Introduction

MM

Solenoids

Chains

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Examples

Homeomorphisms of solenoids

Steve Hurder

University of Illinois at Chicago www.math.uic.edu/~hurder

April 21, 2016

Introduction	MM	Solenoids	Chains	Examples
	D	ynamics of flow	/S	

Consider a non-singular C^1 -vector field \vec{V} on a compact *n*-manifold M, and its flow $\varphi_t \colon M \to M$ defined for all values of t.

Definition: A point $x \in M$ is *non-wandering* if its future and past orbits return infinitely often to a neighborhood of the point.

 $\Omega \subset M$ denotes the set of all non-wandering points for the system.

A closed subset $\mathfrak{M} \subset M$ is *minimal* if it is flow invariant, and the orbit of every point in \mathfrak{M} is dense in \mathfrak{M} .

Introduction	MM	Solenoids	Chains	Examples

Main Problems:

- Describe the topology of the non-wandering set Ω .
- Describe the dynamics of the flow on Ω .
- Describe the minimal sets of the flow, and their dynamics.

This program has been carried out for C^1 -flows that satisfy Smale's Axiom A property, for example, and for Morse-Smale flows. Otherwise, simple questions such as what is the topology of the minimal sets for a flow are intractable.

Alternate approach: ask whether every flow is C^1 -close to one of these standard types, as in the Palis Conjectures.

A Smale solenoid gives an example of a hyperbolic attractor: Let $M = \mathbb{S}^1 \times \mathbb{D}^2$. The map $g : \mathbb{S}^1 \times \mathbb{D}^2 \to \mathbb{S}^1 \times \mathbb{D}^2$ is defined by

 $g(\theta, (y_1, y_2)) = \left(2\theta, \frac{1}{10}y_1 + \frac{1}{2}\cos\theta, \frac{1}{10}y_2 + \frac{1}{2}\sin\theta\right).$ Let $C = \{0\} \times \mathbb{D}^2$ be a section.

Then $g^n(M) \cap C$ is the union of 2^n disjoint disks.

 $\Lambda = \bigcap_{n \ge 1} g^n(M)$ is a hyperbolic attractor (called the *Smale* attractor): There are expanding (\mathbb{S}^1) and contracting (\mathbb{D}^2) directions.

 $C \cap \Lambda$ is a Cantor set, and $(C \cap \Lambda, g)$ is a dynamical system on a totally disconnected set $C \cap \Lambda$.

ntroduction	MM	Solenoids	Chains	Examples

Dynamics of foliations

Consider an integrable distribution $F \subset TM$ on a compact *n*-manifold *M*, and the foliation \mathcal{F} whose leaves consist of the connected submanifolds of *M* which are tangent to *F*.

Definition: A point $x \in M$ is *non-wandering* if the leaf L_x through x returns infinitely often to a neighborhood of the point.

 $\Omega \subset M$ denotes the set of all non-wandering points for the system. The complement $M - \Omega$ consists of the *proper* leaves of \mathcal{F} .

A closed subset $\mathfrak{M} \subset M$ is *minimal* if it is a union of leaves, and each leaf $L \subset \mathfrak{M}$ is dense in \mathfrak{M} .

For example, a compact leaf is minimal.

Introduction	MM	Solenoids	Chains	Examples
Main P	roblems:			
Desci	ribe the topology	of the non-wande	ering set Ω.	

- Describe the dynamics of \mathcal{F} .
- Describe the minimal sets \mathfrak{M} of \mathcal{F} what is their topology?
- Describe the dynamics of $\mathcal{F}|\mathfrak{M}$.

This program has been investigated in the case of C^2 -foliations of codimension-one, in particular by Richard Sacksteder, John Cantwell & Larry Conlon, and Gilbert Hector.

Question: What hope is there to obtain meaningful results for C^r -foliations with codimension q > 1, and $r \ge 1$?

S. Hurder, *Lectures on Foliation Dynamics*,
 Foliations: Dynamics, Geometry and Topology,
 Advanced Courses in Mathematics CRM Barcelona, Springer, 2014.

