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CHAPTER 1
INTRODUCTION

An elliptic complex over a compact manifold M has a well-defined index.
That is, if E* is a finite sequence of smooth vector bundles over M with differential
operators d; : C*®(E!)—sC®(E**1) such that the symbol sequence is exact, then the
homology groups of this complex are finite dimensional and the index of the complex
is defined to be Y (—1) dim H'. The celebrated Atiyah-Singer index theorem tells
how to compute this index in terms of topological data coming from the manifold
and the symbols of the operators.

The context for the classical Lefschetz formula is an elliptic complex with
the additional datum of an endomorphism of the complex. The endomorphism
consists of a map f : M— M of the base space together with vector bundle maps
f A lying over f. These induce an endomorphism of the complex, and hence
give a map on the homology of the complex. The Lefschetz number of T* is defined
to be Lef(T*) = S(—1)'tr(T* on H').

The Lefschetz number of T™ is a generalization of the index of the complex,
since the Lefschetz number of the identity is the index of the complex. In spite of
this, the Lefschetz formula of Atiyah and Bott [2] is actually much easier to prove
than the index theorem because of the hypothesis that f is far from the identity.
More precisely, they assume that f has only simple fixed points. This can be defined
either as det(Id — f,;) # 0 at every fixed point, or as the diagonal map of M into
M x M is transverse to graph f. With this assumption, Atiyah and Bott prove the

formula

T S(=1)tr TH(z)

Lef(T") = | det(Id — fuo)|

fixed points
Thus global information, the Lefschetz number, is expressed in terms of local infor-

mation at the fixed points.

Various efforts have been made to prove versions of these theorems in
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the context of a foliated manifold (M, F). The assumption in the foliation case is
that the complex is not elliptic on M, but only along the leaves of the foliation.
More precisely, this means that the symbol sequence is exact when restricted to the
covectors in the leaf directions. The leaves are not necessarily compact and so, for
the index theorem, one is trying to calculate the index of an elliptic complex on a
non-compact manifold, which might not be finite. However, if instead of trying to
calculate the index on a particular leaf, one settles for an average over lcaves, the
assumed compactness of M can be used to advantage. Connes [7] established an
index theorem for foliated manifolds assuming the existence of a transverse invariant
measure which allows one to average the indices in some sense. In the terminology
of von Neumann algebras, this is a “type II” index theorem [1,22].

It is equally natural to generalize the Lefschetz theorem from compact
manifolds to foliated compact manifolds. To do this, we shall assume the following

data:
1. a smooth compact Riemannian manifold M;
2. a smooth foliation F with leaves of dimension p and codimension g;

3. a leafwise Dirac complex, e.g., the leafwise deRham complex where E' =

A’ T*F and d; is the exterior derivative only in the leaf directions;

4. a geometric endomorphism of the complex consisting of a map f : M—M
satisfying some additional conditions and vector bundle maps T* : f*E'— E"

over f;
5. an invariant transfixed density v; and
6. a homology theory.

Since M is a foliated manifold, it is natural to impose the condition that the map
f take leaves to leaves. The first foliation Lefschetz theorem was proven by Heitsch
and Lazarov [16] who required, in addition, that every leaf go to itself. In this
work, we shall work with the weaker hypothesis that the image of every leaf is



contained in some leaf, not necessarily itself. It will be necessary, however, to
impose an additional geometric condition on f which will be called being transfixed
of dimension k and is somewhat analogous to the simple fixed point assumption of
Atiyah-Bott. Roughly speaking, the condition is that the space of fixed leaves has
constant transverse dimension k and that f is non-degenerate in the other transverse
directions.

The fifth piece of data concerns the regularity of the foliation. The foliation
index theorem of Connes and the foliation Lefschetz theorem of Heitsch-Lazarov
assume that the foliation has a transverse invariant measure. In this work, we
assume rather, the existence of an invariant density of a certain k-dimensional
bundle. These are called invariant transfixed k-densities and are related to the
invariant transverse k-forms introduced by Haefliger [15]. Transfixed densities often
exist even when there is no transverse invariant measure.

The sixth ingredient needed for a foliated Lefschetz formula is a theory of
homology and the trace of (f,T*) on homology. Since the homology groups along
-leaves may not be finite dimensional, this is a non-trivial requirement. In fact, the
general theory of what homology groups to use and how to define the trace of (f,T*)
on them remains open. Nevertheless, we shall identify the appropriate homology in
particular examples.

