Solenoidal minimal sets in foliations

Steven Hurder

University of Illinois at Chicago www.math.uic.edu/~hurder

Special Session on Real Dynamics Joint International AMS–PMS Meeting

Reeb-Thurston-Stowe Stability Theorems

Let \mathcal{F} be a C^r -foliation of a smooth compact manifold M, for $r \geq 1$.

Theorem: (Reeb [1952]) Let *L* be a compact leaf of a codimension one foliation \mathcal{F} such that $\pi_1(L, x) = 0$. Then there exists an open saturated neighborhood $L \subset U$ such that $\mathcal{F} \mid U$ is a product foliation.

Theorem: (Thurston [1974]) Let *L* be a compact leaf of a codimension one foliation \mathcal{F} such that $H^1(L, \mathbb{R}) = 0$. Then there exists an open saturated neighborhood $L \subset U$ such that $\mathcal{F} \mid U$ is a product foliation.

Theorem: (Stowe [1983]) Let L be a compact leaf of a codimension q foliation \mathcal{F} such that $H^1(L, \mathbb{V}) = 0$ for all flat finite-dimensional vector bundles associated to a representation of $\pi_1(L, x)$. Then there exists an open saturated neighborhood $L \subset U$ such that if \mathcal{F}' is a sufficiently C^1 close to \mathcal{F} , then $\mathcal{F}' \mid U$ is a product foliation.

Instability of leaves

Suppose that *L* is a compact leaf with $H^1(L, \mathbb{R}) \neq 0$. It is trivial to construct foliations with *L* as a leaf, such that every leaf *L'* which intersects an open neighborhood $L \subset U$ is necessarily non-compact.

Problem: Suppose that *L* is a compact leaf with $H^1(L, \mathbb{R}) \neq 0$, and $L \subset U$ is a saturated open neighborhood for which $\mathcal{F} \mid U$ is a product foliation. Then what can be said about the behavior of a foliation \mathcal{F}' which is C^1 close to \mathcal{F} ?

This question arose from a related problem posed by Alex Clark:

Problem: Given a solenoid S with *p*-dimensional leaves, when does there exists a smooth foliation \mathcal{F} of a compact manifold such that S is a minimal set for \mathcal{F} ?

Embedded solenoids

Theorem: (Clark & Hurder [2006]) \mathcal{F} is a codimension $q \ C^1$ -foliation. Let L be a compact leaf with $H^1(L, \mathbb{R}) \neq 0$, and $L \subset U$ is a saturated open neighborhood for which $\mathcal{F} \mid U$ is a product foliation. Then there exists \mathcal{F}' arbitrarily C^1 close to \mathcal{F} such that U is saturated for \mathcal{F}' , \mathcal{F} and \mathcal{F}' agree outside of U, and $\mathcal{F}' \mid U$ has a compact solenoidal minimal set $\mathbf{K} \subset U$, where

$$\mathbf{K} = \lim_{\leftarrow} \{ f_n \colon L_{n+1} \to L_n \}$$

where each L_n is a covering of L.

Remark: The proof uses new constructions in foliation theory, and seems of interest for the questions it raises about perturbations of foliations.

Flat bundles

Choose a basepoint $x \in L$, and set $\Gamma = \pi_1(L, x)$.

 Γ acts on the right as deck transformations of the universal cover $\widetilde{L} \to L$. Let $\rho: \Gamma \to \mathbf{SO}(\mathbf{q})$ be an orthogonal representation.

 Γ acts on the left as isometries of \mathbb{R}^q by $\gamma \cdot \vec{v} = \rho(\gamma)\vec{v}$.

Define a flat \mathbb{R}^q -bundle with holonomy ρ by

$$\mathbb{E}_{\rho}^{\boldsymbol{q}} = (\widetilde{L} \times \mathbb{R}^{\boldsymbol{q}}) / (\widetilde{\boldsymbol{y}} \cdot \boldsymbol{\gamma}, \vec{\boldsymbol{v}}) \sim (\widetilde{\boldsymbol{y}}, \boldsymbol{\gamma} \cdot \vec{\boldsymbol{v}}) \longrightarrow L$$

The most familiar example is for $L = \mathbb{S}^1$ and $\Gamma = \pi_1(\mathbb{S}^1, x) = \mathbb{Z} \to \mathbf{SO}(2)$. Then \mathbb{E}^2_{ρ} is the flat vector bundle over \mathbb{S}^1 with the foliation by lines of slope $\rho(1) = \exp(2\pi\sqrt{-1}\alpha)$.