Introduction	MM	Solenoids	Chains	Examples
Look at spe	cial cases:			
 Minimal 	sets with pos	sitive entropy		

- Minimal sets with equicontinuous or distal dynamics
- Exceptional minimal sets

A minimal set \mathfrak{M} is *exceptional* if its intersections with open transversals $\mathcal{T} \subset M$ to \mathcal{F} have closures which are Cantor sets.

The dynamics of $\mathcal{F}|\mathfrak{M}$ is *equicontinuous* if for each transversal \mathcal{T} to \mathcal{F} has a metric such that the induced return map of the foliation to the set $\mathcal{T} \cap \mathfrak{M}$ is equicontinuous.

This is analogous to saying that $\mathcal{F}|\mathfrak{M}$ is a topological Riemannian foliation, except that when \mathfrak{M} is exceptional, there is no normal bundle to $\mathcal{F}|\mathfrak{M}$.

Question: Can we classify the equicontinuous foliations on exceptional minimal sets?

Introduction	MM	Solenoids	Chains	Examples

Matchbox manifolds

A compact connected metrizable space \mathfrak{M} is a *n*-dimensional *matchbox manifold* if it admits an atlas $\{U_i\}_{1 \leq i \leq \nu}$, where U_i is an open set equipped with a homeomorphism

$$\varphi_i: \overline{U}_i \to [-1,1]^n \times X_i,$$

and $U_i = \varphi_i^{-1}((-1,1)^n \times X_i)$, where X_i is totally disconnected.

The term a *matchbox manifold* is due to **Aarts** and **Martens 1988**, who studied 1-dimensional matchbox manifolds (for n = 1).

Theorem: [Clark & Hurder, 2012] Let \mathfrak{M} be an equicontinuous matchbox manifold. Then:

• There exists an open transversal \mathcal{T} such that the induced return map on $\mathcal{T} \cap \mathfrak{M}$ is given by an equicontinuous action of a finitely generated group Γ on a Cantor set X.

• \mathfrak{M} is foliated homeomorphic to a weak solenoid S which admits a Cantor fibration $\pi: S \to M_0$ over a compact manifold M_0 with fiber X.

Theorem: [Clark, Hurder & Lukina, 2013] An equicontinuous \mathfrak{M} is classified (up to foliated homeomorphism) by the induced holonomy action $\varphi \colon \Gamma \times X \to X$ on a transversal Cantor set X.

Problem: Understand the group of self-homeomorphisms of an *n*-dimensional matchbox manifold, and the maps between matchbox manifolds.

Introduction MM Solenoids Chains Chains Examples
Solenoids
Let
$$M_0$$
 be a connected closed manifold, and, recursively, let $f_{i-1}^i: M_i \to M_{i-1}$ be a finite-to-one covering map. Then
 $M_{\infty} = \lim_{\leftarrow} \{f_{i-1}^i: M_i \to M_{i-1}\} = \{(y_0, y_1, y_2, \ldots) \mid f_{i-1}^i(y_i) = y_{i-1}\}$
is a compact connected metrizable space called a *solenoid*.
Let $x_i \in M_i$, then the cylindrical clopen set (the fiber)
 $F_i = \{(f_0^i(x_i), \ldots, x_i, y_{i+1}, \ldots) \in M_{\infty}\}$ is a Cantor set .

Theorem (McCord 1966): A solenoid is a matchbox manifold.

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● ● ●

Theorem: [Bowen & Franks 1976, Gambaudo & Tresser 1990] If S is a solenoid with base \mathbb{S}^1 , and the degrees of the covering maps tend to ∞ sufficiently fast, then S is homeomorphic to the minimal set of a smooth flow on a 3-manifold.

Theorem: [Clark & Hurder 2010] If S is a solenoid with base \mathbb{T}^n , and the degrees of the covering maps tend to ∞ sufficiently fast, and are not too wild as matrices, then S is homeomorphic to the minimal set of a smooth foliation.

For other classes of solenoids, it remains an open problem, whether they can be realized as minimal sets of C^r -foliations for $r \ge 1$.

Problem: Study the properties of solenoids as equicontinuous dynamical systems.

