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Motivation

Theorem (K. Kuperberg, 1994)
Let M be a closed 3-manifold. Then M admits a C∞, or even real
analytic, non-vanishing vector field with no periodic orbits.
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Motivation

Theorem
For a generic Kuperberg plug, the minimal set has topological
dimension 2 and is stratified, having a 1-dimensional stratum that
accumulates on the 2-dimensional stratum.

The minimal set has unstable shape.

Definition (Stable shape)
A compact set Σ has stable shape if there exists a shape
approximation U = {U` | ` = 1,2, . . .} such that each inclusion
ι : U`+1 ↪→ U` induces a homotopy equivalence, and U1 has the
homotopy type of a finite polyhedron.
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Construction

Σ = M = ∪∞i=0Mi .
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Construction

M0
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Construction

Set f : E → R the distance of a point to the special point ∂R ∩ E .
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Construction

Construction of Mk from Mk−1 for k ≥ 2.
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Unstable shape

Σ = M = ∪∞i=0Mi .

Theorem

Σ ⊂ R3 has unstable shape.

Proposition (Strategy of proof)
Let Un be a shape approximation of Σ such that for every k ≥ 2:

the rank of H1(Uk ;Z) > 2k−1;
there exists ` > k such that the rank of the image
H1(U`;Z)→ H1(UK ;Z) is 2.

Assume that for any shape approximation Vn the rank of H1(Vn;Z) is
greater than 2, then Σ has unstable shape.

Ana Rechtman (IRMA) March 11th, 2016 8 / 11



Unstable shape

Σ = M = ∪∞i=0Mi .

Theorem

Σ ⊂ R3 has unstable shape.

Proposition (Strategy of proof)
Let Un be a shape approximation of Σ such that for every k ≥ 2:

the rank of H1(Uk ;Z) > 2k−1;
there exists ` > k such that the rank of the image
H1(U`;Z)→ H1(UK ;Z) is 2.

Assume that for any shape approximation Vn the rank of H1(Vn;Z) is
greater than 2, then Σ has unstable shape.

Ana Rechtman (IRMA) March 11th, 2016 8 / 11



Unstable shape

Proposition (Strategy of proof)
Let Un be a shape approximation of Σ such that for every k ≥ 2:

the rank of H1(Uk ;Z) > 2k−1;
there exists ` > k such that the rank of the image
H1(U`;Z)→ H1(UK ;Z) is 2.

Assume that for any shape approximation Vn the rank of H1(Vn;Z) is
greater than 2, then Σ has unstable shape.

Proof.
Assume that Σ has stable shape and let Vn be a good shape
approximation. Set n0 > 2 to be the rank of the image
H1(Vk )→ H1(V`), for every k ≥ ` and ` big enough. Take Un as in the
statement.

For ` big enough, ∃n1, k1,n2, k2 such that Vn2 ⊂ Uk2 ⊂ Vn1 ⊂ Uk1 ⊂ V`

and
H1(Vn2)→ H1(Uk2)→ H1(Vn1)→ H1(Uk1)→ H1(V`).
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Shape approximation

Nesting property
The set Mk \Mk−1 admits a one sided closed neighborhood Fk that
contains M \Mk−1.
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Shape approximation
Set

N1 = (M0, δ0) ∪ F1.

In general
Nk = (Mk−1, δk−1) ∪ Fk .
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