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Dynamics of flows

Consider a non-singular C 1-vector field ~V on a compact n-manifold
M, and its flow ϕt : M → M defined for all values of t.

Definition: A point x ∈ M is non-wandering if its future and past
orbits return infinitely often to a neighborhood of the point.

Ω ⊂ M denotes the set of all non-wandering points for the system.

A closed subset M ⊂ M is minimal if it is flow invariant, and the
orbit of every point in M is dense in M.



Introduction MM Solenoids Chains Examples

Main Problems:

• Describe the topology of the non-wandering set Ω.

• Describe the dynamics of the flow on Ω.

• Describe the minimal sets of the flow, and their dynamics.

This program has been carried out for C 1-flows that satisfy
Smale’s Axiom A property, for example, and for Morse-Smale
flows. Otherwise, simple questions such as what is the topology of
the minimal sets for a flow are intractable.

Alternate approach: ask whether every flow is C 1-close to one of
these standard types, as in the Palis Conjectures.
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Example: a hyperbolic attractor

A Smale solenoid gives an example of a hyperbolic attractor:

Let M = S1×D2. The map g : S1×D2 → S1×D2 is defined by

g(θ, (y1, y2)) =
(
2θ, 1

10y1 + 1
2 cos θ, 1

10y2 + 1
2 sin θ

)
.

Let C = {0} × D2 be a section.

Then gn(M) ∩ C is the union of 2n disjoint disks.

Λ =
⋂

n≥1 g
n(M) is a hyperbolic attractor (called the Smale attractor):

There are expanding (S1) and contracting (D2) directions.

C ∩ Λ is a Cantor set, and (C ∩ Λ, g) is a dynamical system

on a totally disconnected set C ∩ Λ.
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Dynamics of foliations

Consider an integrable distribution F ⊂ TM on a compact
n-manifold M, and the foliation F whose leaves consist of the
connected submanifolds of M which are tangent to F .

Definition: A point x ∈ M is non-wandering if the leaf Lx through
x returns infinitely often to a neighborhood of the point.

Ω ⊂ M denotes the set of all non-wandering points for the system.

The complement M − Ω consists of the proper leaves of F .

A closed subset M ⊂ M is minimal if it is a union of leaves, and
each leaf L ⊂M is dense in M.

For example, a compact leaf is minimal.
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Main Problems:

• Describe the topology of the non-wandering set Ω.

• Describe the dynamics of F .

• Describe the minimal sets M of F - what is their topology?

• Describe the dynamics of F|M.

This program has been investigated in the case of C 2-foliations of
codimension-one, in particular by Richard Sacksteder, John
Cantwell & Larry Conlon, and Gilbert Hector.

Question: What hope is there to obtain meaningful results for
C r -foliations with codimension q > 1, and r ≥ 1?

• S. Hurder, Lectures on Foliation Dynamics,
Foliations: Dynamics, Geometry and Topology,
Advanced Courses in Mathematics CRM Barcelona, Springer, 2014.
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Look at special cases:

• Minimal sets with positive entropy

• Minimal sets with equicontinuous or distal dynamics

• Exceptional minimal sets

A minimal set M is exceptional if its intersections with open
transversals T ⊂ M to F have closures which are Cantor sets.

The dynamics of F|M is equicontinuous if for each transversal T
to F has a metric such that the induced return map of the
foliation to the set T ∩M is equicontinuous.

This is analogous to saying that F|M is a topological Riemannian
foliation, except that when M is exceptional, there is no normal
bundle to F|M.

Question: Can we classify the equicontinuous foliations on
exceptional minimal sets?
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Matchbox manifolds

A compact connected metrizable space M is a n-dimensional
matchbox manifold if it admits an atlas {Ui}1≤i≤ν , where Ui is an
open set equipped with a homeomorphism

ϕi : U i → [−1, 1]n × Xi ,

and Ui = ϕ−1
i ((−1, 1)n × Xi , where Xi is totally disconnected.

The term a matchbox manifold is due to Aarts
and Martens 1988, who studied 1-dimensional
matchbox manifolds (for n = 1).
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Theorem: [Clark & Hurder, 2012] Let M be an equicontinuous
matchbox manifold. Then:

• There exists an open transversal T such that the induced
return map on T ∩M is given by an equicontinuous action of a
finitely generated group Γ on a Cantor set X .

• M is foliated homeomorphic to a weak solenoid S which admits
a Cantor fibration π : S → M0 over a compact manifold M0 with
fiber X .

Theorem: [Clark, Hurder & Lukina, 2013] An equicontinuous M
is classified (up to foliated homeomorphism) by the induced
holonomy action ϕ : Γ× X → X on a transversal Cantor set X .

Problem: Understand the group of self-homeomorphisms of an
n-dimensional matchbox manifold, and the maps between
matchbox manifolds.
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Solenoids

Let M0 be a connected closed manifold, and, recursively, let
f ii−1 : Mi → Mi−1 be a finite-to-one covering map. Then

M∞ = lim
←−
{f ii−1 : Mi → Mi−1} = {(y0, y1, y2, . . .) | f ii−1(yi ) = yi−1}

is a compact connected metrizable space called a solenoid.