Define $G = G_0 = \pi_1(M_0, x_0)$, and let $G_i \subset G$ be the subgroup defined by $G_i = \text{Image}\{(f_0^i)_\# : \pi_1(M_i, x_i) \to \pi_1(M_0, x_0)\}.$

The collection $\{G_i\}_{i\geq 0}$ forms a group chain in G.

Each $X_i = G_0/G_i$ is a finite set with a left action of G. It is a group if G_i is normal in G. The Cantor fiber of S is identified with

$$X \cong \varprojlim \{X_i \to X_{i-1}\} = \varprojlim \{G/G_i \to G/G_{i-1}\} = G_{\infty}$$

The left G-action $\Phi: G \to Aut(X)$ is minimal and equicontinuous. We say that (X, G) is an equicontinuous minimal Cantor action.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Homogeneous solenoids

A topological space \mathfrak{M} is *homogeneous* if for every $x, y \in \mathfrak{M}$ there is a homeomorphism $h : \mathfrak{M} \to \mathfrak{M}$ such that h(x) = y.

McCord 1965: If G_i is a normal subgroup of G for all $i \ge 0$, then G/G_i is a group, and G_{∞} is a profinite group. Then M_{∞} is homogeneous.

Example: Let $M_i = \mathbb{T}^n$, and let $f_{i-1}^i : \mathbb{T}^n \to \mathbb{T}^n$ be a proper covering. Then the inverse limit \mathbb{T}_{∞} is a homogeneous matchbox manifold.

Are there solenoids which are non-homogeneous?

Solenoids

Non-homogeneous solenoids

Schori 1966: Not all solenoids are homogeneous.

 M_{∞} is the inverse limit of 3-to-1 coverings of the genus 2 surface Σ_2 . Every leaf in M_{∞} is a non-compact surface of infinite genus. Schori found a closed loop in Σ_2 , which, depending on the point in the fiber of $M_{\infty} \rightarrow \Sigma_2$, lifts either to a closed loop, or to a non-closed curve. So M_{∞} is not homogeneous.

Rogers & Tollefson 1971: There exists a closed manifold M_0 and a group chain $\{H_i\}_{i\geq 0}$ with $H_0 = \pi_1(M_0, x_0)$ such that H_i is not a normal subgroup of H_0 , but the associated solenoid M_∞ is a homogeneous space.

That is, it is possible to obtain a homogeneous solenoid as an inverse limit of non-regular coverings.

Question: How one can determine if a solenoid is homogeneous?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Equivalent group chains

Rogers and Tollefson suggested to use the following notion to study the problem of homogeneity.

Definition: (Equivalent group chains) Group chains $\{G_i\}_{i\geq 0}$ and $\{H_i\}_{i\geq 0}$ are *equivalent* if, possibly for a subsequence, one has

$$G_0 = H_0 \supset G_1 \supset H_1 \supset G_2 \supset H_2 \supset \cdots$$

Dynamically, $\{G_i\}_{i\geq 0}$ and $\{H_i\}_{i\geq 0}$ are equivalent if and only if there is a conjugacy $h: G_{\infty} \to H_{\infty}$ with $h(eG_i) = (eH_i)$.

If $\{G_i\}_{i\geq 0}$ and $\{H_i\}_{i\geq 0}$ are not equivalent, there may still exist a conjugacy $h: G_{\infty} \to H_{\infty}$, but it cannot preserve the basepoint.

Introduction	MM	Solenoids	Chains	Examples
	A criterion	for homogenei	ty	

A group chain $\{H_i\}_{i\geq 0}$ is *weakly normal* if it is equivalent to a group chain $\{G_i\}_{i>0}$ such that there is $i_0 \geq 0$ such that $i \geq i_0$

 $G_i \subset G_{i_0} \subset N(G_i), N(G_i)$ is the normalizer of G_i in G_0 .

Theorem: (Fokkink and Oversteegen 2002) A solenoid S is homogeneous if and only if its associated group chain $\{H_i\}_{i\geq 0}$ is *weakly normal*.

