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SUMMARY

This thesis focuses on provin~g index theorems for noncompact manifolds with bound-
ary and the study of the corresponding eta invariant defect terms. More specifically, we

prove a von Neumann index theorem for Dirac operators on coverings, and for leaves of

foliations,-of-compact-manifolds-with-boundary. These-theorems-are the-analogue,in-the

noncompact case, of a celebrated theorem of Atiyah, Patodi and Singer which relates the
index of boundary value problems for compact manifolds with boundary, with Pontryagin

numbers and eta invariants.
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1. INTRODUCTION

This thesis focuses on proving Breuer index theorems for noncompact manifolds with
boundary. More specifically we prove an index theorem for Dirac operators on coverings,
and for leaves of foliations of compact manifolds with boundary. " This theorem is the

analogue of a celebrated theorem of Atiyah, Patodi and Singer [3], which relates the index of

boundary value problems for compact manifolds with boundary, with Pontryagin numbers
" and eta invariants. . |

Cheeger and Gromov (cf. [7] and [8]) proved the existence of eta invariants for signa-
ture operators on Galois coverings of compact manifolds. They also proved a key estimate
for these eta invariants. In our effort (Ramachandran, 1989, unpublished), to understand
these Cheeger-Gromov estimates for Dirac operators we were led to a unified proof of ex-
istence and estimates for the eta invariants for Dirac operators on coverings and foliations
of compact manifolds. (In the case of foliations, the eta invariant for Dirac operators, was
independently proved to exist, by G. Peric). (We prove these results in Chapter 3 of this
thesis.) The key techniques used, are estimates for the heat kernel of Difac operators (Ra-
machandran, 1989, unpublished), [29] and the definition of a tempered measure associated
~ to the spectral projections of these Dirac operators.
Before we proceed further we state our main theorems. See ‘Chapter 6 for a more

- precise statement.

Theorem 1.1. Let D be a Dirac operator on a compact manifold M with boundary,
~ acting on a graded Clifford bundle S, with grading operator e. We assume that the data
(D, S, €) has a product structure, near the boundary, (in the sense of Definition 2.1.1). Let
M be a Galois covering of M with Galois group I'. Let (5,§,E’) be the lift of the data
(D, S,€) to M. Let B be the Atiyah, Patodi, Singer boundary condition of Definition 2.1.3
associated to D. Then the T index (in the sense of Chapter 5) of the Brauer Fredholm
operator D with boundary condition Bis given by

1) indr(D) = /M ch(op)Td(M) — O R

2
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where n.(0) is the I eta invariant on the boundary OM. Next we state our index theorem

for foliations.

Theorem 1.2. Let (M,F) be a compact foliated manifold with boundary, with the foli-
ation F transverse to the boundary. Let Dx be a leafwise Dirac operator on S a Clifford
bundle over TF, the tangent bundle to the foliation . We assume that S is graded, with
grading operator €. Let v be a holonomy invariant transverse measure for the foliation F.

Further assume that the data (D, S,¢€) has a product structure near the boundary (in

the sense of Definition 2.3.2). Let Bx be the family of Atiyah, Patodi, Singer boundary
conditions corresponding to the family Dr. Then the v-index of this family of Brauer -

Fredholm operators (in the sense of Chapter 5) is finite and

ind,(Dx) = (ch(op,)Td(M), v} _ 7711(0; +h

where 7,,(0) is the foliation eta invariant of Chapter 2.

The proofs of Theorems 1 and 2 follow, in outline, that of [3], making use of a refor-
mulation of the proof in [3] by (Roe, 1988, unpublished). The extension of this app;oaéh
to the open ménifold case requires several technical innovations. Each chapter is a step of
the proof. The proof is completed in Chapter 6.

In Chapter 2, we describe Sobolev spaces for manifolds with boundary. We also stafe
the Spectral decomposition theoreﬁl for self-adjoint elliptic operators due to Browder and
Garding independently [11], [13]. We use this theorem to prove restriction theorems for

“these Sobolev spaces. Philosophically we think of the Browder-Garding theorem as giving
us a “Fourier transform” on the boundary. This will be the key to the way the definitions
are formulated.

Chapter 3 deals with type II eta invariants and is based on our work (Ramachandran,
| 1989, unpublished) as described earlier. The key technical chapters from the point of
view of analysis, is Chapters 4 and 5. Here we prove the self-adjointness of the boundary
value problem and the Sobolev regularity of the boundary value problem. In Chapter 5
we deal with the corresponding paraboiic initial boundary value problem and construct a

parametrix as in [3] which plays a key role in the evaluation of the index.
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The techniques of proof in Chapters 4 and 5 are very much in the spirit of [3] based
on the reformulation in (Roe, 1988, unpublished). The spectral transform given by the
theorem of Browder and Garding, along with Fourier transform in the direction normal
to the boundary, are used to reduce all estimates near the boundary to a one dimensional
problem with parameters. Most of these results are very classical in spirit.

In Chapter 6 we formulate the Brauer index of these boundary values problems. The

main novelty in the foliation case is that, we work with the equivalence relation given by

the foliation rather than the holonomy groupoid. The methods in this thesis also applies
to the holonomy groupoid and we will study this from a KK theoretic view point in a
future paper. By working with the foliation equivalence relation, one finds that the index
theorem applies directly to the leaves rather than to their holonomy covers. The boundary
valué problem for the leaves is more natural than that for the covers.

In the last chapter, which is Chapter 7, we complete the proof of our index theorem.
In the computation of the Index we follow quite closely [3]. There are some modifications
required because these type II eta invariants do not admit meromorphic continuation to
the right-half plane. The philosophy behind‘the computations in this chapter is to replace
the summation signs in the original work of Atiyah, Patodi and Singer (especially section
2, [3]) by an integral with respect to a tempered measure.

Finally we make a few concluding remarks. Bismut and Cheeger [5], have proved a
much stronger version of Theorem 1.2 when the foliation is a fibration of compact man-
ifolds and the boundary Dirac operators are invertible. Our main contributions are the
formulation of the von Neumann boundary value problem, the use of the spectral theorem
of Browder and Garding to prove the self-adjointness of vthe boundary value problem, and

the modifications necessary to use the computations in [3] to compute the index.



2. PRELIMINARIES

This chapter introduces some terminology and basic facts about Sobolev spaces on
manifolds with boundary. We state the spectral decomposition theorem of Browder and

Garding for self-adjoint elliptic operators.

2.1. The Ativah Patodi Singer boundary condition.

Our data will be the following. M will denote a C* complete Riemannian manifold
with C® boundary N. By the data (D, S, €) we mean a Dirac operator D acting on smooth
sections of a graded Clifford bundle S, with grading operator €. For more details see Roe

[26], [28], Lawson and Michelson [19].

Definition 2.1.1. By a product structure on the given data (D, S, €) in a neighborhood

of the collar [0,1] x N we mean the following:
1. The Riemannian metric on M is a product in a neighborhood of [0,1] x N.

-2. The Dirac operator has the special form D = cr(gas—, + Q) where o is the Clifford
multiplication by the unit normal to the boundary N, y is the co-ordinates normal to
the boundary and @ is a Dirac operator on N and @ is independent of y.

We further assume that the data (D, S, e) has a product structure as in Definition
2.1.1. We also assume that on the geometric double of M which we denote by dbM,
the doubled data (ﬁ,§ , €) satisfy the bounded geometry hypothesis in section 2 of Roe:
[26]. Such examples naturally arise in the study of Dirac operators on Galois coverings of
compact manifolds with boundary and leafwise Dirac operators on foliations of compact
manifolds with boundary with the foliation transverse to the boundary. All manifolds with
boundary considered in this thesis will be smooth. _

C(M; S) will denote compactly supported smooth sections of S smooth up to the
boundary of M. Then we have the following Green’s formula |

(2.1.1) (s1,Ds9) — (Dsy, s2) = /N(crbsl,sg)



S
(, ) denotes the L? inner producf on sections of S, s; and s; belong to C°(M;S). bs

denotes the restriction of the section s € C°(M;S) to the boundary N.
Following Roe (1988, unpublished) we make the following definition.

