Homeomorphisms of solenoids

Steve Hurder

University of Illinois at Chicago
www.math.uic.edu/~hurder

April 21, 2016

Dynamics of flows

Consider a non-singular C^{1}-vector field \vec{V} on a compact n-manifold M, and its flow $\varphi_{t}: M \rightarrow M$ defined for all values of t.

Definition: A point $x \in M$ is non-wandering if its future and past orbits return infinitely often to a neighborhood of the point.
$\Omega \subset M$ denotes the set of all non-wandering points for the system.
A closed subset $\mathfrak{M} \subset M$ is minimal if it is flow invariant, and the orbit of every point in \mathfrak{M} is dense in \mathfrak{M}.

Main Problems:

- Describe the topology of the non-wandering set Ω.
- Describe the dynamics of the flow on Ω.
- Describe the minimal sets of the flow, and their dynamics.

This program has been carried out for C^{1}-flows that satisfy Smale's Axiom A property, for example, and for Morse-Smale flows. Otherwise, simple questions such as what is the topology of the minimal sets for a flow are intractable.
Alternate approach: ask whether every flow is C^{1}-close to one of these standard types, as in the Palis Conjectures.

Example: a hyperbolic attractor

A Smale solenoid gives an example of a hyperbolic attractor:
Let $M=\mathbb{S}^{1} \times \mathbb{D}^{2}$. The map $g: \mathbb{S}^{1} \times \mathbb{D}^{2} \rightarrow \mathbb{S}^{1} \times \mathbb{D}^{2}$ is defined by

$$
\begin{aligned}
& g\left(\theta,\left(y_{1}, y_{2}\right)\right)=\left(2 \theta, \frac{1}{10} y_{1}+\frac{1}{2} \cos \theta, \frac{1}{10} y_{2}+\frac{1}{2} \sin \theta\right) . \\
& \text { Let } C=\{0\} \times \mathbb{D}^{2} \text { be a section. } \\
& \text { Then } g^{n}(M) \cap C \text { is the union of } 2^{n} \text { disjoint disks. }
\end{aligned}
$$

$\Lambda=\bigcap_{n \geq 1} g^{n}(M)$ is a hyperbolic attractor (called the Smale attractor):
There are expanding $\left(\mathbb{S}^{1}\right)$ and contracting $\left(\mathbb{D}^{2}\right)$ directions.
$C \cap \Lambda$ is a Cantor set, and $(C \cap \Lambda, g)$ is a dynamical system on a totally disconnected set $C \cap \Lambda$.

Dynamics of foliations

Consider an integrable distribution $F \subset T M$ on a compact n-manifold M, and the foliation \mathcal{F} whose leaves consist of the connected submanifolds of M which are tangent to F.

Definition: A point $x \in M$ is non-wandering if the leaf L_{x} through x returns infinitely often to a neighborhood of the point.
$\Omega \subset M$ denotes the set of all non-wandering points for the system.
The complement $M-\Omega$ consists of the proper leaves of \mathcal{F}.
A closed subset $\mathfrak{M} \subset M$ is minimal if it is a union of leaves, and each leaf $L \subset \mathfrak{M}$ is dense in \mathfrak{M}.

For example, a compact leaf is minimal.

Main Problems:

- Describe the topology of the non-wandering set Ω.
- Describe the dynamics of \mathcal{F}.
- Describe the minimal sets \mathfrak{M} of \mathcal{F} - what is their topology?
- Describe the dynamics of $\mathcal{F} \mid \mathfrak{M}$.

This program has been investigated in the case of C^{2}-foliations of codimension-one, in particular by Richard Sacksteder, John Cantwell \& Larry Conlon, and Gilbert Hector.

Question: What hope is there to obtain meaningful results for C^{r}-foliations with codimension $q>1$, and $r \geq 1$?

- S. Hurder, Lectures on Foliation Dynamics, Foliations: Dynamics, Geometry and Topology, Advanced Courses in Mathematics CRM Barcelona, Springer, 2014.

Look at special cases:

- Minimal sets with positive entropy
- Minimal sets with equicontinuous or distal dynamics
- Exceptional minimal sets

A minimal set \mathfrak{M} is exceptional if its intersections with open transversals $\mathcal{T} \subset M$ to \mathcal{F} have closures which are Cantor sets.

The dynamics of $\mathcal{F} \mid \mathfrak{M}$ is equicontinuous if for each transversal \mathcal{T} to \mathcal{F} has a metric such that the induced return map of the foliation to the set $\mathcal{T} \cap \mathfrak{M}$ is equicontinuous.

