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Genericity of Dynamics

Weak Palis Conjecture: M compact manifold, then the space of
Diffr (M) of C r -diffeomorphisms (r ≥ 1) contains a dense open set
which decomposes as the union MS ∪I of two disjoint open sets:

• MS is the set of Morse-Smale diffeomorphisms,

• I is the set of diffeomorphisms having transverse homoclinic
intersection.

A diffeomorphism is Morse-Smale if its non-wandering set consists
of finitely many hyperbolic periodic orbits.

• J. Palis, A global view of dynamics and a conjecture on the
denseness of finitude of attractors, Astérisque,Vol. 261, 2000.

• J. Palis, On Open questions leading to a global perspective in
dynamics, Nonlinearity,21:, 2008.
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The Weak Palis Conjecture

(Illustration from Palis, Nonlinearity 2008)
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We are interested in the “structural stability” of the following class
of examples, called “Kuperberg flows”:

Theorem (K. Kuperberg, 1994) Let M be a closed, orientable
3-manifold. Then M admits a C∞ non-vanishing vector field
whose flow φt has no periodic orbits.

• K. Kuperberg, A smooth counterexample to the Seifert
conjecture, Ann. of Math. (2), 140:723–732, 1994.

• É Ghys, Construction de champs de vecteurs sans orbite
périodique (d’après Krystyna Kuperberg), Séminaire Bourbaki, Vol.
1993/94, Exp. No. 785, Astérisque, 227: 283–307, 1995.

• S. Hurder & A. Rechtman, The dynamics of generic Kuperberg
flows, Astérisque, Vol. 377 (216), 250 pages.
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What we know of the dynamics of the Kuperberg flows:

Theorem (A. Katok, 1980) Let M be a closed, orientable
3-manifold. Then an aperiodic flow φt on M has entropy zero.

Theorem (Ghys, Matsumoto, 1995) The Kuperberg flow has a
unique minimal set M ⊂ M.

Theorem (Hurder & Rechtman, 2015) Let Φt be a generic
Kuperberg flow on a plug K. There the unique minimal set M for
the flow is a 2-dimensional lamination “with boundary” which is
equal to the non-wandering set of Φt .

Moreover, the flow restricted to M has non-zero “slow entropy”,
for exponent α = 1/2.

So, a generic Kuperberg flow almost has positive entropy.
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Question: Where do the Kuperberg flows sit in the scheme of the
Weak Palis Conjecture?

Theorem 1: Let Φt be a Kuperberg flow on a plug K. Then there
is a C∞-family of flows Φε

t on K, for −1 < ε ≤ 0, with Φ0
t = Φt ,

such that each flow Φε
t is “partially Morse-Smale” and so has

entropy 0.

Theorem 2: Let Φt be a Kuperberg flow on a plug K. Then there
is a C∞-family of flows Φε

t on K, for 0 ≤ ε < a, with Φ0
t = Φt ,

such that each flow Φε
t admits a “horseshoe”, and so has positive

entropy.

Conclusion: The generic Kuperberg flows lie at the boundary of
chaos (entropy > 0) and the boundary of tame dynamics.

• S. Hurder & A. Rechtman, Aperiodic flows at the boundary of
chaos, in preparation, available March 2016.
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Definition: A plug is a 3-manifold with boundary of the form
P = D × [−1, 1] with D a compact surface with boundary. P is
endowed with a non-vanishing vector field ~X , such that:

• ~X is vertical in a neighborhood of ∂P, that is ~X = d
dz . Thus ~X

is inward transverse along D × {−1} and outward transverse along
D × {1}, and parallel to the rest of ∂P.

• There is at least one point p ∈ D × {−1} whose positive orbit is
trapped in P.

• If the orbit of q ∈ D × {−1} is not trapped then its orbit
intersects D × {1} in the facing point.