Definition 2.1.2. We say B : C°(N;S) — C®(N;S) defines a self-adjoint boundary

condition if

1. B extends to a bounded operator on L?(N;S).

2. B=B*and 0B+ Bo =o0.
If 51,82 € C°(M; S) satisfying Bbs, = 0 and Bbsz = 0 then
(2.1.2) | (s1,Ds2) = (Dsy, 52).

Remark. If we analyze the interaction of the product structure of the data (D, S, €) with
the grading operator € we find that @ is essentially self-adjoint on C°(N; S) and commutes
with €. Since € is an involution, diagonalizing it splits S = S+ @ S~ and Q preserves this

decomposition. We label Q restricted to sections of ST by Q4 respectively.

Definition 2.1.3. The Atiyah, Patodi, Singer boundary condition henceforth abbreviated
to A.P.S. boundary condition, is the operator B which restricts to the projection onto the
nonnegative part of the spectrum of @4 on the + part of the grading and restricts to the
projection onto the positive part of the spectrum Qf @ - on the — part of the grading. One
easily checks that B satisfies the conditions of Definition 2.1.2.

2.2. Sobolev Spaces.

We now define nonlocal Sobolev spaces for manifolds with boundary. Henceforth the
assumptions of section 2.1 carry over to the rest of the thesis. The main references for this

section will be Roe [26], (Roe, 1988, unpublished) and, Lions and Magenes [20].

Definition 2.2.1. Let k be a nonnegative integér. The Sobolev space W*(M; S) is the
completion of C°(M; S) in the norm

lslle = {lisll* + I Ds[|* +... + | D*s[|*}'/2
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where ||s|| = (s,s). For k a negative integer W¥(M; S) is the dual of W—*(M; S) considered
as a space of distributional sections.

Also W—=(M;S) = U W¥(M;S) and W>(M;S) = N WK(M;S); W®(M;S) has
the obvious Frechet topology and W ~°°(M; S) is equipped with weak topology that it
inherits as the dual of W (M;S).

For k nonnegative we observe that any element of W*(M;S) can be extended to

db(M) with control over the norm..

Proposition 2.2.1. There is a bounded linear operator
Ey: WX(M; S) » W*(dB(M); 5)
for every integer £ > 0 with the property that Ej f restricted to M is f.
Proof. f se W k(M ; S) vanishes m a neighborhood of the collar [0, 3) x N we define
Ers =0.

By using a bump function, it is enough to define Ej for sections supported in the

collar [0,1) x N. Let s € W¥(M; S) be suppofted in [0,1) x N. Then define

s(y,n) ify>0

= ¢ k+1 :

Bestym) { > ajs(—jy,n) fy<0
=1

where a;’s are chosen so that the first k derivatives in the y direction match at y = 0.

This implies that the a;’s satisfy the following system of equations

k+1
> (1Yo =1for0<j <k-1
=1

The determinant of this linear equation is not zero, so the appropriate a;’s can be found.

QED.

Definition 2.2.2. Let r be a nonnegative integer. The uniform C” space UCT(M; S) is
the Banach space of C” sections of S, C" up to the boundary of M such that the norm

lllslllr = sup{|Vy, - -- Vg s(m)|}

is finite, where the supremum is taken over all m € M and all collections vy,... ,v

(0 < ¢ < r) of unit tangent vectors at m. Also UC®(M;S) =N UC"(M;S).

q
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Proposition 2.2.2. The Frechet space W (M; S) is continuously included in UC>(M; .S').

Proof. By Proposition 2.2.1 W (M; S) is continuously included W (db(M); 5). Propo-
sition 2.8 of Roe [26] implies the result. Q.E.D.

Proposition 2.2.3. A continuous linear operator from W~°(M;S) to W>=(M;S) is
represented by a smoothing kernel smooth up to the corners on M x M. Also the kernel

and all its covariant derivatives are uniformly bounded.

Proof. The strategy for the proof is the same as in Proposition 2.9 of Roe [26]. We use
Proposition 2.2.2 instead of Proposition 2.8 used in Roe [27]. Q.E.D.

In the remark following Definition 2.1.2 we mentioned that @ is essentially self-adjoint
on C®(N;S). This follows immediately by a minor modification of the proof in Chernoff
[9]. The main difference between Chernoff [9] and our context is that N need not be
connected, but the fact that NV is a disjoint union of countably many complete Riemannian
manifolds implies that the proof in [9] can be used here. We leave the details to the reader.

Since @ is essentially self-adjoint it has a unique closure which we denote by Q. By

the spectral theorem we can define Sobolev spaces on the boundary N as follows.

Definition 2.2.3. Let & be a nonnegative half integer. Then
WF¥(N; S) = domain(QF)

if k is a nonnegative integer. Then it coincides with the closure of C°(N;S) under the

norim

{lIsl* +1Qs* +... + 1Q*sII*}*72.

We now state the generalized eigenfunction expansion theorem for ¢ due to Browder

and Garding.

Theorem 2.2.1. (Browder and Garding). There exists a sequence of smooth sectional
maps ¢; : R x N — S, namely e;j is measurable and for each A € R ¢;(}, ) is a smooth

section of S over N, and measures x; on R such that

(2.2.1) ~ Qej(A,n) = Aej(A,n).



Further, the map

(2.2.2) (Vs);(A) = '/J;(s(n) | e5(A,n))dvoly
defined on C°(N; S) extends to a isometry of Hilbert spaces
(2.2.3) V:L*N;S) — ?Lz(uj)

where the sum on the right hand side of (2.2.3) is the Hilbert direct sum. Also (] ) inside

the integral sign of (2.2.2) is the fibre wise inner product on S. Further V intertwines the

operator f(Q) with multiplication by f(X), _
(224)  domain f@) = {s | [ 1FOIPIVE0)Pdus() < oo

. N A
and

(2.25) [ lsPavel = 3 [ (V)00 Pdus().
Proof. See pages 300 - 307 Dieudonne [11], Dunford and Schwartz [13].

We now sketch the proof of a restriction theorem for the Sobolev spaces that we

defined earlier in this section.

Theorem 2.2.2. 'b: CXP(M;S) — CP(N; S) extends to a bounded operator
b: WFEM;S) — WF2(N; S) for any natural number k.

Proof. Again it is enough to consider elements of W¥(M;S) supported in the collar
[0,1) x N. We extend them to elements of W¥(db(M); S) supported in (—=1,1) x N. Note
that our data (13, 5 , €) has product structure on (—1,1) x V. Hence we can consider them

as elements of W¥*((—oc0,00) x N; 5 )- Therefore it is enough to prove that
(2.2.6) WF((—o0,00) x N; §) L WF1/2(0 x N; )

where r is the restriction map is bounded Because our data has product structure on
(—o0,00) X N, we have D? = ay2 + Q2. Hence W*((—o0,00) x N;§) is the closure of
C((—o00,00) X N; .S') with respect to the following norm

(-2 0oy bor (-Lva)'s >}”2.
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Using the map V given in (2.2.3) in the IV direction and the Fourier transform in the

y direction we see that
(2.2.7) W¥((—00,00)x N; §) = {s eL?| Z/ (T4+ A2+ €5 |(Vs) ;00 6)|Pdu,dé < oo}
. 3 R

where  inside the integral in (2.2.7) is the Fourier transform in the y direction. We call
the operator V, the spectral transform. The rest of the proof follows the proof of Theorem
B.1.11 of Hormander [17]. : Q.E.D.

2.3. Foliations of manifolds with boundary.

Definition 2.3.1. A C* manifold with boundary with the foliation transverse to the
boundary is a C* manifold with boundary with a collection of open sets {Uy} covering

M and homeomorphisms

Ya: Uy — Vo X Wy

with V, open in H? = {(z1,... ,z,) € R? | z; > 0} and

W4 open in R? which satisfies the following condition:

1. If we write @, = (v,w) the co-ordinate changes are given by foe map ¢ and local

diffeomorphism % namely
v' = (v, w) and w' = p(w).