Topologically, this means that, possibly restricting to clopen subset of the fiber, one can represent the solenoid as the inverse limit of a sequence of regular coverings of a closed manifold.

Solenoids

Ellis semigroup

Let $\Phi: G \to Homeo(X): g \mapsto \phi_g$ be a group action.

Let $\phi(G) = \{\phi_g \mid g \in G\} \subset Maps(X, X).$

Theorem: (Ellis 1969) The closure $\mathfrak{G} = \overline{\phi(G)} \subset Maps(X, X)$ in the topology of *pointwise convergence* on maps has a structure as a semigroup, called the *enveloping (Ellis) semigroup*.

Ellis 1969, see also **Auslander 1988**: If the action (X, G) is *equicontinuous*, then the Ellis semigroup \mathfrak{G} is a group.

Note: The action (G_{∞}, G) is equicontinuous, so its Ellis semigroup is a group. Denote by

$$\mathfrak{G}_x = \{h \in \mathfrak{G} \mid h(x) = x\}$$

the isotropy subgroup of the \mathfrak{G} -action at $x \in X$.

・ロト・西ト・ヨト・ヨー もくの

A representation of the Ellis (semi)group

Remark: In general, it is quite difficult to compute the Ellis semigroup of an action (X, G). Let $\{G_i\}_{i\geq 0}$ be a group chain in G such that (X, G) is conjugate to (G_{∞}, G) .

Let $C_i = \bigcap_{g \in G} gG_ig^{-1}$, then C_i is a normal subgroup of G, and $C_{\infty} = \lim_{\leftarrow} \{G/C_i \to G/C_{i-1}\}$ is a profinite group.

Theorem: [Dyer, Hurder, Lukina 2015] The profinite group C_{∞} is isomorphic to the Ellis group \mathfrak{G} of the action (X, G). Also, if \mathfrak{G}_{x} is the isotropy group of the \mathfrak{G} -action on X, then

$$\mathfrak{G}_x \cong \lim_{\longleftarrow} \{G_i/C_i \to G_{i-1}/C_{i-1}\} \equiv \mathcal{D}_x.$$

 \mathcal{D}_x is called the *discriminant group* of the action.

Since \mathfrak{G}_{\times} is a profinite group, it is either finite, or a Cantor group. **Proposition:** [Dyer, Hurder, Lukina 2015] The isotropy group \mathfrak{G}_{\times} of the Ellis group action on X is a normal subgroup of \mathfrak{G}_{\times} if and only if \mathfrak{G}_{\times} is trivial.

Therefore, if the isotropy group \mathfrak{G}_x is non-trivial, then $X \cong \mathfrak{G}/\mathfrak{G}_x$ does not admit group structure.

Corollary: Let \mathfrak{M} be a solenoid with associated group chain $\{H_i\}_{i\geq 0}$. Then \mathfrak{M} is homogeneous if and only if the isotropy group \mathfrak{G}_x of the Ellis group action on X is trivial.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Advantages of the Ellis group approach

Computing the isotropy group \mathfrak{G}_x has the following advantages as opposed to working with equivalence classes of group chains:

- 1. Unlike the normality properties of group chains, finiteness of the discriminant group \mathcal{D}_x does not depend on the choice of a group chain.
- 2. In many examples, one can explicitly compute the quotients G_i/C_i and the discriminant group \mathcal{D}_x , while it may be quite difficult to show that there is no chain of normal subgroups equivalent to a given group chain $\{G_i\}_{i\geq 0}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	MM	Solenoids	Chains	Examples
	Virtually	homogeneous	solenoids	

We now have a criterion for a solenoid to be homogeneous, and we know that there are solenoids which are non-homogeneous.

Question: Are there solenoids which are 'less' non-homogeneous than other ones? That is, is there any way to quantify the degree of non-homogeneity?

We introduce the notion of a virtually homogeneous solenoid:

Definition: A solenoid $\mathfrak{M} \to M_0$ is *virtually homogeneous*, if there exists a finite-to-one covering $p: N_0 \to M_0$ such that the pullback solenoid $\mathfrak{N} = p^*\mathfrak{M}$ is homogeneous.