The Lefschetz formula relates a local expression to a global one. A stan-
dard approach to proving both index theorems and Lefschetz theorems is to use the
heat operator to connect the local with the global. This is the method of proof we
use. Following is an outline of this approach. From the given complex, use the met-
rics to form the leafwise adjoints dF and the corresponding Laplacians A = dd*+d*d.
From the Laplacian construct the leafwise heat operators e~*4i, Although these are
leafwise operators, Roe [21] showed that they preserve global smoothness so that
for each ¢t with 0 < ¢ < oo, they give an endomorphism of the complex. Compose
this endomorphism with the geometric endomorphism of the complex coming from

(f,T*). To prove the Lefschetz formula, there are then four steps.

1. Define a notion of the trace for these compositions so that Tr(T" o e~*4¢) is



finite.
2. Show that ¥°(—1)'Tr(T" o e~*4+) is independent of ¢.
3. Show that as t — 0%, this converges to the local part of the Lefschetz formula.

4. Show that as ¢t — oo, this converges to the global part of the Lefschetz formula.

The idea behind the definition of the trace in this case is that, for opera-
tors with smooth kernels, the trace is the integral of the kernel over the diagonal.
However there are some difficulties in extending this to more general operators. If
we allow kernels to be distributions instead of functions, then the Schwartz kernels
theorem says that a very broad class of operators do have kernels. “Integrating the
kernel over the diagonal” then corresponds to pulling the kernel back to A via the
diagonal map and then integrating it over M. Unfortunately, although functions
pull-back, distributions do not without some additional assumptions. One exam-
ple where a distribution does pull-back is a ‘é-section’ supported on a submanifold
which pulls back via a map that is transverse to the submanifold. In our situation,
an analysis of the kernels of the heat operators e~*4i shows that they are §-sections
supported on the holonomy groupoid G of the foliation, which is a 2p + ¢ dimen-
sional, possibly non-Hausdorff, immersed submanifold of M x M. The distributional
kernel for T? o e7*?/ is a §-section supported on the groupoid pulled back via the
map M x M PXSM x M. The distributional approach to traces says that we should
now pull this kernel back to M via the diagonal map. It is exactly at this point
that the general distributional theory fails and that the geometric assumption on f
and the extra bit of data enter in.

The condition we impose on f is such that the map M XM x M misses
being transverse to G by a constant dimension k. It then follows that the pull-back
G/ is a p + k dimensional immersed submanifold of M, whose image consists of all
the leaves of M that are fixed by f. In this situation, the pull-back of the heat kernel
becomes something that acts in a natural way on densities on the transverse part of

the tangent space to G/ so the extra data that we require is a section v of this density

bundle over G/. Using it, we can then define the trace of the operators T% o e=*A



using distribution theory, and this turns out to be the integral of a density on G/
that is constructed from the leafwise heat kernels, the density v, and the transverse
action of f. It will be written as Tr,(T" o e7**/). To show that this alleged trace
has the properties one would expect of a trace, we need a further condition on v,
namely that v be holonomy invariant. This, then, completes the first step of the
heat operator approach. It is presented in Chapters 2 and 3 together with the
necessary background on foliations, distributions, and densities.

As a technical device, instead of using the full heat kernel, we make use of
the ideas of Cheeger, Gromov, and Taylor [5] and Roe [21] on the finite propagation
speed of Dirac operators to replace the heat kernel with compactly supported ap-
proximations. Such approximations are easier to handle. In Chapter 4, we explain
these approximations and also show that 3°(—1)'Tr,(T" 0 e~*4¥) is independent of ¢
for 0 < t < o0.