Further the collection {Uy} is assumed maximal among all such collections. Since
co-ordinate changes‘sm'oothly transform level surfaces w = constant to w' = constant,
the level sets coalesce to form maximal connected sets called leaves and the manifold M
~ is foliated by these leaves and these leaves intersect the boundary transversely to give a
smooth foliation of the boundary with same codimension as the foliation of the interior
of M. We denote the foliation by F and (M,F) the manifold with the folia,ti‘on. If we
consider the tangent bundle to the leaves of F then we get a smooth vector bundle over
M which is a sub-bundle of the tangent bundle of M. We denote this sub-bundle by T'F.

We say the foliation F is transversely orientable if the quotient bundlé TM/TF, is
orientable. |

From now on we assume that our foliation is transversely oriented.
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Fact 2.3.1. (M, F) as above then there is a collar W on N such that F|w is diffeomorphic
to [0,1) X (F|n)- '

Proof. See page 43, Hector and Hirsch [16].

Let DF be a leafwise Dirac operator on S where S is a Clifford bundle over TF, (cf.
Roe [27]).

Definition 2.3.2. We say the data (Dr, S, €) where Sisa graded Clifford bundle over TF

with grading € has a product structure in a neighborhood of the foliation collar [0,1]x F|n
if |

1. the Riemannian metric on M is a product in a neighborhood of [0,1] x N.

2. The leafwise Dirac operators Dr has the form Dr = a(a% + Qr) where Qf is a
leafwise Dirac operator on Fly. o is the Clifford multiplication of the unit normal

along the leaves to the boundary foliation.

We remark that, implicitly included in our data (Dx, S, ¢€) is the fact that M has a

Riemannian metric.



3. TYPE II ETA INVARIANTS

This chapter proves the existence of eta invariants for Dirac operators on coverings of
compact manifolds, and for leafwise Dirac operators on foliations of compact manifolds.
Cheeger and Gromov [8] proved the existence of eta invariants for the signature operator

on coverings of compact manifolds. Peric [24], proved the existence of the foliation eta

invariant. In our study of Cheeger-Gromov estimates and generalizations of A.P.S. theorem
to foliations we discovered a proof of existence of these eta invariants which also gave
the Cheeger-Gromov estimates (cf. Ramachandran, 1989, unpublished). These Cheeger-
 Gromov estimates were applied in Douglas, Hurder and Kaminker [14]. This chapter
presents our proof. Section 3.1 deals with the covering eta invariant and section 3.2 with

the foliation eta invariant.

3.1. Eta invariant for coverings.

Let N be a compact Riemannian manifold without boundary. Let D be a Dirac op-
erator on S a Clifford bundle. Now D is essentially self-adjoint and De~tP* defined by
the spectral theorem is a smoothing operator. See Roe [28]vfor a proof of these state-
ments. We assume that the pointwise trace of De~tP* s 0(t1/2). This local cancellation
property was first observed by Biémut and Freéd [4] for Dirac opéra.tors arising in geomet-
ric situations. Following them we call this local ca.ncellatioﬁ property the Bismut-Freed
cancellation property. ’

~ Let Nbeal principal bundle over N where I is a discrete countable group. Let D
and S be the lifts of D and S respectively to N. By Atiyah [1], D acting on C>®(N;5) is

essentially self-adjoint.

Endr(L*(N; 5))

= {Bounded operator on Lz(ﬁ ;S ) commuting with I'}

If T € Endp(L%(N;5S)) is an integral operator with smooth kernel k7 then we define
the T' trace of T as follows.

11



12

Definition 3.1.1. trp(T) = [, Tr-kr(z,z)dz where F is a fundamental domain for the

T action on N and Tr, is the matrix trace on End(S,).

Definition 3.1.2. Let RB(R) = {Borel function R which are rapidly decreasing}. By

rapidly decreasing we mean
sup(1 + |z|)¥|f(z)| < Ck for every positive integer k.
zeR

Remark. By the spectral theorem and Sobolev lemma f(D) e Endp@ﬁ :S)) and is a

integral operator with smooth kernel for f € RB(R). See Chapter 13 of Roe [28] for more
details. Hence trp f(D) is finite for f € RB(R).
Let the kernel of the integral operator e=tD” be K(z,y) and the kernel e *%s be

ki«(z,y) where Ay is the Laplace-Beltrami operator on N. We have

Lemma 3.1.1.
(3.1.2) |Tr.DEK(z,z)| < At*/?

where A is constant depénding on the local geometry of N , S , the dimension of N and the
rank of S.

Proof. Let P(z,y,t) be a smooth parametrix for the kernel K(z,y), supported in an €
neighborhood of the diagonal of N x N where e is one-half the injectivity radius of N. We
also assume that P(z,y,t) satisfies the following additional properties.

(3‘13) P(ZI, yyt) € Hom(gy, gz)
(3.1.4) \ (gt- + 152)P(x, y, 1) is 0(t™)
(3.1.5) D (% + 152) P(z,y,t) is 0(t™ 1)

m is chosen so that

t
(3.1.6) / (t —s)"™2s™ 1 ds is 0(¢*/%) where n = dim N
A .
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(3.1.7) 1P(z,y, )]l < 4672 0<E<1

‘A’ in this chapter will denote constant depending on the data described in the state-
ment of the lemma. If the constant A appears in two places repeated by a little bit of text
then they are different. For a construction of such a parametrix P see Patodi [23]. By

Theorem 3.5, page 294 of Rosenberg [29] we have

(3.1.8) 1K (2, y)lla,y < €™ ke(,y)

where ¢ depends only on the local geometry. The proof in Rosenberg of (3.1.8) uses
probabilistic methods. For a proof of (3.1.8) based on the work of Dodziuk [14] see (Ra-
machandran, 1989, unpublished).

By Duhamel’s principle (cf. Roe [28])

Tro(DKy(z,z)) = Try(DP(z,z,t))

(3.1.9) + /Ot dsTr, ( / K, s(x,y)( 0 +Dz> DP(y,z, S)dvolN(y)>

Bismut and Freed [4], showed that
(3.1.10) | |Tr.(DP(z, z,t))| < At'/2.

Therefore

Tr:/ Kt_s(:c,y)D( 0 +D2)P(y,x s)dvol(y)
Af Ko™ S A vol(Blz, )t - 5) 25"

where we have used standard estimates heat kernel for the Laplace Beltrami operator
0 < ki(z,y) < At™™/?

see Chavel [6] and (3.1.5). Here B(z,€) is the metric ball of rad1us € centered at z. The
bounded geometry of N implies that

(3.1.11)

/ Tr / Kt_s(x,y)D( +D2>P(y,x s)dvol(y)| < At/

The estimate of (3.1.2) is completed by using estimates (3.1.10) and (3.1.11).
Q.ED.
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By the remark following Definition 3.1.2 we have for an f € S(R) (S(R) denotes the
Schwartz space) trp(D) is finite. Further if f > 0 then trp f(D) > 0.

Consider the linear functional
(3.1.12) I(f)=trrf(D) for feS(R).
By standard methods in harmonic analysis

(8-1-13) (f) [ f

Vg aA nl
Ly

Jr

where mr 1s a terhpered measure on R, namely there exists a positive integer £ such that

1 . .
L der‘ is finite.

We now proceed to the main theorem of this section. Let

(3.1.14) 0 (0) =

1 /oo -1/2 7, —tD?
t=1/24r0(De=tD" )t
I'(1/2) Jo (

Theorem 3.1.1.
(3.1.15) Inr(0)| < A vol(N)

where A is a constant satisfying the properties described in Lemma 3.1.1.

Proof. As in Cheeger and Gromov [7] we split the integral in (3.1.14) into the following

integrals and estimate them separately.

T 124 (De—tD’
1“(1/2)/ trp(De=tD")dt

/ t_l/""trr(De_tD2 )dt +

/ =1/24rp(De=tD* V.

m /2) r(1/2)

Now
(8.1.16) ' ‘L/lt—l/ztrp(ﬁe_tﬁz)dtl
{T(1/2) Jo '
1
S/ /t_1/2|Trz(DKt(:c,:v))|dv01]fvvdt
0 JF

; .
< A/ t"llztl/zdt/ dvols = A vol(N)
0 F
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where the final inequality follows from (3.1.2).