In general, the bundle $\mathbb{E}^q_{\rho} \to L$ need not be a product vector bundle.

Trivializing flat bundles

Proposition: Suppose that there exists a 1-parameter family of representations $\rho_t \colon \Gamma \to \mathbf{SO}(\mathbf{q})$ such that ρ_0 is the trivial map, and $\rho_1 = \rho$, then ρ_t canonically defines a vector bundle map $\mathbb{E}_{\rho}^q \cong L \times \mathbb{R}^q$.

Proof: The family of representations defines a family of flat bundles $\mathbb{E}_{\rho_t}^q$ over the product space $L \times [0, 1]$. This defines an isotopy between the bundles $\mathbb{E}_{\rho_0}^q$ and $\mathbb{E}_{\rho_1}^q$, which induces a bundle isomorphism between them. The initial bundle $\mathbb{E}_{\rho_0}^q$ is a product, hence the same holds for $\mathbb{E}_{\rho_1}^q$.

In the case of the example above over \mathbb{S}^1 the product structure can be written down explicitly.

The key point is that the bundle isomorphism between $\mathbb{E}_{\rho_0}^q$ and $\mathbb{E}_{\rho_1}^q$ depends smoothly on the path ρ_t .

イロト 不得下 イヨト イヨト 二日

Abelian representations

k= the greatest integer such that $2k\leq q.$ $\mathbb{T}^k\subset \mathbf{SO}(\mathbf{q})$ a maximal embedded k-torus.

 $\xi = (\xi_1, \dots, \xi_k) \colon \Gamma \to \mathbb{R}^k$ a representation. Define

$$\begin{array}{lcl} \rho_t^{\xi} \colon \mathsf{\Gamma} & \to & \mathsf{SO}(\mathsf{q}) \\ \rho_t^{\xi}(\gamma) & = & \left[\exp(2\pi t \sqrt{-1}\xi_1(\gamma), \dots, \exp(2\pi t \sqrt{-1}\xi_k(\gamma)) \right] \end{array}$$

$$\begin{aligned} \mathbb{D}_{\epsilon}^{q} &= \{(z_{1},\ldots,z_{q}) \mid z_{1}^{2}+\cdots z_{q}^{2} < \epsilon\} \subset \mathbb{R}^{q} \\ \mathbb{B}_{\epsilon}^{q} &= \{(z_{1},\ldots,z_{q}) \mid z_{1}^{2}+\cdots z_{q}^{2} \leq \epsilon\} \subset \mathbb{R}^{q} \\ \mathbb{S}_{\epsilon}^{q-1} &= \{(z_{1},\ldots,z_{q}) \mid z_{1}^{2}+\cdots z_{q}^{2} = \epsilon\} \subset \mathbb{R}^{q} \end{aligned}$$

Realizing abelian representations

Proposition: $\xi: \Gamma \to \mathbb{R}^k$ defines a flat bundle foliation \mathcal{F}_{ξ} of $L \times \mathbb{S}^{q-1}$ whose leaves cover *L*. Moreover, if the image of ξ is contained in the rational points $\mathbb{Q}^k \subset \mathbb{R}^k$, then all leaves of \mathcal{F}_{ξ} are compact.

Proof: ρ_t^{ξ} is an isotopy from ξ to the trivial representation. \Box

The idea is that if we take a path $\lambda : [0, \epsilon] \to \operatorname{Rep}(\Gamma, \operatorname{SO}(\mathbf{q}))$ of such representations, then this will yield a foliation \mathcal{F}_{λ} of $L \times \mathbb{D}_{\epsilon}^{q}$ whose restriction to the spherical fiber $L \times \mathbb{S}_{s}^{q-1}$ is $\mathcal{F}_{\lambda(s)}$, for $0 \leq s < \epsilon$.

The basic plug

In the main theorem, we can assume that $U = L \times \mathbb{D}_{\epsilon}^{q}$.

Fix a non-trivial representation $\xi_1 \colon \Gamma \to \mathbb{Q}^k$ which exists as $H^1(L, \mathbb{R}) \neq 0$.