The third step is also carried out in Chapter 4. There we show, using the
local time zero asymptotics of the leafwise heat kernels, that there is a local index
»(z) defined on the fixed point set Z of f, with ¢(z) = (usual Atiyah-Bott local
index for T* on the leaf) x (a factor coming from the transverse action of f), such

that:
‘/Zgo(a:)u =Y (~1)'Tr,(T" 0 e7*2),

The fourth step is to analyze the time infinity limit of the trace. One
problem is to commute the limit past the trace, which requires a sense of ‘normality’
for the trace. This problem does not have a uniform solution, so we must examine
its solution case-by-case in examples. In the case where k¥ = 0, the limit does
commute, and the appropriate homology is determined by the time infinity limit
of the leafwise heat kernel. For foliations with compact holonomy covers and for
arbitrary k, the limit commutes. In this case the contribution of a fixed leaf L to the
global trace is a weighted sum of the trace of f* on the finite-dimensional homology
of various covers of L with the weights depending on the transverse action of f on
the cover. If a fixed leaf L is not compact, then its contribution is related to how f

acts on the closure of L in M. These results are discussed in Chapter 5.



The final chapter is concerned with various examples of the theory. We
present three types of foliations to illustrate the applicability of the foliation Lef-
schetz theorem and the variety of behavior for the ¢ — co limit. The first of these
is the case of a fibration in which case the end result is an integrated version of
the Lefschetz formula for the fibers that are fixed. A more interesting example
concerns the torus foliated by lines with irrational slope. If f : T?—7T? fixes only
a discrete set of leaves, then k¥ = 0 and the theory of Chapter 5 can be applied.
The leaves in this case are dense, and the time infinity limit of the heat kernels
turns out to be projection onto the finite dimensional space of constant sections. A
third class of examples concerns the foliations on 7? coming from the suspension of
a diffeomorphism of S!. In general, some of the leaves will be compact and some
non-compact. If we again consider a map f : T*—7T"? that has only a discrete set
of fixed leaves, then k is again 0. If there are some compact leaves, the time infinity
limit concentrates on these.

In [13], Guillemin proved a formula concerning the horocycle foliation of
SLy(R)/T where I is a discrete cocompact subgroup. In this formula, a local trace of
an endomorphism is shown to be equal to a trace on the “homology of the complex”
by a calculation using the Selberg trace formula and representation theory. This
example falls within the framework of the foliated Lefschetz theorem and will be

treated in a future paper.



CHAPTER 2
FOLIATED MANIFOLDS

The main idea of this chapter is to adapt the concept of holonomy groupoid
of Reeb [19] and Winkelnkemper [24] to the context of foliation endomorphisms and
their fix-points. The geometry of the fix-point set for the holonomy groupoid is a
critical datum for understanding the foliation Lefschetz theorem, so we shall explore

it in detail.

2.1. Preliminaries on Foliations and Holonomy

We begin with some review of the theory of foliated manifolds to establish
notation. A p dimensional foliation of a p + ¢ dimensional smooth manifold M
is a covering of M by smooth coordinate charts ¢, : U, — RP*? such that the
coordinate transformations @gp;' : @o(Us N Us) — 5(Us N Ug) have the form
wap iz, 2") = (Who(z',2"), pha(z")) where RP* is being written as the product
of R? and R?. The point of this definition is that the coordinate transformations
unambiguously define transformations from (subsets of) R? to (subsets of) RY.

The foliation is wrnitten as F, and charts as above are called foliation
charts. The inverse images of points under the map U, <% RP*? — R? are called
the plaques of the chart ¢,. Thus the plaques are parametrized by the points of R9.
Because of the form of the coordinate transformations, on the overlap U,NUp, there
is an induced map ¢}, from {plaques of U, that intersect Us} to {plaques of Uy that
intersect U, }. A foliation F of M determines a p dimensional integrable subbundle
of TM, namely the bundle of tangent vectors to the plaques. This subbundle is
written as TF, and the quotient bundle TM/TF is written as NF, the normal
bundle of the foliation.

An injected immersed connected submanifold ¢ : L — M that is tangent

to F, i.e., t,(TL) C TF, and that is maximal with respect to these conditions is
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called a leaf of the foliation. A leaf is a p dimensional manifold and is a union of
plaques. Of course the intersection of a leaf and a foliation chart may consist of
infinitely many plaques, but, since all manifolds are assumed to be paracompact,
the number of plaques in this intersection is at most countable. Starting with one
plaque, one can inductively generate a leaf containing it by repeatedly a.djoining
plaques of other coordinate charts that have nonempty intersection with the previ-
ous ones. Every point z in M has a unique leaf containing it which we denote by
L,.