We estimate

1 *© ~ »2
(3.1.17) ‘m/; t—l/ztrr(De_tD )dt

< ’ﬁ /1 g /R Ae_t)‘zdmp(/\)dtl

1 /oo —1/2/ —ta?
< —== t Ale dmrp(A)dt
Sy P A

1 r [ 5 '
_ = =4 —1/2 —(t—=1)yx* i
(12 /R |Ale /1 t™ /e dt dmp(A)
< / e~ dmp()) = trr(e=D%).
R

By (3.1.8), tr(e;52) < A vol(N). Combining (3.1.16) and (3.1.17) we have (3.1.15).
| Q.E.D.

3.2. Eta invariants for foliations.

Let N be a C*° closed Riemannian manifold and F a smooth foliation on N. For each
leaf L of F we denote the volume element of the induced Riemannian metric by d volg.
Let v be a holonomy invariant transverse measure and Dr a leafwise Dirac operator acting
on a Clifford bundle S (cf. Roe [27], Moore and Schochet [22]). Further we assume that
Dy restricted to each leaf satisfies the Bismut-Freed cancellation property. The main
references for this section are Roe [26], [27], Moore and Schochet [22] and Connes [10]. We

now state the main theorem of this section.

Theorem 3.2.1. The integral

1
I'(1/2)

exists and satisfies the following inequality

/ t=12r (D re tPF)dt
0

(3.2.2) [n=(0)] < A u(N)

where tr, is the foliation trace given by the holonomy invariant transverse measure v, A
a constant depending on the rank of the vector bundle S and the local geometry of the
leaves and  is the total measure on N given by combining the leafwise volume elements

with transverse measure v.
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Proof. The Dirac opérator Dy, on each leaf L is essentially self-adjoint on C°(L; St). By
the spectral theorem, f(Dy) is a bounded operator, for f a bounded Borel function on R.
If f € S(R) then f(Dy) is an integral operator with smooth kernel, (cf. Roe [26]).

We can define a smooth measure on the leaf L, Trp f(Dyr)dvoly if f € S(R). Here
Trpef(Dr) is the pointwise trace of the integral kernel of f(Dy). The family of measures
{Trpef(Dr)dvoly}, by the parameterized version of the spectral theorem, is a Borel family

of tangential measures on the equivalence relation corresponding to the foliation F. By

R

the uniform geometry of the leaves, Ty, f(DL) is uniformly bounded over all leaves. By

Proposition 4.22 in Moore and Schochet [22], the integral tr, f(Dx) = |, N A dv is well

defined and finite, where A = {Ar } L+ denotes the tangential measures {T'rp: f(Dr)dvolL }.

If f > 0 then T'r,, f(Dy)dvoly is a positive measure. Therefore tr, f(Dr) > 0 for f > 0.
Consider the positive linear functional I : S(R) — C defined as follows

(3.2.3) I(f) = try f(DF).

There exists a tempered measure mx on R such that

(3.2.4) 1(f) = /R fdmz.
Let
(3.2.5) n¥(0) = I,(+/2) /1 oot‘l/?try(D;e“D;)dt

From (3.2.4), replacing mr by mx in (3.1.17), we have [n2(0)| < Ap(V).
To deal with the integral '

1 |
(3.2.6) / +=124r (D re~PF)dt
0

we observe that (3.1.2) implies
(3.2.7) Trp(DretPi(z,2))| < Apt*/? 0<t< 1.

Since we have global bounds on the local geometry of the leaves in terms of the geometry
of V and S, we have a uniform bound for the Ap’s in (3.2.7). Hence there is a constant A

such that

(3.2.8) ITrpe(Dre”®Pi(z,z))| < At}/? 0 <t <1 for all leaves L.
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From (3.2.8) we get

(3.2.9) |tr,(DretPF)| = \ / Tr,(Dre P (2, z))dvol v
N

< A2 u(W).

Therefore
1
/ t_l/ztry(D}-e_tD;')dt{ < Ap(N).
0

fa)
e
o

This completes the proof of the theorem.




4. SELF ADJOINTNESS OF THE BOUNDARY VALUE PROBLEM

Our assumptions are the same as in sections 2.1 and 2.2. Henceforth B will denote
the boundary condition satisfying Definitions 2.1.2 and 2.1.3. This boundary condition
will be known as the A.P.S. boundary condition. In this chapter, we prove that D acting
on W*(M; S)p is essentially self-adjoint, where

Wo(M; )5 = {S € We(M;S) | Bbf = 0}.

QOur approach to the problem of essential self-adjointness is inspired by (Roe, 1988,
unpublished). This will involve the construction of bounded linear operators R; and R,

satisfying the following properties.
(4.1) R; : WK(M;S) » Wr(M; S)5
for i = 1,2 and k a nonnegative integer, is continuous.

RyD —1d= 5,

where 57 and S; are smoothing operators.
(4.3) WE(M; S)g = {s € W*(M; S) | Bbs = 0} for k > 1.

Assuming existence of operators R; and their adjoints R} satisfying (4.1), (4.2), and
(4.3) we prove the essential self-adjointness of the Boundary Value problem which in the
future will be abbreviated to B.V.P. '

Theorem 4.1. The unbounded operator
D : L*(M;S) - L*(M;S)
with domain W*(M; S)p is essentially self-adjoint.

18
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Proof. We first prove that the minimal domain of D is W (M;S)p. This proof follows
(Roe, 1988, unpublished). The closure of W°(M;S)p in the graph norm is clearly con-
tained in W1(M;S)p. To prove that these two spaces are the same, we show that any
element in W1(M;S)p can be approximated by elements in W™(M;S)p. Again it is
enough to prove that elements in W' (M; S)p supported in a collar [0,1) X N can be ap-
proximated by elements in W>(M;S)p. Let s € W!(M; S)p be supported in [0,1) x N.
Extending by zero, we can think of s as an element of W([0,00) x N;S)p. Regularize s

in the boundary direction by the operator
(4.4) - Hs = Be '¥ Bs + (I — B)e™*?°(I — B)s.

By reflection extend s to W!((—o0,00) X N; 5), and regularize s in the cylinder di-

rection by

: 1 zT—y
(4.5) | SE_;—/;E(P( . )sdy

where ¢ is a smooth compactly supported even positive function on [—1,1] with [ ¢ = 1.

Combining (4.4) and (45) gives the required approximation.

Next we prove that
(4.6) domain of D* = W(M;S)s
where D* is the Hilbert space adjoint of D. Now

sEL2(M;S)‘ f > (s,Df) for

(4.7) Dom(D*) = fewWl(M;S)s
extends to a bounded
linear functional on L?

By definition, W!(M; S)p C Dom(D*). We now prove that, ]jom(D*) CWY(M;S)s.
Let f € Dom(D*). Then thereis a g € L? so that

(4.8) (f,Ds) = (g, s) for all s € W'(M;S)s.
Since DR;s + S1s = s, we have by (4.8)

{f,s) ={f,DR1S + S15) = (g, Ras) + (£, 515)
= (Rig,s) + (51 f, ).
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Therefore f = Rig+ STf € W'(M; S). This implies that bf is defined. If s € W!(M;S)p
then

(4.9) (f,Ds) = (Df,s) + (bf,obs) = (g, s).
By choosing s compactly supported in the interior of M we see that Df = g. By (4.9)

(bf,abé) =0 for all s € W!(M;s)p.

Hence bf € (o ker B)* = ker B. This implies that f € W1(M;S)p. Q.E.D.

The construction of the operators R; is based on the following prbcedure. We first
construct an interior parametrix for D. Following the.notation of section 2.1 we consider
the data (D, 5,€) on the complete manifold without boundary db(M). By Chernoff [9],
D is essentially self-adjoint on C(db(M); 5). We construct parametrices I; and I, with
appropriate Sobolev regularity, namely

(4.10) - I : WH(db(M) : §) —» W*(db(M);5) £=1,2
and k a nonnegative integer and

(4.11) DL —Id=S
(412) | LD—Id=S)

where S} and S} are émoothing operators.