This is analogous to saying that $\mathcal{F} \mid \mathfrak{M}$ is a topological Riemannian foliation, except that when \mathfrak{M} is exceptional, there is no normal bundle to $\mathcal{F} \mid \mathfrak{M}$.

Question: Can we classify the equicontinuous foliations on exceptional minimal sets?

Matchbox manifolds

A compact connected metrizable space \mathfrak{M} is a n-dimensional matchbox manifold if it admits an atlas $\left\{U_{i}\right\}_{1 \leq i \leq \nu}$, where U_{i} is an open set equipped with a homeomorphism

$$
\varphi_{i}: \bar{U}_{i} \rightarrow[-1,1]^{n} \times X_{i}
$$

and $U_{i}=\varphi_{i}^{-1}\left((-1,1)^{n} \times X_{i}\right.$, where X_{i} is totally disconnected.

The term a matchbox manifold is due to Aarts and Martens 1988, who studied 1-dimensional matchbox manifolds (for $n=1$).

Theorem: [Clark \& Hurder, 2012] Let \mathfrak{M} be an equicontinuous matchbox manifold. Then:

- There exists an open transversal \mathcal{T} such that the induced return map on $\mathcal{T} \cap \mathfrak{M}$ is given by an equicontinuous action of a finitely generated group Γ on a Cantor set X.
- \mathfrak{M} is foliated homeomorphic to a weak solenoid \mathcal{S} which admits a Cantor fibration $\pi: \mathcal{S} \rightarrow M_{0}$ over a compact manifold M_{0} with fiber X.

Theorem: [Clark, Hurder \& Lukina, 2013] An equicontinuous \mathfrak{M} is classified (up to foliated homeomorphism) by the induced holonomy action $\varphi: \Gamma \times X \rightarrow X$ on a transversal Cantor set X.

Problem: Understand the group of self-homeomorphisms of an n-dimensional matchbox manifold, and the maps between matchbox manifolds.

Solenoids

Let M_{0} be a connected closed manifold, and, recursively, let $f_{i-1}^{i}: M_{i} \rightarrow M_{i-1}$ be a finite-to-one covering map. Then
$M_{\infty}=\lim _{\longleftarrow}\left\{f_{i-1}^{i}: M_{i} \rightarrow M_{i-1}\right\}=\left\{\left(y_{0}, y_{1}, y_{2}, \ldots\right) \mid f_{i-1}^{i}\left(y_{i}\right)=y_{i-1}\right\}$
is a compact connected metrizable space called a solenoid.
Let $x_{i} \in M_{i}$, then the cylindrical clopen set (the fiber)

$$
F_{i}=\left\{\left(f_{0}^{i}\left(x_{i}\right), \ldots, x_{i}, y_{i+1}, \ldots\right) \in M_{\infty}\right\} \text { is a Cantor set }
$$

Theorem (McCord 1966): A solenoid is a matchbox manifold.

Example: Let $M_{i}=\mathbb{T}^{n}$, and let $f_{i-1}^{i}: \mathbb{T}^{n} \rightarrow \mathbb{T}^{n}$ be a proper covering. The inverse limit \mathbb{T}_{∞} is an abelian topological group.

Theorem: [Bowen \& Franks 1976, Gambaudo \& Tresser 1990] If \mathcal{S} is a solenoid with base \mathbb{S}^{1}, and the degrees of the covering maps tend to ∞ sufficiently fast, then \mathcal{S} is homeomorphic to the minimal set of a smooth flow on a 3-manifold.

Theorem: [Clark \& Hurder 2010] If \mathcal{S} is a solenoid with base \mathbb{T}^{n}, and the degrees of the covering maps tend to ∞ sufficiently fast, and are not too wild as matrices, then \mathcal{S} is homeomorphic to the minimal set of a smooth foliation.

For other classes of solenoids, it remains an open problem, whether they can be realized as minimal sets of C^{r}-foliations for $r \geq 1$.
Problem: Study the properties of solenoids as equicontinuous dynamical systems.