Recall that $\mathfrak{G} = \lim_{\longleftarrow} \{G/C_i \to G/C_{i-1}\}$ is the Ellis group of the action, and \mathcal{D}_x is the discriminant group at x.

If \mathcal{D}_x is non-trivial, it is either a finite group or a Cantor group.

Theorem: (Dyer, Hurder, Lukina 2015) If \mathcal{D}_x is a finite group, then a solenoid \mathfrak{M} with associated group chain $\{H_i\}_{i\geq 0}$ is virtually homogeneous.

Proof. One can show that \mathcal{D}_x is finite if and only if $\{H_i\}_{i\geq 0}$ is equivalent to a chain $\{G_i\}_{i\geq 0}$ such that $H_i \cap C_1 = C_i$. Then use Galois theory to construct a covering of the base manifold.

Introduction	MM	Solenoids	Chains	Examples
	The disc	rete Heisenber	g group	

Let $\mathcal{H} = (\mathbb{R}^3, *)$ be the Heisenberg group, and $\mathcal{H} = (\mathbb{Z}^3, *)$ be the discrete Heisenberg group, with

$$(x, y, z) * (x', y', z') = (x + x', y + y', z + z' + xy').$$

Then $M_0 = \mathbb{H}/\mathcal{H}$ is a closed 3-manifold, and $\pi_1(M_0, 0) = \mathcal{H}$.

Group chains in the Heisenberg group, giving homogeneous actions, were classified by Lightwood, Sahin and Ugarcovici 2014.

We are interested in group chains which give non-homogeneous actions.

Introduction MM Solenoids Chains Examples

A virtually homogeneous solenoid

Let p, q be distinct primes, and let $M_n = \begin{pmatrix} qp^n & pq^n \\ p^{n+1} & q^{n+1} \end{pmatrix}$. Then $\{G_n\} = \{M_n \mathbb{Z}^2 \times p\mathbb{Z}\}$ defines a nested group chain. Let G_∞ be the corresponding inverse limit space. Let $M_n = \mathbb{H}/G_n$.

Proposition: The solenoid defined by the group action (G_{∞}, \mathbb{H}) is virtually homogeneous, but not weakly normal.

Proof. Let $L_n = \begin{pmatrix} qp^n & p^2q^n \\ p^{n+1} & pq^{n+1} \end{pmatrix}$. Then $C_n = L_n \mathbb{Z}^2 \times p\mathbb{Z}$ is a normal subgroup of index p in G_n . Since p is a prime, C_n is a maximal normal subgroup of G_n . Then for $n \ge 1$ we have $|G_n/C_n| = p$, and it follows that \mathcal{D}_x is nontrivial and finite.

Based on the works

- J. Dyer, S. Hurder and O. Lukina, The discriminant invariant of Cantor group actions, arXiv: 1509.06227.
- J. Dyer, S. Hurder and O. Lukina, Growth and homogeneity of matchbox manifolds, arXiv: 1602.00784.

Other works on equicontinuous and non-equicontinuous matchbox manifolds

- A. Clark, R. Fokkink and O.Lukina, The Schreier continuum and ends, Houston J. Math., 40:569-599, 2014.
- A. Clark and S. Hurder, Embedding solenoids in foliations, Topology Appl., 158:1249–1270, 2011..
- A. Clark and S. Hurder, Homogeneous matchbox manifolds, Trans. AMS, 365:3151–3191, 2013.
- A. Clark, S. Hurder and O. Lukina, Classifying matchbox manifolds, arXiv: 1311.0226.
- A. Clark, S. Hurder and O. Lukina, Shape of matchbox manifolds, Indagationes Mathematicae, 25:669–712, 2014.
- A. Clark, S. Hurder and O. Lukina, Voronoi tessellations of matchbox manifolds, Top. Proc. 41:167–259, 2013.
- O. Lukina, Hierarchy of graph matchbox manifolds, Topology Appl., 159:3461–3485, 2012.
- O. Lukina, Hausdorff dimension of matchbox manifolds, arXiv: 1407.0693.

¡Gracias por su atención!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●