The next step is to construct a boundary parametrix and then patch the two together
to get operators R;. The construction of boundary parametrix is very similar to section 2
of A.P.S. [3]. The main tools in the construction of boundary parametrix are separation
of variables and Theorem 2.2.1. |

Since we will be constructing the boundary parametrix in a neighborhood of the collar
[0,1) X N and then truncate it by smooth bump functions, we can assume without loss
of generality that the collar is [0,00) x N, with the product metric. For the rest of this
section let M = [0,00) x N. |
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Diagonalizing € the grading operator we have S = ST @ S~ where St and S~ are the

+1 and —1 eigenspaces of € respectively. Then
(4.13) D:W>e(M;ST)® W>®(M;S~) » We(M;ST) @ W (M;S™).

Now D = 0'(% + Q) where 02 = —1, ¢ anticommutes with ¢ and @ commutes with

€. Therefore we have

(414) Q= (QO+ QO_) and——o = (2 _%_1>

where 8 : ST — S~ is an isomorphism given by the Clifford action. Identifying S~ with

St using B we can assume o = (0 _1) and

! o
(4.15) Q= (QO+ _g+> L W (M; S*) © We(M; 1),
Further

(4.16) B= (15 ! f P) where P = X[o,00)(@<)-

Further @4+ and all its powers are essentially self-adjoint. We can therefore apply
Theorem 2.2.1. Under these identifications our B.V.P. is

wm 0-(23) (§(% ) mirn(D %)

The application of the spectral transform to prove Sobolev regularity of the boundary

parametrix is based on the observation

(4.18) feWKM;S) & f € L¥([0,00); W*(NV; S)) and
2 wi0,00); WEI(H; 5))
ayJ .

1<j<k k>0 keZ.

Where _
W (0, 00); H) = {f \ZTf € IX([0,00); H) 0<; < k}

for H a Hilbert space.
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Theorem 4.2. There exists an inverse T to D acting on C°([0,00); W(N;5)) with

the following properties.

(4.19) T : C([0,00); WR(N;5)) — C*([0,00); WP(N;5))B

(4.20) DTf=f and T Df=f.

Fuarther T extends to acontinuous-operator

(4.21) T:WHM;S) - WELM;S) k>0

yloc

where

: k .

W;loc(M;S): f a function } ofeWHM;S) |
on M ¢ € C([0,0))

Proof. Our construction follows the one in A.P.S. [3], with the exception of using Theorem

2.2.1 instead of eigenfunction expansions.

We need to solve the following equations

0 .
(8_y+Q+)f1 =g; with Pf;(0)=0
0 .
Applying the spectral transform we find

(% + )\)(Vfl )i ) = (Va1);(Ay) with (V f1);(A,0) =0

(4.22) for A>0
(2 - 3) (V200 = (Vaa)s(h0) with (V12s(0,0) =0
for A < 0.

We denote the Fourier Laplace transform by

3(6) = fo ~ et g(y)dy.
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Solutions of equations (4.22) are
y
(V)i y) = / AN (Vg)i(ha)de A >0
(4.23) / A9 (Vg )0 2)dz i A <0
y

(VH)i(hy) = / A= (Vg,)(\ 2)dz for A > 0
Yy

=—f—e‘)‘(’y:”')'(‘V—gz—)3(/\, z)dz for A=<-0:
0
Apply the Fourier Laplace transform w.r.t. the y variable to (4.22), we get

(A +)V )51 €) = (Var1);(X, €) + (V£1);(4,0)
where (V f1)j(A,0) =0for A >0

(4.24) 3 3
(=2 +i)(V2)i(X€) = (Vg2);(A, €) + (V £2);(A, 0)
where (V f2);(A,0) =0 for A < 0.
Also
(4.25) ' (Vf1);j(A,0)=— /00 e (Vg1);(\z)dz  ifA<0

(V£2);(1,0) = — /Om e (Vga);(A\z)de if A > 0.

When estimating the L? norms we find that f1 and f, are L? We now prove that

yloc*

(4.26) _ ' T:I: L? - yloc

(where

T+g1 = V_I(Vfl)

and

T g, =V (Vf)



24

where (V f1) and (V f2) are defined by equations (4.32)) are continuous. It follows from
(4.24) it follows that

3 [17 550,084 < [1Ta0,000Pd  for 320
<o{ [(Tas0 0P+ 21V 0.01 [~ )

<4 / (Va:); (A, )[dy.

Here i = 1,2.

Using (4.22) we have

@ VAW = AVAO) + (Ve)i09)
2 (VRO = ML) + (Ve (00)
We get | |
[ 5 VisOPdy <9 [ 1(Vasn ).

We consider

J1ws0pa = [

2
dy for A > 0.

0

y
/ ek(’_y)(Vgl )i(A, z)dz

Applying Cauchy-Schwarz inequality

(4.28) < / =2 [( /0 ’ emdz) /O Ve m)|2dz] dy

< [ [ S [T e

1__e—2Ay

One can estimate uniformly in A, +=55—. Hence this implies that (V' f);(},y) € LZIoc-

Putting these estimates together we have

T+ 0
T1=( 0 T_):Lz—rW;bc

where T is the solution to (4.22). Higher derivative estimates are made in the same fashion

as in section 2 of A.P.S. [3]. We get the inverse of D
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(Tt 0 0 —B-1
r=( L) (5% QED.

We patch T and I, together as in section 3 of A.P.S. [3]. Let p(a, b) denote an increasing
C® function of the real variable y with p=0fort <a and p=1for y > b.
Define four C*° functions ¢1, ¢2, 91, 12 by

!Qé?:p(%’ %)’ ¢2=P(%, %)

(4.29)

N

l¢1=1—p(%,1 br=1-4

Then Ry = ¢1T%1 + doleths.
Putting the estimates for T' and I, together we see that R, satisfies the properties
(4.1), (4.2), and (4.3) and so does its adjoint.



5. PARAMETRIX FOR THE PARABOLIC INITIAL BOUNDARY
VALUE PROBLEM

In Chapter 4, we showed that the densely defined unbounded operator
D : L*(M;S) — L*(M;S)

with domain W1(M;S)p is self-adjoint. Further from the regularity properties of the

parametrix constructed in Chapter 4 we have Dom(D*)"C W*(M7S) for k= positive
integer. Therefore by duality and the spectral theorem we have
Proposition 5.1. If f € RB(R) then
f(D): W=k (M;8) —» Wk (M; S)
for all k;, and k, positive integers. Hence f(D) is represented by a smooth kernel.

Proof. Use functional calculus and Proposition 2.2.3. Q.E.D.

—tD* is a smbothing operator. The rest of this chapter focuses

By Proposition 5.1, e
on constructing a parametrix for this initial boundary value problem. Asin A.P.S. [3] we
construct an interior parametrix by considering the heat kernel of D on the db(M) and
restricting to the interior of M. As in Chapter 4, in the construction of the boundary
parametrix we can assume that our collar is M = [0,00) x N. Under the identifications

(4.13), (4.14), and (4.15) the initial boundary value problem,

0
(5+2*)7C.0=0
f(,0)=4g()
(5.1) and Bbf =0 and BbDf =0

reduces, using the spectral transform to
' (27 - a"’— + /\2)(Vf1),(,\ y,t) =0

(VFD3(00,8) + AV 1);(A,0,8) = 0 for A >0
(%(Vfl)j()\,o,t) + A(Vfl)j(A,O,t)> —0for A<0
( (V£1)i(Ay,0) = (Va);i(Ay)

-

(5.2)

26
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and
(% - ’3%27 + ’\2) (Vf2)i(Ay,t) =0
(5.3) (V£2);(2,0,8) =0 for A <0

= & (V£)i(0,0,8) + AV f2);(1,0,6) = 0 for A > 0
{ (V£2)i(X9,0) = (Vg2);(\y)

where f = (J;:)
The solution to (5.2) is given by

P£CO.