• There is an embedding of P into R3 preserving the vertical
direction.
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Modified Wilson Plug W (sort of Morse-Smale)

Consider the rectangle R × S1 with the vector field ~W = ~W1 + f f
dθ

f is asymmetric in z and ~W1 = g f
dz is vertical.
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Grow horns and embed them to obtain Kuperberg Plug K,
matching the flow lines on the boundaries.

Embed so that the Reeb cylinder {r = 2} is tangent to itself.
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The insertion map as it appears in the face E1

Radius Inequality:

For all x ′ = (r ′, θ′,−2) ∈ Li , let x = (r , θ, z) = σεi (r ′, θ′,−2) ∈ Li ,
then r < r ′ unless x ′ = (2, θi ,−2) and then r = 2.
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Parametrized Radius Inequality: For all x ′ = (r ′, θ′,−2) ∈ Li , let
x = (r , θ, z) = σεi (r ′, θ′,−2) ∈ Li , then r < r ′ + ε unless
x ′ = (2, θi ,−2) and then r = 2 + ε.

The modified radius inequality for the cases ε < 0 and ε > 0:
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Proposition: Let Φε
t be a Kuperberg flow for which the insertion

map satisfies the Parametrized Radius Inequality with ε < 0. Then
the flow in the plug Kε has two periodic orbits that bound an
invariant cylinder, and the flow has topological entropy zero.

Idea of the proof: This follows from the techniques for the standard
flow when ε = 0, which imply that every flow orbit of a point x
with radius r(x) 6= 2 entering an insertion, exits at the same radius.

Varying the radius of the insertion for ε < 0, we obtain Theorem 1.
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The idea of the proof of Theorem 2 is to study the dynamics of
Kuperberg flows Φε

t for ε ≥ 2.

Our approach in the Asterisque paper introduced the technique of
comparing the dynamics of the flow Φ0

t with that of an induced
map on a (partial) section to the flow.

Return map of a flow Φε
t induces a smooth pseudogroup GΦε on R0

Critical difficulty: There is not always a direct relation between
the continuous dynamics of the flow Φε

t and the discrete dynamics
of the action of the pseudogroup GΦε .
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The section R0 ⊂ K used to define pseudogroup GΦε .

The flow of Φε
t is tangent to R0 along the center plane {z = 0}, so

the action of the pseudogroup has singularities along this line.
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We consider two maps with domain in R0

• ψ which is the return map of the Wilson flow Ψt

• φε1 which is the return map of the Kuperberg flow Φe
t for orbits

that go through the entry region E1

Form the pseudogroup they generate Ĝε = 〈ψ, φε1〉.

Proposition: The restriction of Ĝε to the region {r > 2} ∩ R0 is a
sub-pseudogroup of GΦε
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Action of Ĝ0 = 〈ψ, φε1〉 on the line r = 2 for ε = 0.

This looks like a ping-pong game, except that the play action is
too slow to generate entropy.
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Action of Ĝε = 〈ψ, φε1〉 on the line r = 2 for ε > 0.

The dynamics of this action is actually too complicated to draw
precisely, or calculate with.
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Instead, we define a compact region U0 ⊂ R0 which is mapped to
itself by the map ϕ = ψk ◦ φε1 for k sufficiently large.



Introduction Plugs Theorem 1 Theorem 2

The images of the powers ϕ` of the map the map ϕ form a
δ-separated set for the action of the pseudogroup Ĝε.
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We then show that for ε > 0 well-chosen with respect to the choice
of k above, the restriction of the map ϕ to U0 is defined by the
return map of Φe

t and hence Φe
t has positive entropy.

Conclude with two remarks:

• For ε < 0, the dynamics of the map Φε
t is tame, and completely

predictable, except that as ε→ 0 the dynamics approaches that of
the Kuperberg flow.

• For ε > 0, the dynamics of the map Φε
t is chaotic, but making

calculations of entropy for example, is only possible for well-chosen
embeddings. We have no intuition, for example, of how to describe
the nonwandering set for the flows Φε

t .
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Thank you for your attention!
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