Let $0 < \epsilon/2 < \epsilon_1 < \epsilon$, and set $\epsilon'_1 = (\epsilon_1 + \epsilon)/2$. Choose a monotone decreasing smooth function $\mu_1 \colon [0, \epsilon] \to [0, 1]$ such that

$$\mu_1(s) = egin{cases} 1 & ext{if} \ \ 0 \leq s \leq \epsilon_1, \ 0 & ext{if} \ \ \epsilon'_1 \leq s \leq \epsilon \end{cases}$$

Set $\rho_{1,s}^{\xi_1} = \rho^{\mu_1(s)\xi_1} \colon \Gamma \to \mathbf{SO}(\mathbf{q})$. Use this family of representations to define a foliation \mathcal{F}_1 of $N_1 = L \times \mathbb{D}_{\epsilon}^q$.

Note that \mathcal{F}_1 is the product foliation outside of $L \times \mathbb{S}_{e'_1}^{q-1}$, and has all leaves compact in $L \times \mathbb{B}_{e_1}^q$.

(4個) (4回) (4回) (5)

Iterating the plug

Let L_1 be a generic leaf of \mathcal{F}_1 contained in $L \times \mathbb{S}_{\epsilon_1/2}^{q-1}$.

By construction, $L_1 \to L$ is the compact covering associated to the kernel $\Gamma_1 \subset \Gamma$ of the homomorphism $\rho^{\xi_1} \colon \Gamma \to \mathbf{SO}(\mathbf{q})$.

Next choose $0 < \epsilon_2 < \epsilon$ sufficiently small so that \mathcal{F}_1 restricted to the ϵ_2 -disk bundle N_2 about L_1 is a product foliation.

We now repeat the construction: choose a non-trivial map $\xi_2 \colon \Gamma_1 \to \mathbb{Q}^k$ and maps μ_2 as before.

Iterating the plug 2

Iterate for all $n \ge 2$. This yields:

A descending sequence of subgroups $\Gamma \supset \Gamma_1 \supset \Gamma_2 \supset \cdots$

An increasing of open saturated subsets

$$V_n = L imes \mathbb{D}^q_{\epsilon} - L_{n+1} imes \mathbb{B}^q_{\epsilon_{n+1}}$$

with a foliation \mathcal{F}'_n which has leaves of increasingly high order as coverings, corresponding to the subgroups Γ_n

Note that $V_n \subset V_{n+1}$, hence $\mathbf{K}_n = L \times \mathbb{D}_{\epsilon}^q - V_n$, forms a nested sequence of compact sets, $\mathbf{K}_{n+1} \subset \mathbf{K}_n$.

The perturbation \mathcal{F}^\prime

Proposition: If the maps ξ_n are suitably chosen (ie the images of the generators of Γ are approach 0 in \mathbb{Q}^k sufficiently rapidly) then:

- the foliations \mathcal{F}'_n converge to a C^r -foliation \mathcal{F}' of $L \times \mathbb{D}^q_{\epsilon}$.
- **2** $\mathbf{K} = \bigcap_{n=1}^{\infty} \mathbf{K}_n$ is a saturated compact set.
- **3** $\mathcal{F}' \mid \mathbf{K}$ is a solenoid.

Problem: Is there a classification for the solenoids which arise in this way? Look for an answer to more general formulation.

Pseudogroups & Groupoids

Every foliation admits a discrete model by choosing a section $\mathcal{T} \subset M$, an embedded submanifold of dimension q which intersects each leaf of \mathcal{F} at least once, and always transversally. The holonomy of \mathcal{F} yields a compactly generated pseudogroup $\mathcal{G}_{\mathcal{F}}$ acting on \mathcal{T} .

Definition: A pseudogroup of transformations \mathcal{G} of \mathcal{T} is *compactly generated* if there is

- \bullet a relatively compact open subset $\mathcal{T}_0 \subset \mathcal{T}$ meeting all leaves of $\mathcal F$
- a finite set $\Gamma = \{g_1, \dots, g_k\} \subset \mathcal{G}$ such that $\langle \Gamma \rangle = \mathcal{G} | \mathcal{T}_0;$
- $g_i \colon D(g_i) \to R(g_i)$ is the restriction of $\widetilde{g}_i \in \mathcal{G}$ with $\overline{D(g)} \subset D(\widetilde{g}_i)$.

Definition: The groupoid of \mathcal{G} is the space of germs

$$\mathsf{\Gamma}_{\mathcal{G}} = \{[g]_x \mid g \in \mathcal{G} \And x \in D(g)\} \ , \ \mathsf{\Gamma}_{\mathcal{F}} = \mathsf{\Gamma}_{\mathcal{G}_{\mathcal{F}}}$$

with source map $s[g]_x = x$ and range map $r[g]_x = g(x) = y$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Derivative cocycle

Assume $(\mathcal{G}, \mathcal{T})$ is a compactly generated pseudogroup, and \mathcal{T} has a uniform Riemannian metric. Choose a uniformly bounded, Borel trivialization, $\mathcal{T}\mathcal{T} \cong \mathcal{T} \times \mathbb{R}^q$, $\mathcal{T}_x \mathcal{T} \cong_x \mathbb{R}^q$ for all $x \in \mathcal{T}$.