(5.4) (Vf)i(Az,t) = /0 ax(z,y,t)(Va1)j(A,y)dt for A >0

5 = / ba(z,y,t)(Vg1)i(A,y)dy for A <0
_ 0 ’

where
—2%¢ 2 2

_e NGt NN G C2 )
(55) a,\(a:, y’t) - \/m[exp( 4t ) exp( 4t
and
(5.6) ba(z,y,t) = ax(z,y,t) + de~ A z+y) erfc{u - A\/E}

24/t

where

erfc(z) = % /°° e=€de.

Similarly the solution of (5.3) is

(5.7) (Vf2)i(A, z,t) = /:0 ax(z,y,t)(Vg2)j(A,y)dy for A <0

= / boa(z,y,t)(Vg)i(A,y)dy for A > 0.
0
These solutions can be found in A.P.S. [3].
Let

68 B =X [ [ ax@uoas0 et i)
Z/KO /Ooo bx(z,y,tj(Vg)j(A,y)ej(n,/\)dydﬂj(/\)
69 E@aen =Y [ [ ax@unaionven Vi)

> L T (e u V)30 e \dydus )
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The off diagonal exponential decay, of e“’\zt, in ax(z,y,t), ba(z,y,t) and its deriva-
tives, along with the term e~*’!, imply that E*(t) and E~(t) are smoothing operators
and are represented by smooth kernels for t > 0.

We define
(5.10) Eu(t) = (E+O(t) E_O(t)> (2 ‘%_1).

Then E, (t) is the fundamental solution of the initial boundary value problem (5.1) on
the cylinder [0,00) X N. Let F(t) be the fundamental solution of the heat equation on the

double of M for D. Then we will patch F(t) and E;(t) to get a parametrix for the initial
boundary value problem on M. We defined the functions ¢;, #2 and 1,9, in Chapter 4.

We use them to construct

(5.11) | E(t) = 1 Ex(thr + $2F ()2,
Note that (% + D?)E(t) is 0(¢*) for all k£ > 0. This follows from the off diagonal
exponential decay of ax(z,y,t), ba(z,y,t) and F(2).

Theorem 5.2.
(5.12) e’ — E(t) : Wk (M; S) — WF(M; S)
is a bounded linear operator for all k; and k, positive integers. For k; and k2 very large

positive integers there exists an a > 0 such that
le™*P" — Et)|| w41 wrsy) S Ct* forall 0<t < 1.
Proof. This follows from the Duhamel’s formula -
t
e—tD2 _ E(t) _ / e—(t—s)D'*’ (_a_ + D2) E(S)
0 33 .
and Sobolev estimates. The basic idea is the following

(a +D2> E(s) = 62¢2 2 Ftypa + a‘fj oF)

0
32¢1

%? aEl(t) LB ().

Now the off diagonal exponential decay of a,\(z,y,t), bx(z,y,t) and F(t) along with
the fact that

Y1+

32 ¢z 3¢z 9¢1 0%

1/)21 )¢21 ay )¢1’ ayz ’¢1
have disjoint supports proves the theorem. Q.E.D.



6. BREUR INDEX FOR COVERINGS AND FOLIATIONS

This chapter formulates the Breuer index for elliptic operators on coverings of compact
manifolds with boundary and for elliptic operators on leaves of foliations compact manifolds
with boundary with leaves transverse to the boundary.

Heuristically, in case of Galois coverings of a compact manifold with boundary M,

with Galois group I', we deal with the von Neuinaiin algebra with a semiifinite faithful

trace
EndpLZ(M ) = {All bounded linear operators commuting with the I" action}

This trace is defined on a smaller class of operators. We will work with a dense subalgebra
of EndpL?(M) to define finite-T' dimensionality.

In the case of a foliation F of M we have the Borel equivalence relation
R = {(z,y) | z and y are on the same leaf L € F}

which has the structure of a measurable groupoid. See Moore [21], Moore and Schochet
[22] for definitions and more details. Now the groupoid R acts on the field of Hilbert
spaces H = {L*(L;)}.enm naturally. Following Connes [10] we study the von Neumann
algebra of intertwining endomorphisms of the field H up to suitable equivalence given by
a holonomy invariant transverse measure v. Moreover the transverse measure gives rise to
a natural faithful semifinite trace, which is used to define the notion of finite v dimension.

Section 6.1 deals with the case of coverings and section 6.2 the case of foliations.

6.1. Finite dimensionality of the I" index.

Let M be a compact Riemannian manifold with boundary N. Let D be a Dirac.
operator on a graded Clifford bundle S with grading operator e. We assume that the data
(D, S, €) has a product structure in a neighborhood of the collar [0,1] x N as in Definition
2.1.1. Let M be a Galois covering of M with Galois group I'. We denote the lifts of D
and S to M by Dand S respectively. Let B be the A.P.S. boundary condition associated
to D as in Definitions 2.1.2 and 2.1.3.

29
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In Chapter 4 we showed that the densely defined operator D : Lz(ﬁ .S ) — LZ(M .S )
with Dom(D) = W (]Tf ; §)§ is self-adjoint. Further D commutes with the action of T.
Following Roe [28] we introduce a dense subalgebra 21 of Endp(Lz(H 53 ))-

Definition 6.1.1. A € A if

1. Ais given by an integral kernel k(z,y) with the following property. There is a constant
C such that [ |k(m,y)|2dvolﬁ(y) < C and [ |k(:1:,y)|2dvolﬁ(:z:) < C for every z and
y € M respectively.

2. Ais smqothing, namely
As(z) = /~ k(z,y)s(y)dvoly(y) for Se€ L?(M; S)
N
and the maps z — k(z,-) and y — k(-,y) are smooth maps of M to the Hilbert space
LX(M;S).
Proposition 6.1.1. The set of operators 2 form an algebra.

Proof. The proof for manifolds with boundary follows exactly as that of Proposition 13.5
of Roe [28]. : . ' _ Q.ED.

Lemma 6.1.1. There exists a fundamental domain for the I' action on M. , which we label

F.

Proof. The proof is exactly the same as in Atiyah [1] where it is proved for manifolds
without boundary. Q.E.D.

We now define a functional 7 : % — C, which we call a trace, as follows.

‘Definition 6.1.2. Let A € %, then

(6.1.1) 7(A) = /Ftr k(z, z)dvolx(z)

where F' is a fundamental domain for the I" action. The fact that A commutes with the I'
action implies that the definition of 7 is independent of the choice of fundamental domain.

We also use the notation trr for 7.
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Proposition 6.1.2. For A;, A, € 2 we have
T(AlAg) = T(AlAl).

Proof. The proof for manifolds with boundary is the same as the proof for manifolds

without boundary, see Proposition 13.10 of Roe [28].

Definition 6.1.3. A closed subspace H of L2(M; S) is said to be of finite I-dimension if

the orthogonal projection P : LT(M’V,_g ) — H belongs to 2. In this case we define
(6.1.2) - | dimp(H) = 7(P).

Proposition 6.1.3. For any f € RB(R), f(ﬁ) € AU
Proof. Follows immediately from Proposifion 6.1. A Q.E.D.

Theorem.6.1.1. D : Lz(lT/f S = L2(]T/f ; §) is closed densely defined operator with
Dom(D) = WM ;§)§ has finite I-dimensional kernel, and the I' index indr(D) =
dimr (ker DV) — dimp (ker D) is finite.

Proof. The self-adjointness of D implies that D+ and D~ are Hilbert space zidjoints of
each other. By Proposition 6.1.3, the projection onto ker(ﬁ)» belongs to A. Therefore
dimp ker(ﬁ) is finite. This implies that indr(D) is finite. Q.E.D.

The next propositioh is called the McKean Singer formula.

Proposition 6.1.4.
(6.1.3) : indr(D = T(ee_tﬁz).

Proof. The proof is the same as the proof of Proposition 13.14 of Roe [28], if we observe
that D and D~ are Hilbert space adjoints of each other. Q.E.D.

In section 7.1 we will use Proposition 6.1.4 to identify the I'-index in terms of topo-

logical data and the correction term arising from the eta invariant of section 3.1.
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6.2. Finite v-dimensionality of the foliation index problem.