Let xi ∈ Mi , then the cylindrical clopen set (the fiber)

Fi = {(f i0 (xi ), . . . , xi , yi+1, . . .) ∈ M∞} is a Cantor set .

Theorem (McCord 1966): A solenoid is a matchbox manifold.
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Example: Let Mi = Tn, and let f ii−1 : Tn → Tn be a proper
covering. The inverse limit T∞ is an abelian topological group.

Theorem: [Bowen & Franks 1976, Gambaudo & Tresser
1990] If S is a solenoid with base S1, and the degrees of the
covering maps tend to ∞ sufficiently fast, then S is homeomorphic
to the minimal set of a smooth flow on a 3-manifold.

Theorem: [Clark & Hurder 2010] If S is a solenoid with base
Tn, and the degrees of the covering maps tend to ∞ sufficiently
fast, and are not too wild as matrices, then S is homeomorphic to
the minimal set of a smooth foliation.

For other classes of solenoids, it remains an open problem, whether
they can be realized as minimal sets of C r -foliations for r ≥ 1.

Problem: Study the properties of solenoids as equicontinuous
dynamical systems.
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Let π : S → M0 be a weak solenoid defined by the system of maps
{f i0 : Mi → M0 | i > 0}. Choose a basepoint x0 ∈ M0, and
basepoints x ∈ Mi such that f i0 (xi ) = x0 then let

x = lim xi ∈ X = π−1(x0) ⊂ S .

Define G = G0 = π1(M0, x0), and let Gi ⊂ G be the subgroup
defined by Gi = Image{(f i0 )# : π1(Mi , xi )→ π1(M0, x0)}.
The collection {Gi}i≥0 forms a group chain in G .

Each Xi = G0/Gi is a finite set with a left action of G . It is a
group if Gi is normal in G . The Cantor fiber of S is identified with

X ∼= lim←− {Xi → Xi−1} = lim←− {G/Gi → G/Gi−1} = G∞

The left G -action Φ: G → Aut(X ) is minimal and equicontinuous.
We say that (X ,G ) is an equicontinuous minimal Cantor action.
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Homogeneous solenoids

A topological space M is homogeneous if for every x , y ∈M there
is a homeomorphism h : M→M such that h(x) = y .

McCord 1965: If Gi is a normal subgroup of G for all i ≥ 0, then
G/Gi is a group, and G∞ is a profinite group. Then M∞ is
homogeneous.

Example: Let Mi = Tn, and let f ii−1 : Tn → Tn be a proper
covering. Then the inverse limit T∞ is a homogeneous matchbox
manifold.

Are there solenoids which are non-homogeneous?
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Non-homogeneous solenoids

Schori 1966: Not all solenoids are homogeneous.

3
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2
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1
X0
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0C’’
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M∞ is the inverse limit of 3-to-1 coverings of the genus 2 surface
Σ2. Every leaf in M∞ is a non-compact surface of infinite genus.
Schori found a closed loop in Σ2, which, depending on the point in
the fiber of M∞ → Σ2, lifts either to a closed loop, or to a
non-closed curve. So M∞ is not homogeneous.
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Rogers & Tollefson 1971: There exists a closed manifold M0 and
a group chain {Hi}i≥0 with H0 = π1(M0, x0) such that Hi is not a
normal subgroup of H0, but the associated solenoid M∞ is a
homogeneous space.

That is, it is possible to obtain a homogeneous solenoid as an
inverse limit of non-regular coverings.

Question: How one can determine if a solenoid is homogeneous?
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Equivalent group chains

Rogers and Tollefson suggested to use the following notion to
study the problem of homogeneity.

Definition: (Equivalent group chains) Group chains {Gi}i≥0 and
{Hi}i≥0 are equivalent if, possibly for a subsequence, one has

G0 = H0 ⊃ G1 ⊃ H1 ⊃ G2 ⊃ H2 ⊃ · · ·

Dynamically, {Gi}i≥0 and {Hi}i≥0 are equivalent if and only if
there is a conjugacy h : G∞ → H∞ with h(eGi ) = (eHi ).

If {Gi}i≥0 and {Hi}i≥0 are not equivalent, there may still exist a
conjugacy h : G∞ → H∞, but it cannot preserve the basepoint.
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A criterion for homogeneity

A group chain {Hi}i≥0 is weakly normal if it is equivalent to a
group chain {Gi}i≥0 such that there is i0 ≥ 0 such that i ≥ i0

Gi ⊂ Gi0 ⊂ N(Gi ), N(Gi ) is the normalizer of Gi in G0.

Theorem: (Fokkink and Oversteegen 2002) A solenoid S is
homogeneous if and only if its associated group chain {Hi}i≥0 is
weakly normal.

Topologically, this means that, possibly restricting to clopen subset
of the fiber, one can represent the solenoid as the inverse limit of a
sequence of regular coverings of a closed manifold.
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Ellis semigroup

Let Φ: G → Homeo(X ) : g 7→ φg be a group action.

Let φ(G ) = {φg | g ∈ G} ⊂ Maps(X ,X ).