Definition: The normal cocycle $D\varphi \colon \Gamma_{\mathcal{G}} \times \mathcal{T} \to \mathbf{GL}(\mathbb{R}^{q})$ is defined by

$$D\varphi[g]_{x} = D_{x}g \colon T_{x}\mathcal{T} \cong_{x} \mathbb{R}^{q} \to T_{y}\mathcal{T} \cong_{y} \mathbb{R}^{q}$$

which satisfies the cocycle law

$$D\varphi([h]_y \circ [g]_x) = D\varphi[h]_y \cdot D\varphi[g]_x$$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Twist invariant

Proposition: Given a closed saturated subset $\mathbf{K} \subset M$,

$$[Darphi \mid \mathsf{K}] \in H^1(\mathcal{G}_\mathcal{F} \mid \mathsf{K}; \mathsf{GL}(\mathbb{R}^{\mathsf{q}})) \cong H^1_\mathcal{F}(\mathsf{K}; \mathsf{GL}(\mathbb{R}^{\mathsf{q}}))$$

is an invariant of $\mathcal{F} \mid \mathbf{K}$.

Theorem: Let \mathcal{F}' be a foliation with solenoidal minimal set \mathcal{S} as above. Then $[D\varphi \mid \mathcal{S}] \in H^1_{\mathcal{F}'}(\mathcal{S}; \mathbf{GL}(\mathbb{R}^q))$ is non-trivial, and measures the "asymptotic twisting of the lamination".

Problem: Calculate $H^1_{\mathcal{F}'}(\mathcal{S}; \mathbf{GL}(\mathbb{R}^q))$ for a solenoid.

Asymptotic expansion

Definition: For $g \in \Gamma_{\mathcal{G}}$, the word length $||[g]||_x$ of the germ $[g]_x$ of g at x is the least n such that

$$[g]_{\mathsf{X}} = [g_{i_1}^{\pm 1} \circ \cdots \circ g_{i_n}^{\pm 1}]_{\mathsf{X}}$$

Word length is a measure of the "time" required to get from one point on an orbit to another.

Definition: The transverse expansion rate function at x is

$$\lambda(\mathcal{G}, n, x) = \max_{\|[g]\|_{x} \le n} \frac{\ln\left(\max\{\|D_{x}g\|, \|D_{y}g^{-1}\|\}\right)}{\|[g]\|_{x}} \ge 0$$

Definition: The asymptotic transverse growth rate at x is

$$\lambda(\mathcal{G}, x) = \limsup_{n \to \infty} \lambda(\mathcal{G}, n, x) \ge 0$$

This is essentially the maximum Lyapunov exponent for \mathcal{G} at x.

Theorem: Let $\mathbf{K} \subset M$ be a compact saturated subset such that $\lambda(\mathcal{G}, x) = 0$ for all $x \in \mathbf{K} \cap \mathcal{T}$. Then $\mathcal{F} \mid \mathbf{K}$ has a holonomy invariant transverse measure supported on \mathbf{K} .

Distal foliations

Definition: A foliation \mathcal{F} is distal if its pseudogroup $(\mathcal{G}_{\mathcal{F}}, \mathcal{T})$ is distal: that is, for all $x \neq y \in \mathcal{T}$ there exists $\epsilon_{x,y} > 0$ such that

$$d_{\mathcal{T}}(g(x),g(y))\geq \epsilon_{x,y}$$
 for all $g\in \mathcal{G}_{\mathcal{F}}$

Definition: A foliation is said to be *compact* if all leaves of \mathcal{F} are compact submanifolds.

Remark: All compact foliations are distal.

Theorem: If \mathcal{F} is distal and transversally $\mathbf{C}^{1+\alpha}$ for some $\alpha > 0$, then $\lambda(\mathcal{G}, x) = 0$ for all $x \in \mathcal{T}$.

As an application, this gives another proof that a minimal set $\mathbf{K} \subset M$ has a holonomy invariant transverse measure supported on \mathbf{K} .

Problem: Is there a smooth structure theory for solenoids in distal foliations?