A smooth transversal ¥ of F is a smooth immersed submanifold of M of
dimension ¢, possibly with boundary, such that ¥ is transverse to TF. A transversal
intersects each leaf at most countably many times. A complete transversal is a
transversal that intersects each leaf at least once. If a point y is in the interior of a
transversal ¥, then a neighborhood of y in £ gives a parametrization of the plaques
in a neighborhood of y in M. Indeed, the transversality of £ LM implies that for

every foliation chart U, containing y, the composition
£NU, -5 U, 2% R+ — RY

is a diffeomorphism of a neighborhood of ¥ in ¥ to some open set in R?, and this last
set parametrizes the plaques of U,. Given two foliation charts U, and Uy containing
Y, Yo identifies the plaques of U, with the plaques of Ug in a neighborhood of y.
Taking this identification into account, the parametrization of plaques near y coming
from a transversal £ through y is independent of the foliation chart chosen. Given
a foliation chart U, 2% RP*? around z, there is a standard transversal through z
coming from ¢,, namely R? w;—l(i:") U, C M. This transversal shall be denoted £Z
or X,.

A path in M is said to be leafwise if its image is in a leaf. A leafwise
path [0,1] 2 M from z to y induces a map from a neighborhood of a transveral at
z to a neighborhood of a transveral at y. This map is called the holonomy along
the path 4 and is denoted by k.. It is defined as follows. Choose foliation charts
Uy,...,U, of (M,F) that cover the path v in the sense that there is a partition
0=uap<a <az<---<a, =1of the interval [0, 1] such that 4|;_, 4] is contained



in the chart U;. Since ¥(a;) is in U; N Ujy1, 97}, identifies the plaques of U; near
7v(a;) with the plaques of U4, near y(a;). The composition ¢} ,_, 0---0 ¢}, maps
some neighborhood of the plaques of U, near z to some neighborhood of the plaques
of U, near y. Since a transversal at = gives a parametrization of the plaques near
z and similarly for y, we do get a map h, as claimed. Making a different choice of
foliation charts covering v does not change the map in some small neighborhood of
z. The derivative of h, maps N, F to N,F and is called the linear holonomy.

Two leafwise paths v, and v, from z to y are defined to be holonomy
equivalent if h,, = h,, in a neighborhood of z. If 41 and +, are leafwise homotopic,
then they are holonomy equivalent [4]. Thus the germ of the holonomy along a
path depends only on its homotopy class in the leaf, and there is a map from IIj =
{homotopy classes of leafwise paths from z to y} to Gi = {holonomy equivalence
classes of leafwise paths from = to y}. We will write [y] or [z = y] for the holonomy

equivalence class of «.

Definition 2.1.1 ([19,24]) The holonomy groupoid of (M, F) is the collection of

all holonomy equivalence classes of paths in M. It i3 written as G.

There are various canonical maps associated to the holonomy groupoid:

1. source G 2 M defined by s([z = y]) = z;

N

. range G 5 M defined by r([z 5 y] = y;

[2Y)

. diagonal M 2 G defined by A(z) = [z > z], the constant path; and
4. involution G > G defined by i([z 5 y]) = [y LN ).

If r([m]) = s([72]) then [v1] and [7,] can be composed to get [y, *7v2] with s([v1%72]) =
s([m)]) and r([y1 *¥2]) = r([72]). G is a groupoid with this operation.

In variance with the standard usage, we will call the image of G in M x M
via the map s x r, the graph of the foliation F. It consists of all (z,y) in M x M
such that z and y lie of the same leaf of F, or in other words it is the graph of the

equivalence relation where ¢ ~ y if L, = L,. This can be a rather ugly space, and
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part of the reason for considering the holonomy groupoid is that it has a manifold
structure so that we can think of the graph of F as an immersed submanifold of
MxM.

To make this precise, first put a topology on G. A neighborhood of [z = y]
is obtained by choosing a path - representing [], then taking all leafwise paths 8
in M that are uniformly close to v, and finally taking the equivalence classes [8].
Unfortunately this topology on G is not necessarily Hausdorff.