Let (M, F) be a compact foliated manifold with boundary with the foliation transverse
to the boundary as in Definition 2.3.1. Let D be a leaf wise Dirac operator on a graded
Clifford bundle S with grading operator e. We also assume that the data (Dx, S,¢) has a
product structure in the sense of Definition 2.3.2, near the boundary. Let Rj; denote the
measurable induced equivalence relation on M given by the leaves of the foliation F; and

Ry the equivalence relation on the foliation of the boundary N.

Let H = {L*(L,;SL,)}zem, where L, is the leaf through z, denote a Borel field of
Hilbert spaces. See Dixmier [12] Chapter I, part II for definitions. By Proposition 4, page

167 of Dixmier [12], to prescribe a measure structure on the field of Hilbert spaces H, it

is enough to prescribe a countable sequence {s;} of sections of this field of Hilbert spaces
with the additional property that for all z € M the countable set {s;(z)} C L?(L,;SL,)
is a complete orthonormal set. We can do this in our context with the property that each
sj(z) is also a smooth section on the leaf L,. See Appendix of (Heitsch and Lazarov, 1990,
unpublished).

There is a natural representation of the equivalence relation R on H as follows. If
(z,y) € R then the unitary isomorphism from L?(L,; St ) to L?(Ly; Sy) is just the identity
map.

A Borel transversal to the foliation F is a Borel subset of M which intersects every
leaf in at most a countable set. The Borel transversals of F generate a o-ring S. Namely
it is closed under countable unions and relative complementation. Note that the holonomy

pseudo group acts on the o-ring S. For more on this see Hector and Hirsch [16] Chapters
IIT and X.

Definition 6.2.1. A transverse measure v is a measure v on the o-ring & of Borel transver-

sals such that v|r is o-finite for every T € S.

Definition 6.2.2. A transverse measure v is holonomy invariant if it is invariant under

the action of the holonomy pseudo group on the o-ring.

Note that the natural representation of R on H is “square integrable” in the sense of
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Connes [10]. Denoted by

(6.2.1) Endz (H) ={uniformly bounded measurable field of

bounded operators intertwining the natural

representation of R on H }.

Given a holonomy invariant transverse measure v Connes [10] defines in Chapter V,

a von Neumann algebra

(6.2.2) End,(H)={[T])| T € Endgr(H) and T; ~ T, if they are

equal for v almost every leaf}.

He also shows that End,(H) is a direct integral of type I and type II von Neumann
algebras. In part it has a semifinite faithful trace ¢r, obtained from v.

If the field of operators T € Endg(H) in the domain of ¢r,, is implemented by a
family of integral operators, one for every leaf L € F, with the family of leafwise kernels

{kr(z,y)}z,yeL, then the von Neumann trace of T is given by
LeF .

(6.2.3) tr,(T) = /M ki(z,z)dvolpdv.

The right hand side integral in (6.2.3) is well defined, and the holonomy invariance
of the measure implies that the modular automorphism group generated by this state is

trivial.

Lemma 6.2.1. If the kernels k7 (z,y) are uniformly bounded over all leaves then t¢r,(T)
is finite.

Proof. This follows immediately from (6.2.3). Q.E.D.

Definition 6.2.3. We say a measurable field of closed subspaces of H has finite v-
dimension if the corresponding family of orthogonal projections have finite v trace.

Let By = {Br}rer denote the family of A.P.S. boundary conditions, for each leaf
L € F. We thus have a family of closed densely defined unbounded operators

(6.2.4) Dy, :L*(L.;St,) — L*(L;;S1.), z € M.
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(Here L, is the leaf through z, with Dom(Dy,) = W'(L,;SL,)B,, and Bg, is the A.P.S.
boundary condition defined in Section 2.1 for the leaf L,) which are self-adjoint. We wish
to show that the family {Dy_}.enm is a measurable family of self-adjoint operators. This

enables us to use the measurable spectral theorem (cf. Reed and Simon [25] Theorem

XIII.85), to prove

Theorem 6.2.1. If f is a bounded Borel function, then

(6-2:5) {f(Pr)}semr € Endz(H):

Proof. To prove the measurability of the family of operators in (6.2.4) it is enough to
show that the family {(Dr, +4¢)"!}zenm is a measurable family of bounded operators. The
family Hilbert spaces {W?*(L.; S1,)B;, }zem has a natural measure structure given by its

inclusion into H. Q.E.D.

Proposition 6.2.1. The field of bounded operators

(6.2.6) {Dr. +i}zem {Wl(Ll;SLz)BLc }rem — {L2(LI§SL=)}::EM

is measurable, and the leafwise defined inverse are also a measurable family.

Proof. The self-adjointness of Dy, with domain W'(L; S, )p,_ implies that
Dr, +i:W'(Ls;S1.)B,, — L*(Lz; S1.)

is a Hilbert space isomorphism. Let s, ¢t be measurable sections of the domain and range
respectively. Following (Heitsch and Lazarov, 1990, unpublished) we can choose t so that
t(z) is smooth on L,. Then

(Dr. +1)8(2),4(2)) L2(Las50.) = (8(2) (D1, = DH@)) L2(Lassy,) + /aL G

T

by formula (2.1.1). The measurability of the right hand side as a function of z follows
immediately. From Example 2, page 180 of Dixmier [12] the leafwise inverse is a measurable
field of operators. Combining Proposition 6.2.1 with the measurable spectral theorem in

Reed and Simon [25] immediately proves the theorem. Q.E.D.
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Lemma 6.2.2. If f € RB(R) then
tT‘yf(D]:) is finite.

Proof. Proposition 5.1 and Theorem 6.2.1 imply that {f(Dr_)}zenm is a measurable fam-
ily of integral operators with the integral kernels smooth and uniformly bounded. Therefore
by Lemma 6.2.1 the proof is complete. ‘ Q.E.D.

In particular if we take f(z) = ! ? Tf z# 8} then
’ J

st 1f‘$—:‘

(6.2.7) dim, (ker Dx) = dim, {ker Dy_} is finite.

This immediately implies the following theorem.

Theorem 6.2.2. The family of A.P.S. boundary value problems has finite ¥ dimensional

kernel, and therefore
(6.2.8) ind, D5 = dim, ker(D}) ~ dim, ker(D7%) is finite.

Finally we have the McKean Singer formula. Namely

Proposition 6.2.2.

ind, (D) = tr,(ee"PF).

Proof. We first observe that on each leaf L, D} and D are Hilbert space adjoints of each
other. The family wise partial isometries in the polar decomposition of D} implement the
isomorphism of the spectral projections of Dy D} and D} D on Borel subsets of (0, c0).
See Moore and Schochet [22], Proposition (7.38) and Connes [10], Corollary 8, page 134
for more details. Q.E.D.

In Section 7.2 we use Proposition 6.2.2 to compute ind, (Dx) in terms of topological

data and a correction term which is a foliation eta invariant defined in Section 3.2.



7. THE INDEX THEOREM FOR COVERINGS AND FOLIATIONS

In this chapter, we complete the proofs of the main theorems stated in the Introduc-
tion. In the earlier chapters we formulated the appropriate Breuer index, for boundary
value problems. This chapter is devoted to the computation of this index. We obtain
a topological component in the interior and a boundary spectral component, the eta in-

variant of Chapter 3. The proof is in strategy very similar to the one used by Atiyah,

Patodi and Singer [3]. In section 7.1 we prove the index formula in the case of coverings
of compact manifolds with boundary. Section 7.2 gives the proof for the case of foliations.
Since this case is very similar to the case of coverings in 7.1, we only sketch the proof,

indicating where the necessary changes have to be made.

7.1. Proof of Index Theorem for Galois Coverings.

Let M be a compact Riemannian manifold with boundary N. Let D be a Dirac
operator on a graded Clifford bundle S with grading e. We assume that the data (D, S, €)
has a product structure in a neighborhood of the collar [0,1] X N as in Definition 2.1.1.
Let M be a Galois covering of M with Galois group I'., We denote the lifts of D and S to
M by Dand S respectively. Let B be the A.P.S. boundary condition associated to D as

in Definitions 2.1.2 and 2.1.3. We state our index theorem.

