The shape of the minimal set of the Kuperberg plug

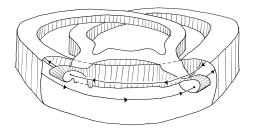
Ana Rechtman (IRMA Université de Strasbourg)

Joint work with Steven Hurder (University of Illinois at Chicago)

March 11th, 2016

Theorem (K. Kuperberg, 1994)

Let M be a closed 3-manifold. Then M admits a C^{∞} , or even real analytic, non-vanishing vector field with no periodic orbits.



Theorem

For a generic Kuperberg plug, the minimal set has topological dimension 2 and is stratified, having a 1-dimensional stratum that accumulates on the 2-dimensional stratum.

Theorem

For a generic Kuperberg plug, the minimal set has topological dimension 2 and is stratified, having a 1-dimensional stratum that accumulates on the 2-dimensional stratum. The minimal set has unstable shape.

Theorem

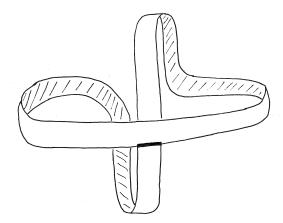
For a generic Kuperberg plug, the minimal set has topological dimension 2 and is stratified, having a 1-dimensional stratum that accumulates on the 2-dimensional stratum. The minimal set has unstable shape.

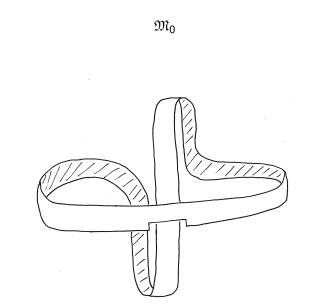
Definition (Stable shape)

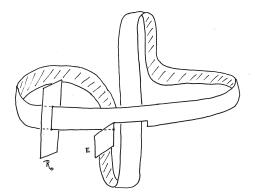
A compact set Σ has stable shape if there exists a shape approximation $\mathfrak{U} = \{U_{\ell} \mid \ell = 1, 2, ...\}$ such that each inclusion $\iota: U_{\ell+1} \hookrightarrow U_{\ell}$ induces a homotopy equivalence, and U_1 has the homotopy type of a finite polyhedron.

$$\Sigma = \overline{\mathfrak{M}} = \overline{\cup_{i=0}^{\infty} \mathfrak{M}_i}.$$

$$\Sigma = \overline{\mathfrak{M}} = \overline{\cup_{i=0}^{\infty} \mathfrak{M}_i}.$$







Set $f : E \to \mathbb{R}$ the distance of a point to the special point $\partial R \cap E$.

Ana Rechtman (IRMA)





Construction of \mathfrak{M}_k from \mathfrak{M}_{k-1} for $k \geq 2$.

Ana Rechtman (IRMA)

$$\Sigma = \overline{\mathfrak{M}} = \overline{\cup_{i=0}^{\infty} \mathfrak{M}_i}.$$

Theorem

 $\Sigma \subset \mathbb{R}^3$ has unstable shape.

$$\Sigma = \overline{\mathfrak{M}} = \overline{\cup_{i=0}^{\infty} \mathfrak{M}_i}.$$

Theorem

 $\Sigma \subset \mathbb{R}^3$ has unstable shape.

Proposition (Strategy of proof)

Let U_n be a shape approximation of Σ such that for every $k \ge 2$:

- the rank of $H_1(U_k; \mathbb{Z}) > 2^{k-1}$;
- there exists $\ell > k$ such that the rank of the image $H_1(U_\ell; \mathbb{Z}) \to H_1(U_K; \mathbb{Z})$ is 2.

Assume that for any shape approximation V_n the rank of $H_1(V_n; \mathbb{Z})$ is greater than 2, then Σ has unstable shape.

Proposition (Strategy of proof)

Let U_n be a shape approximation of Σ such that for every $k \ge 2$:

- the rank of $H_1(U_k; \mathbb{Z}) > 2^{k-1}$;
- there exists $\ell > k$ such that the rank of the image $H_1(U_\ell; \mathbb{Z}) \to H_1(U_K; \mathbb{Z})$ is 2.

Assume that for any shape approximation V_n the rank of $H_1(V_n; \mathbb{Z})$ is greater than 2, then Σ has unstable shape.

Proof.

Assume that Σ has stable shape and let V_n be a good shape approximation. Set $n_0 > 2$ to be the rank of the image $H_1(V_k) \to H_1(V_\ell)$, for every $k \ge \ell$ and ℓ big enough. Take U_n as in the statement.

Proposition (Strategy of proof)

Let U_n be a shape approximation of Σ such that for every $k \ge 2$:

- the rank of $H_1(U_k; \mathbb{Z}) > 2^{k-1}$;
- there exists $\ell > k$ such that the rank of the image $H_1(U_\ell; \mathbb{Z}) \to H_1(U_K; \mathbb{Z})$ is 2.

Assume that for any shape approximation V_n the rank of $H_1(V_n; \mathbb{Z})$ is greater than 2, then Σ has unstable shape.

Proof.

Assume that Σ has stable shape and let V_n be a good shape approximation. Set $n_0 > 2$ to be the rank of the image $H_1(V_k) \rightarrow H_1(V_\ell)$, for every $k \ge \ell$ and ℓ big enough. Take U_n as in the statement.

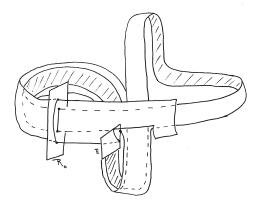
For ℓ big enough, $\exists n_1, k_1, n_2, k_2$ such that $V_{n_2} \subset U_{k_2} \subset V_{n_1} \subset U_{k_1} \subset V_{\ell}$ and

$$H_1(V_{n_2}) \to H_1(U_{k_2}) \to H_1(V_{n_1}) \to H_1(U_{k_1}) \to H_1(V_{\ell}).$$

Shape approximation

Nesting property

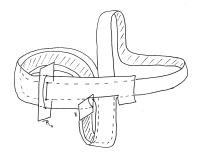
The set $\mathfrak{M}_k \setminus \mathfrak{M}_{k-1}$ admits a one sided closed neighborhood F_k that contains $\mathfrak{M} \setminus \mathfrak{M}_{k-1}$.



Shape approximation

Set

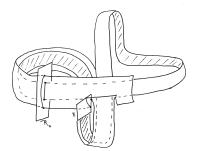
 $\mathfrak{N}_1 = (\mathfrak{M}_0, \delta_0) \cup F_1.$



Shape approximation

Set

 $\mathfrak{N}_1 = (\mathfrak{M}_0, \delta_0) \cup F_1.$



In general

$$\mathfrak{N}_{k}=(\mathfrak{M}_{k-1},\delta_{k-1})\cup F_{k}.$$

Ana Rechtman (IRMA)