An example is the following. Take a diffeomorphism f of S? = R!'/Z! that
fixes a closed interval [a,b] and is increasing on (4, 5+ €). Suspend this diffeomor-
phism, that is, form S! x R!'/ ~ where (f*(8),7) ~ (6,7 + n). The quotient is a
torus. S! x R! can be foliated by the R! factors, and this foliation descends to the
torus. The holonomy along a leaf from r = 0 to r = 1 is given by the diffeomor-
phism f. Then, since f is the identity on [a, b], the holonomy is trivial for any point
in the open interval (a, b). However the holonomy at b is not trivial. Consider two
distinct holonomy equivalence classes in ngzg;, the first being the trivial path at
(b,0) and the second being the path t — (b,t);0 < ¢ < 1. These are distinct points
of G because the holonomy at b is not trivial, but for each of these classes, any open
set containing it, will contain classes of the form [(b—€,0) > (b—¢,0)] since the
path ¢ — (b—¢,1);0 < ¢ < 1is holonomy equivalent to the trivial path. Thus two
distinct points in G do not have disjoint neighborhoods.

Nevertheless, G is a smooth manifold of dimension 2p + ¢ in the sense
that every [y] has a neighborhood homeomorphic to R**9. A coordinate chart
around [zo 2 yo] is obtained by taking a representative v, of [yo] and foliation
charts U, 2% RP*9 and Up 22, RP*9 around z, and yo respectively and then
reducing the size of these if necessary so that the holonomy h.,, maps the transversal
Yo diffeomorphically to the transversal £z. Define the set U, X Usg = {(z,y) €
Uy X Ug | hyo(z") = y"} (As before, " represents the transverse coordinates of z,
z' represents the leafwise coordinates of z, and similarly for y.) Then for every
(z,y) € Uy, X Upg, there is a leafwise path v in M from z to y that parallels . The
set {[x B y] | (z,y) € Uy X Us and v parallels vo} is in one-to-one correspondence

with U, X U and will also be denoted by U, X Up. This is the desired neighborhood
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of [zo B yo] and is mapped via p, X g to RP* h)lo RPH = {(2', 2", ¢, y") | hoo(2") =
y”}. Finally there are two natural ways of mapping RP*? h)? RP*4 invertibly to
R%*4 namely (z/,z",y',y") — (2',2",y’) or (¢,z",y',y") — (2',y’,y") so that
the coordinate chart ends up either as U, X Ups %—x—";:’ R»+4 or U, X Us “aX¢p
R?*4, Roughly speaking, then, these coordinates are obtained by taking leafwise
coordinates around both z¢ and yo and transverse coordinates around only one or
the other. The coordinate transformations between these charts are smooth so that
G is a smooth manifold.

With this smooth structure, the map ¢ =5 M x M is an immersion. Of
course it is not necessarily injective. In fact, (s x r)~'(z,y) = G? = {holonomy
equivalence classes of paths from z to y}. If z and y are on the same leaf so that
there is at least one leafwise path z = y, then G7 = Gj as sets since composition
with [y] is a bijection of Gf with G§. The group G is conjugate to Gy whenever
L, = L,, and the leaf is said to have trivial holonomy if these groups are all the
identity. Thus ¢ =5 M x M is injective if and only if all the leaves of F have trivial
holonomy.

We shall henceforth assume that the manifold M is compact and that
is has a Riemannian metric (-,-) on its tangent bundle TM. The Riemannian
metric on M then induces Riemannian metrics on all the leaves of 7. Although the
leaves of F are not necessarily compact, the compactness of M does imply that the
leaves are complete and have bounded geometry. Bounded geometry means that the
injectivity radius is positive and that the curvature tensor is uniformly bounded, as

are its covariant derivatives.

2.2. Morphisms and the Transfixed Condition

For the Lefschetz formula on foliated manifolds, we need to have a map
f: M — M. These maps should be related to the foliated structure F of M, and

thus they will be required to take leaves to leaves.



12

Definition 2.2.1 A map f: M — M will be called a morphism of (M, F) if:
1. f i3 smooth, and
2. for every leaf L of F, f(L) is contained in a leaf L' of F.

It is not required that each leaf go to itself, but only that each leaf is
carried into some other leaf. Although the space of leaves of M, denoted by M/F,
is not a reasonable topological space in general, a smooth map f : M — M that
take leaves to leaves can be considered as a smooth map on this quotient object.