Theorem: (Ellis 1969) The closure G = φ(G ) ⊂ Maps(X ,X ) in
the topology of pointwise convergence on maps has a structure as
a semigroup, called the enveloping (Ellis) semigroup.

Ellis 1969, see also Auslander 1988: If the action (X ,G ) is
equicontinuous, then the Ellis semigroup G is a group.

Note: The action (G∞,G ) is equicontinuous, so its Ellis
semigroup is a group. Denote by

Gx = {h ∈ G | h(x) = x}

the isotropy subgroup of the G-action at x ∈ X .
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A representation of the Ellis (semi)group

Remark: In general, it is quite difficult to compute the Ellis
semigroup of an action (X ,G ). Let {Gi}i≥0 be a group chain in G
such that (X ,G ) is conjugate to (G∞,G ).

Let Ci =
⋂

g∈G gGig
−1, then Ci is a normal subgroup of G , and

C∞ = lim
←−
{G/Ci → G/Ci−1} is a profinite group.

Theorem: [Dyer, Hurder, Lukina 2015] The profinite group C∞
is isomorphic to the Ellis group G of the action (X ,G ). Also, if Gx

is the isotropy group of the G-action on X , then

Gx
∼= lim
←−
{Gi/Ci → Gi−1/Ci−1} ≡ Dx .

Dx is called the discriminant group of the action.
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A criterion for homogeneity

Since Gx is a profinite group, it is either finite, or a Cantor group.

Proposition: [Dyer, Hurder, Lukina 2015] The isotropy group
Gx of the Ellis group action on X is a normal subgroup of Gx if
and only if Gx is trivial.

Therefore, if the isotropy group Gx is non-trivial, then X ∼= G/Gx

does not admit group structure.

Corollary: Let M be a solenoid with associated group chain
{Hi}i≥0. Then M is homogeneous if and only if the isotropy group
Gx of the Ellis group action on X is trivial.
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Advantages of the Ellis group approach

Computing the isotropy group Gx has the following advantages as
opposed to working with equivalence classes of group chains:

1. Unlike the normality properties of group chains, finiteness of
the discriminant group Dx does not depend on the choice of a
group chain.

2. In many examples, one can explicitly compute the quotients
Gi/Ci and the discriminant group Dx , while it may be quite
difficult to show that there is no chain of normal subgroups
equivalent to a given group chain {Gi}i≥0.
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Virtually homogeneous solenoids

We now have a criterion for a solenoid to be homogeneous, and we
know that there are solenoids which are non-homogeneous.

Question: Are there solenoids which are ‘less’ non-homogeneous
than other ones? That is, is there any way to quantify the degree
of non-homogeneity?

We introduce the notion of a virtually homogeneous solenoid:

Definition: A solenoid M→ M0 is virtually homogeneous, if there
exists a finite-to-one covering p : N0 → M0 such that the pullback
solenoid N = p∗M is homogeneous.
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A criterion for virtual homogeneity

Recall that G = lim←−{G/Ci → G/Ci−1} is the Ellis group of the
action, and Dx is the discriminant group at x .

If Dx is non-trivial, it is either a finite group or a Cantor group.

Theorem: (Dyer, Hurder, Lukina 2015) If Dx is a finite group,
then a solenoid M with associated group chain {Hi}i≥0 is virtually
homogeneous.

Proof. One can show that Dx is finite if and only if {Hi}i≥0 is
equivalent to a chain {Gi}i≥0 such that Hi ∩ C1 = Ci . Then use
Galois theory to construct a covering of the base manifold.
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The discrete Heisenberg group

Let H = (R3, ∗) be the Heisenberg group, and H = (Z3, ∗) be the
discrete Heisenberg group, with

(x , y , z) ∗ (x ′, y ′, z ′) = (x + x ′, y + y ′, z + z ′ + xy ′).

Then M0 = H/H is a closed 3-manifold, and π1(M0, 0) = H.

Group chains in the Heisenberg group, giving homogeneous actions,
were classified by Lightwood, Sahin and Ugarcovici 2014.

We are interested in group chains which give non-homogeneous
actions.
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A virtually homogeneous solenoid

Let p, q be distinct primes, and let Mn =

(
qpn pqn

pn+1 qn+1

)
. Then

{Gn} = {MnZ2 × pZ} defines a nested group chain. Let G∞ be
the corresponding inverse limit space. Let Mn = H/Gn.

Proposition: The solenoid defined by the group action (G∞,H) is
virtually homogeneous, but not weakly normal.

Proof. Let Ln =

(
qpn p2qn

pn+1 pqn+1

)
. Then Cn = LnZ2 × pZ is a

normal subgroup of index p in Gn. Since p is a prime, Cn is a
maximal normal subgroup of Gn. Then for n ≥ 1 we have
|Gn/Cn| = p, and it follows that Dx is nontrivial and finite.
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Based on the works
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• A. Clark, S. Hurder and O. Lukina, Voronoi tessellations of matchbox manifolds,
Top. Proc. 41:167–259, 2013.

• O. Lukina, Hierarchy of graph matchbox manifolds, Topology Appl.,
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• O. Lukina, Hausdorff dimension of matchbox manifolds, arXiv: 1407.0693.
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