Let $\pi: \mathcal{S} \rightarrow M_{0}$ be a weak solenoid defined by the system of maps $\left\{f_{0}^{i}: M_{i} \rightarrow M_{0} \mid i>0\right\}$. Choose a basepoint $x_{0} \in M_{0}$, and basepoints $x \in M_{i}$ such that $f_{0}^{i}\left(x_{i}\right)=x_{0}$ then let

$$
x=\lim x_{i} \in X=\pi^{-1}\left(x_{0}\right) \subset \mathcal{S}
$$

Define $G=G_{0}=\pi_{1}\left(M_{0}, x_{0}\right)$, and let $G_{i} \subset G$ be the subgroup defined by $G_{i}=\operatorname{Image}\left\{\left(f_{0}^{i}\right)_{\#:}: \pi_{1}\left(M_{i}, x_{i}\right) \rightarrow \pi_{1}\left(M_{0}, x_{0}\right)\right\}$.
The collection $\left\{G_{i}\right\}_{i \geq 0}$ forms a group chain in G.
Each $X_{i}=G_{0} / G_{i}$ is a finite set with a left action of G. It is a group if G_{i} is normal in G. The Cantor fiber of \mathcal{S} is identified with

$$
X \cong \lim _{\leftrightarrows}\left\{X_{i} \rightarrow X_{i-1}\right\}=\lim _{\leftrightarrows}\left\{G / G_{i} \rightarrow G / G_{i-1}\right\}=G_{\infty}
$$

The left G-action $\Phi: G \rightarrow \operatorname{Aut}(X)$ is minimal and equicontinuous. We say that (X, G) is an equicontinuous minimal Cantor action.

Homogeneous solenoids

A topological space \mathfrak{M} is homogeneous if for every $x, y \in \mathfrak{M}$ there is a homeomorphism $h: \mathfrak{M} \rightarrow \mathfrak{M}$ such that $h(x)=y$.

McCord 1965: If G_{i} is a normal subgroup of G for all $i \geq 0$, then G / G_{i} is a group, and G_{∞} is a profinite group. Then M_{∞} is homogeneous.

Example: Let $M_{i}=\mathbb{T}^{n}$, and let $f_{i-1}^{i}: \mathbb{T}^{n} \rightarrow \mathbb{T}^{n}$ be a proper covering. Then the inverse limit \mathbb{T}_{∞} is a homogeneous matchbox manifold.

Are there solenoids which are non-homogeneous?

Non-homogeneous solenoids

Schori 1966: Not all solenoids are homogeneous.

M_{∞} is the inverse limit of 3 -to- 1 coverings of the genus 2 surface Σ_{2}. Every leaf in M_{∞} is a non-compact surface of infinite genus. Schori found a closed loop in Σ_{2}, which, depending on the point in the fiber of $M_{\infty} \rightarrow \Sigma_{2}$, lifts either to a closed loop, or to a non-closed curve. So M_{∞} is not homogeneous.

Rogers \& Tollefson 1971: There exists a closed manifold M_{0} and a group chain $\left\{H_{i}\right\}_{i \geq 0}$ with $H_{0}=\pi_{1}\left(M_{0}, x_{0}\right)$ such that H_{i} is not a normal subgroup of H_{0}, but the associated solenoid M_{∞} is a homogeneous space.

That is, it is possible to obtain a homogeneous solenoid as an inverse limit of non-regular coverings.

Question: How one can determine if a solenoid is homogeneous?

Equivalent group chains

Rogers and Tollefson suggested to use the following notion to study the problem of homogeneity.
Definition: (Equivalent group chains) Group chains $\left\{G_{i}\right\}_{i \geq 0}$ and $\left\{H_{i}\right\}_{i \geq 0}$ are equivalent if, possibly for a subsequence, one has

$$
G_{0}=H_{0} \supset G_{1} \supset H_{1} \supset G_{2} \supset H_{2} \supset \cdots
$$

Dynamically, $\left\{G_{i}\right\}_{i \geq 0}$ and $\left\{H_{i}\right\}_{i \geq 0}$ are equivalent if and only if there is a conjugacy $h: G_{\infty} \rightarrow H_{\infty}$ with $h\left(e G_{i}\right)=\left(e H_{i}\right)$.

If $\left\{G_{i}\right\}_{i \geq 0}$ and $\left\{H_{i}\right\}_{i \geq 0}$ are not equivalent, there may still exist a conjugacy $h: G_{\infty} \rightarrow H_{\infty}$, but it cannot preserve the basepoint.

A criterion for homogeneity

A group chain $\left\{H_{i}\right\}_{i \geq 0}$ is weakly normal if it is equivalent to a group chain $\left\{G_{i}\right\}_{i \geq 0}$ such that there is $i_{0} \geq 0$ such that $i \geq i_{0}$

$$
G_{i} \subset G_{i_{0}} \subset N\left(G_{i}\right), N\left(G_{i}\right) \text { is the normalizer of } G_{i} \text { in } G_{0} .
$$

Theorem: (Fokkink and Oversteegen 2002) A solenoid \mathcal{S} is homogeneous if and only if its associated group chain $\left\{H_{i}\right\}_{i \geq 0}$ is weakly normal.