Theorem 7.1.1.

(7.1.1) indp(D) = / ch(op)Td(M) — M;iﬁ
. ’ M
where the integral on the right hand side of (7.1.1) is the standard formula in the calculation

of the index on a manifold without boundary.

(7.1.2) ' h = dimr ker(Q4)
— ; = -1/2 -tQ2
(7.1.3) nr(0) = F(I/Z)/o ™ trr(Q4e f)clt
where D = a(—% + Q) in a neighborhood of the collar [0,1] x &M and Q = (QO+ Qo_>

Q+: L2(6]T/f; §+) — L2(3.7T/f; §+)
is a Dirac operator on the boundary satisfying the Bismut-Freed local cancellation property.

36
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Proof. By Proposition 6.1.4 we have
indr(D) = trr(ee~tﬁ2).

By Theorem 5.2 we can replace e"t5 ? by the parametrix constructed in Chapter 4
denoted by E(t), as t — 0%, In the definition of E(t) we lift cut off functions ¢;,; from
the base to M to M. . Therefore

indp (D).~ trp(eE(t))

tro(eE(t)) = trr(edi E(8)1) + trr(eds F(t)e2).

Now

tli%1+ trr(eqﬁgﬁ(t)zﬁz) = tEI(l)’l+ /M F(t,m)z/)é(:c)dm

where F(t,z) is the local supertrace of the heat kernel on the double of M considered as

a function on db(M). Since we have a product structure in a neighborhood of the collar it

follows that

lim+ F(t,z) =0 for z in the collar.
t—90

Therefore by the calculation in Atiyah, Bott and Patodi [2] we have
lim trr(edo F(t),) = lim / F(t,z)dvoly =/ ch(op)Td(M).
t—0t =0t far M
Next we need to evaluate
(7.1.4) | trr(edy By (t)1:).
We note that the operator
$1E(t), € Endr(L2([0,1] x 8M; 5)

and has an integral kernel. Now I' acts only on OM. Therefore if the integral kernel of

¢1E’z/)1 is kg(z1,m1; T2, m2) then by Fubini’s theorem

_ 1
(7.1.5) trp(eqﬁlEl(t)zﬁl):/; #rp(ekE(m,m; z,m))dz
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where trr under the integral sign is the I' trace on oM. Combining (7.1.5) with the
definition of El(t) we have

trr(€_¢1E1(t)¢1)

(7.1.6) 2
=/01¢1(y)/R sign /\{—“T;/ |Ale2IMy eIfC(\/ IAI\f)}du(/\)dy

where du()) is the measure on the real line determined by the I' trace of the spectral

(1 5fA>0

, f the self-adjoint £ . Heresign A=1¢
measure of the self-adjoint operator ). Here sign i -1 ifA<0

If we replace fol by f0°° and 11 (y) by 1 in (7.1.6), the error is estimated by the integral

(7.1.7) ) c/ 2 erfc( +|/\|\/_)dp(/\)

which is bouﬁded above by

e 1/t 2 :
— / e~ Ntdu(\) < Ce~1/t=m/?
T JrR
which decays exponentially as t — 0F.

Therefore trr(ed1 E(t)ihy) is asymptotic to the integral

> ) 01 y
7.1.8 K(t =d{“/ / sign A—{—ezl)\'yerfc(— +|A \/Z) }d A)dy.
(718) =t [ [ sigargi o+ AIVE) ()
Changing the order of integration in (7.1.8) we get
(7.1.9) K@) =- / sign X erfe (AVEu(N).
R .
Differentiating w.r.t. ¢t we get

(7.1.10) K4 = AeNtdu(N).

-
By the normality of the I' trace on the boundary we have

K(t)— -—%h_as t— oo

where h = dimr ker(Q+). Therefore K(t) + 3h — 0 ast — oo.
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We now consider the following integral. For Re(s) large

I € TE A PEPARCUEE DR Y A

S

(7.1.12) s /0 i (K(t) + %h)t"ldt - (K(T) + %h) T — /0 e

NoOw
T
I'(s+1/2)
_ ts ! P i s
‘/0 K'(t)dt NG nr(2s)
where
7r(2s) = o /Tta_l/ztrr(Q e+ )dt
T(s+1/2) J, +
if

K(t) ~ Z art*/?as t — 0%
k>—n

then taking limit as s — 0 in (7.1.12) we get

(7.1.13) —9(ap + h/2) + 2<K(T) ¥ %h) - nf_}(O).

We let T — co. By Theorem 3.1.1 we have

(7.1.14) ~(2a0 + ) = Jim 77(0) = 7r(0).
Ast — 01 we have

(7.1.15) K(t) ~ indr(D) — tro(eds F(t)s).
Now (7.1.14) and (7.1.15) together imply that

nr(0) + h

indr (D) = /M ch(op)Td(M) - 2=

Q.E.D.
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7.2. Proof of the index theorem for foliations.

Let (M, F) be a compact foliated manifold with boundary with the foliation F trans-
verse to the boundary. Let D be a leafwise Dirac operator on S a graded Clifford bundle
over TF. We assume that M and F are oriented. Let g be a Riemannian metric on M.

We assume that data (D, S, €) has a product structure as in Definition 2.3.2.

Theorem 7.2.1. Let v be a holonomy invariant transverse measure. We have

7u(0)+ A

(7.2.1) ind, (D7) = {ch(op,)TdM),v) = =

where the first term on the right hand side is the term that one gets in the computation

of the index of a leafwise elliptic operator on a manifold without boundary.
(7.2.2) h = dim,(ker Q4)

Q+ = {Qg—L,,} the family of Dirac operators on the boundary 0L, satisfying the Bismut-
Freed cancellation pfoperty leafwise.

n,(0) is the foliation eta invariant defined in Section 3.2.

Proof. Proposition 6.2.2 implies that

(7.2.3) ind, (D7) = tr, (ee~tP7).

On each leaf we replace the heat operator e~ *P i by the parametrix constructed in

Chapter 5, E(t)r,. The cut off functions used in defining the parametrix are functions on

M restricted to L,. By the uniformity of Sobolev estimates given in Theorem 5.2, we have
(7.2.4) le™*Pie — E(t)z, |lpow-»,wry < Ct* 0<t<1, >0 '
where C is uniform in z and k is a very large positive integer. Hence as t — 07

(7.2.5) ind,(Dx) ~ tr,(E(t)F)

where E(t)r is the family of operators {E(t)r_}zem. Therefore

(7.2.6) ind, (D) ~ try(ed1 By (t)h1) + try (edo F(t)iha).
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Applying the arguments of the previous section leafwise we have
(7.2.7) Jlim, tr,(eda F(t)hs) = (ch(op, )Td(M), v).

We now study the term
. 1%1 T (6¢1 1( )’LZJ])

where ¢1F1(t)y; is a family of leafwise integral operators with

¢1E1(t)%1 € Endg(L*([0,1] x 8L,;S))

and R is the restriction of the equivalence relation Rps to [0,1] x N. By applying Fubini’s

theorem, as in the previous section we have

tr,(ed1E1(t)1)

_[ e MVt (L )}
__/0 ¢1(y)/R{ T + [A|e“1M¥ erfe \/f+|)‘|\/£ dp,(N)dy

where du, () is the tempered measure on R given by the foliation trace of the family of

(7.2.8)

spectral projections of the family- of Dirac operators {Q_ng }zen. From here on, the proof
is the same as in the previous section, with the exception of replacing du() by du,(X).
This completes the sketch of the proof of Theorem 7.2.1. Q.E.D.
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This-thesis-focuses-onproving index theorems-for noncompact manifolds with bound-"——
ary and the study of the éorresponding eta invariant defect terms. More specifically, we
prove a von Neumann index theorem for Dirac operators on coverings, and for leaves of
foliations, of compact manifolds with boundary. These theorems are the analogue, in the
noncompact case, of a celebrated theorem of Atiyah, Patodi and Singer which relates the
index of boundary value problems for compact manifolds with boundary, with Pontryagin

numbers and eta invariants.



