My is the inverse limit of 3-to-1 covermings of the genus 2 surface
3 5. Every leaf in M, is a non-compact surface of infinite genus.
Schori found a closed loop in ¥, which, depending on the point in
the fiber of My, — X, lifts either to a closed loop, or to a
non-closed curve. So M, is not homogeneous.
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Rogers & Tollefson 1971: There exists a closed manifold My and
a group chain {H}i>o with Hy = m1(Mo, xo) such that H; is not a
normal subgroup of Hp, but the associated solenoid M, is a
homogeneous space.

That is, it is possible to obtain a homogeneous solenoid as an
inverse limit of non-regular coverings.

Question: How one can determine if a solenoid is homogeneous?
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Equivalent group chains

Rogers and Tollefson suggested to use the following notion to
study the problem of homogeneity.

Definition: (Equivalent group chains) Group chains {G;};>o and
{H;}i>0 are equivalent if, possibly for a subsequence, one has

Go=HyDG I DODHI DG DH,D---
Dynamically, {G;}i>0 and {H;}i>o are equivalent if and only if
there is a conjugacy h: Goo — Hxo with h(eG;) = (eH;).

If {Gj}i>0 and {H;}i>0 are not equivalent, there may still exist a
conjugacy h: G, — Ho, but it cannot preserve the basepoint.
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A criterion for homogeneity

A group chain {H;};>o is weakly normal if it is equivalent to a
group chain {G;};>g such that there is iy > 0 such that i > i

Gi C Gj, C N(G;), N(G;j) is the normalizer of G; in G.

Theorem: (Fokkink and Oversteegen 2002) A solenoid S is
homogeneous if and only if its associated group chain {H;}i>¢ is
weakly normal.

Topologically, this means that, possibly restricting to clopen subset
of the fiber, one can represent the solenoid as the inverse limit of a
sequence of regular coverings of a closed manifold.
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Ellis semigroup

Let ®: G — Homeo(X) : g — ¢g be a group action.

Let ¢(G) = {¢g | g € G} C Maps(X, X).

Theorem: (Ellis 1969) The closure & = ¢(G) C Maps(X, X) in
the topology of pointwise convergence on maps has a structure as
a semigroup, called the enveloping (Ellis) semigroup.

Ellis 1969, see also Auslander 1988: If the action (X, G) is
equicontinuous, then the Ellis semigroup & is a group.

Note: The action (G, G) is equicontinuous, so its Ellis
semigroup is a group. Denote by

& ={he & | h(x)=x}

the isotropy subgroup of the &-action at x € X.
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A representation of the Ellis (semi)group

Remark: In general, it is quite difficult to compute the Ellis
semigroup of an action (X, G). Let {G;}i>o be a group chain in G
such that (X, G) is conjugate to (Gu, G).

Let G = ﬂgGGgG,-g_l, then C; is a normal subgroup of G, and

Co = Ii<-m{G/C,- — G/Ci_1} is a profinite group.

Theorem: [Dyer, Hurder, Lukina 2015] The profinite group Coo
is isomorphic to the Ellis group & of the action (X, G). Also, if &,
is the isotropy group of the &-action on X, then

&, = “(_m{G,'/C; — Gj_1/Ci—1} = Dx.

Dy is called the discriminant group of the action.
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A criterion for homogeneity

Since B, is a profinite group, it is either finite, or a Cantor group.

Proposition: [Dyer, Hurder, Lukina 2015] The isotropy group
&, of the Ellis group action on X is a normal subgroup of &, if
and only if &, is trivial.

Therefore, if the isotropy group &, is non-trivial, then X =2 & /8,
does not admit group structure.

Corollary: Let 9t be a solenoid with associated group chain
{H;}i>0. Then M is homogeneous if and only if the isotropy group
B, of the Ellis group action on X is trivial.
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Advantages of the Ellis group approach

Computing the isotropy group &, has the following advantages as
opposed to working with equivalence classes of group chains:

1. Unlike the normality properties of group chains, finiteness of
the discriminant group Dy does not depend on the choice of a
group chain.

2. In many examples, one can explicitly compute the quotients
G;/C; and the discriminant group Dy, while it may be quite
difficult to show that there is no chain of normal subgroups
equivalent to a given group chain {G;}i>o.
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Virtually homogeneous solenoids

We now have a criterion for a solenoid to be homogeneous, and we
know that there are solenoids which are non-homogeneous.

Question: Are there solenoids which are ‘less’ non-homogeneous
than other ones? That is, is there any way to quantify the degree
of non-homogeneity?

We introduce the notion of a virtually homogeneous solenoid.:

Definition: A solenoid 991 — My is virtually homogeneous, if there
exists a finite-to-one covering p: Ng — Mp such that the pullback
solenoid 91 = p*M is homogeneous.
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A criterion for virtual homogeneity

Recall that & =lim._{G/C; — G/C;_1} is the Ellis group of the
action, and Dy is the discriminant group at x.

If Dy is non-trivial, it is either a finite group or a Cantor group.

Theorem: (Dyer, Hurder, Lukina 2015) If D, is a finite group,
then a solenoid M with associated group chain {H;};> is virtually
homogeneous.

Proof. One can show that Dy is finite if and only if {H;};>¢ is
equivalent to a chain {G;};>g such that H; N G; = C;. Then use
Galois theory to construct a covering of the base manifold.
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The discrete Heisenberg group

Let H = (R3, %) be the Heisenberg group, and H = (Z3, *) be the
discrete Heisenberg group, with

(y,2)x (Y, )= (x+ Xy +y 2+ 2 +x).
Then My = H/#H is a closed 3-manifold, and 71 (Mp,0) = H.

Group chains in the Heisenberg group, giving homogeneous actions,
were classified by Lightwood, Sahin and Ugarcovici 2014.

We are interested in group chains which give non-homogeneous
actions.
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A virtually homogeneous solenoid

n n
Let p, g be distinct primes, and let M, = < pﬁ’_’il ql,),jzl ) Then

{Gn} = {M,Z? x pZ} defines a nested group chain. Let G, be
the corresponding inverse limit space. Let M, = H/G,.

Proposition: The solenoid defined by the group action (Gs, H) is
virtually homogeneous, but not weakly normal.

Pq
normal subgroup of index p in G,. Since p is a prime, C, is a

maximal normal subgroup of G,. Then for n > 1 we have
|G,/ Cpn| = p, and it follows that D, is nontrivial and finite.

n 2..n
Proof. Let L, = ( p‘n’ﬁl Pa ) Then C, = L,Z2 x pZ is a
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