Topologically, this means that, possibly restricting to clopen subset of the fiber, one can represent the solenoid as the inverse limit of a sequence of regular coverings of a closed manifold.

Ellis semigroup

Let $\Phi: G \rightarrow \operatorname{Homeo}(X): g \mapsto \phi_{g}$ be a group action.
Let $\phi(G)=\left\{\phi_{g} \mid g \in G\right\} \subset \operatorname{Maps}(X, X)$.
Theorem: (Ellis 1969) The closure $\mathfrak{G}=\overline{\phi(G)} \subset \operatorname{Maps}(X, X)$ in the topology of pointwise convergence on maps has a structure as a semigroup, called the enveloping (Ellis) semigroup.

Ellis 1969, see also Auslander 1988: If the action (X, G) is equicontinuous, then the Ellis semigroup \mathfrak{G} is a group.

Note: The action $\left(G_{\infty}, G\right)$ is equicontinuous, so its Ellis semigroup is a group. Denote by

$$
\mathfrak{G}_{x}=\{h \in \mathfrak{G} \mid h(x)=x\}
$$

the isotropy subgroup of the \mathfrak{G}-action at $x \in X$.

A representation of the Ellis (semi)group

Remark: In general, it is quite difficult to compute the Ellis semigroup of an action (X, G). Let $\left\{G_{i}\right\}_{i \geq 0}$ be a group chain in G such that (X, G) is conjugate to $\left(G_{\infty}, G\right)$.

Let $C_{i}=\bigcap_{g \in G} g G_{i} g^{-1}$, then C_{i} is a normal subgroup of G, and

$$
C_{\infty}=\lim _{\leftarrow}\left\{G / C_{i} \rightarrow G / C_{i-1}\right\} \text { is a profinite group. }
$$

Theorem: [Dyer, Hurder, Lukina 2015] The profinite group C_{∞} is isomorphic to the Ellis group \mathfrak{G} of the action (X, G). Also, if \mathfrak{G}_{x} is the isotropy group of the \mathfrak{G}-action on X, then

$$
\mathfrak{G}_{x} \cong \lim _{\longleftarrow}\left\{G_{i} / C_{i} \rightarrow G_{i-1} / C_{i-1}\right\} \equiv \mathcal{D}_{x}
$$

\mathcal{D}_{x} is called the discriminant group of the action.

A criterion for homogeneity

Since \mathfrak{G}_{x} is a profinite group, it is either finite, or a Cantor group. Proposition: [Dyer, Hurder, Lukina 2015] The isotropy group \mathfrak{G}_{x} of the Ellis group action on X is a normal subgroup of \mathfrak{G}_{x} if and only if \mathfrak{G}_{x} is trivial.

Therefore, if the isotropy group \mathfrak{G}_{x} is non-trivial, then $X \cong \mathfrak{G} / \mathfrak{G}_{x}$ does not admit group structure.

Corollary: Let \mathfrak{M} be a solenoid with associated group chain $\left\{H_{i}\right\}_{i \geq 0}$. Then \mathfrak{M} is homogeneous if and only if the isotropy group \mathfrak{G}_{\times}of the Ellis group action on X is trivial.

Advantages of the Ellis group approach

Computing the isotropy group \mathfrak{G}_{x} has the following advantages as opposed to working with equivalence classes of group chains:

1. Unlike the normality properties of group chains, finiteness of the discriminant group \mathcal{D}_{x} does not depend on the choice of a group chain.
2. In many examples, one can explicitly compute the quotients G_{i} / C_{i} and the discriminant group \mathcal{D}_{x}, while it may be quite difficult to show that there is no chain of normal subgroups equivalent to a given group chain $\left\{G_{i}\right\}_{i \geq 0}$.

Virtually homogeneous solenoids

We now have a criterion for a solenoid to be homogeneous, and we know that there are solenoids which are non-homogeneous.

Question: Are there solenoids which are 'less' non-homogeneous than other ones? That is, is there any way to quantify the degree of non-homogeneity?

We introduce the notion of a virtually homogeneous solenoid:
Definition: A solenoid $\mathfrak{M} \rightarrow M_{0}$ is virtually homogeneous, if there exists a finite-to-one covering $p: N_{0} \rightarrow M_{0}$ such that the pullback solenoid $\mathfrak{N}=p^{*} \mathfrak{M}$ is homogeneous.

A criterion for virtual homogeneity

Recall that $\mathfrak{G}=\lim _{\leftarrow}\left\{G / C_{i} \rightarrow G / C_{i-1}\right\}$ is the Ellis group of the action, and \mathcal{D}_{x} is the discriminant group at x.

If \mathcal{D}_{X} is non-trivial, it is either a finite group or a Cantor group.
Theorem: (Dyer, Hurder, Lukina 2015) If \mathcal{D}_{x} is a finite group, then a solenoid \mathfrak{M} with associated group chain $\left\{H_{i}\right\}_{i \geq 0}$ is virtually homogeneous.

Proof. One can show that \mathcal{D}_{x} is finite if and only if $\left\{H_{i}\right\}_{i \geq 0}$ is equivalent to a chain $\left\{G_{i}\right\}_{i \geq 0}$ such that $H_{i} \cap C_{1}=C_{i}$. Then use Galois theory to construct a covering of the base manifold.

The discrete Heisenberg group

Let $\mathcal{H}=\left(\mathbb{R}^{3}, *\right)$ be the Heisenberg group, and $\mathcal{H}=\left(\mathbb{Z}^{3}, *\right)$ be the discrete Heisenberg group, with

$$
(x, y, z) *\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+x y^{\prime}\right)
$$

Then $M_{0}=\mathbb{H} / \mathcal{H}$ is a closed 3-manifold, and $\pi_{1}\left(M_{0}, 0\right)=\mathcal{H}$.
Group chains in the Heisenberg group, giving homogeneous actions, were classified by Lightwood, Sahin and Ugarcovici 2014.

We are interested in group chains which give non-homogeneous actions.

A virtually homogeneous solenoid

Let p, q be distinct primes, and let $M_{n}=\left(\begin{array}{rr}q p^{n} & p q^{n} \\ p^{n+1} & q^{n+1}\end{array}\right)$. Then $\left\{G_{n}\right\}=\left\{M_{n} \mathbb{Z}^{2} \times p \mathbb{Z}\right\}$ defines a nested group chain. Let G_{∞} be the corresponding inverse limit space. Let $M_{n}=\mathbb{H} / G_{n}$.
Proposition: The solenoid defined by the group action $\left(G_{\infty}, \mathbb{H}\right)$ is virtually homogeneous, but not weakly normal.
Proof. Let $L_{n}=\left(\begin{array}{rr}q p^{n} & p^{2} q^{n} \\ p^{n+1} & p q^{n+1}\end{array}\right)$. Then $C_{n}=L_{n} \mathbb{Z}^{2} \times p \mathbb{Z}$ is a normal subgroup of index p in G_{n}. Since p is a prime, C_{n} is a maximal normal subgroup of G_{n}. Then for $n \geq 1$ we have $\left|G_{n} / C_{n}\right|=p$, and it follows that \mathcal{D}_{x} is nontrivial and finite.

Based on the works

- J. Dyer, S. Hurder and O. Lukina, The discriminant invariant of Cantor group actions, arXiv: 1509.06227.
- J. Dyer, S. Hurder and O. Lukina, Growth and homogeneity of matchbox manifolds, arXiv: 1602.00784.

Other works on equicontinuous and non-equicontinuous matchbox manifolds

- A. Clark, R. Fokkink and O.Lukina, The Schreier continuum and ends, Houston J. Math., 40:569-599, 2014.
- A. Clark and S. Hurder, Embedding solenoids in foliations, Topology Appl., 158:1249-1270, 2011..
- A. Clark and S. Hurder, Homogeneous matchbox manifolds, Trans. AMS, 365:3151-3191, 2013.
- A. Clark, S. Hurder and O. Lukina, Classifying matchbox manifolds, arXiv: 1311.0226.
- A. Clark, S. Hurder and O. Lukina, Shape of matchbox manifolds, Indagationes Mathematicae, 25:669-712, 2014.
- A. Clark, S. Hurder and O. Lukina, Voronoi tessellations of matchbox manifolds, Top. Proc. 41:167-259, 2013.
- O. Lukina, Hierarchy of graph matchbox manifolds, Topology Appl., 159:3461-3485, 2012.
- O. Lukina, Hausdorff dimension of matchbox manifolds, arXiv: 1407.0693.
¡Gracias por su atención!