The Lefschetz formula of Atiyah and Bott assumes that the map f on
M has simple fixed points. (A fixed point z of f is simple if det(Id — T f) # 0,
or, equivalently, T, M KEIN T:M does not have 1 as an eigenvalue.) In the foliated
context, this kind of condition can be considered in both the transverse direction
and the leaf direction. The transverse direction shall be considered first, but first
some concepts relating to morphisms of (M, F) will be developed.

Given a morphism f of (M, F), consider the map M DN M x M given by
y — (f(y),y). The holonomy groupoid G projects to M x M via s X 7, and thus we
can form the pullback or fibered product of these two maps. This shall be denoted
by G/.

Gfi—— ¢

fxid
M— MxM

Since f x id is a bijective map of M to a closed subset of M x M, the map G/ — G
takes G/ bijectively to a closed subset of G, and we will henceforth identify G/ with
this closed subset. For any y in M, the fiber G/, = {holonomy classes [y] such that
4 is a leafwise path from f(y) to y}. Clearly G/, = ¢ if and only if f(y) is not in
L, so that the image of G/ in M consists precisely of all points lying in leaves fixed
by f.

For every element [f(y) I y] of G/, there is a well-defined map h,o fona
neighborhood of any transversal through y. The map f takes a transversal at y to
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a subset of a transversal at f(y) and then the holonomy k. along the path v carries
this back to the transversal at y. Thus in the foliation chart U, with transversal
Do

S > f(54) 2 5.

Of course h, o f will not necessarily be defined on all of %,, but we can alwé.ys
shrink the foliation chart so that that is the case. Using a different chart Us around
y in place of U,, merely conjugates h, o f by the diffeomorphism ¢j,.

Just as the groupoid @ is, roughly speaking, an unwrapped model of the set
of all pairs of points in M x M that are on the same leaf, so G/ is, roughly speaking,
an unwrapped model (unwrapped in the sense of holonomy, not homotopy) of the
fixed leaves of f. This space G has a foliated structure. Given a particular element
[f(y) 2 y] of G/, and a leafwise path 7, from y to some other point y’, there is

associated an element 4’ lying over y’, namely v’ = f(y,,/) ™" * 7 * vy, Or

flrgy)™? Ty’
fW) 7 fly) oy oy
" This process of passing from one element in G/ to others using leafwise paths is
informally described as “flowing out from [y]”. The effect of flowing out on the

maps h, o f is merely to conjugate them by a holonomy map.

Lemma 2.2.2 If c—y is a leafwise path and f is a morphism of (M, F), then
h¢yy o f = foh, where both sides are considered to be maps of a sufficiently small

neighborhood of a transversal at = to a transversal at f(y).

Proof. Parametrize <y so that 4(0) = z and (1) = y and let k. be the holonomy
along 7 from « to y(t). Similarly let k() be the holonomy along f(v) from f(x)
to f(¥(t)). Then hy)zy o f and f o hy) are both maps from a neighborhood of
a transversal ¥ through z to a transversal /(") through f(v(t)). The set of t
such that hguye © f = f o hyy is certainly closed since the dependence of both
sides on t is continuous. It is also open because if we take a foliation chart U,
containing f(7(t)) for a < t < b and identify the transversals £I®) in the obvious
way, then both sides are constant in t. Finally, when ¢t = 0 the equality is trivially
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satisfied. Thus hyy)ey 0 f = f o hy for all ¢ in [0,1], and, in particular, t =1 gives
hf(,7)of=foh7. | ]

Lemma 2.2.3 If [f(y) > y] is an element of G/ and Yy 18 @ leafwise path from y
to y', then 4" = f(Y0) * 7 * 1yy 18 @ leafwise path from f(y') to y' and hyo f is
conjugate to h,o f.

Proof. That +' is a leafwise path from f(y') to ¢’ is clear.
hyof=h,, ohyo hf(,y;;’) of=hy,0hyofo h‘Y;,,lr

by the previous lemma. Thus conjugating k, o f by h, , gives h, o f. |

As a closed subset of G, G/ inherits a topology. The interest in the maps

hy o f comes from the following proposition.

Proposition 2.2.4 Given an element [f(yo) = yo] of G/, let U, and Uy be foliation
charts around f(y) and y respectively such that f(Ug) C Uy and hyo f is defined
on all of Zg. Then the neighborhood (U, X Us) N G! of [4] in G is homeomorphic
to RP x 22"’! where ZZ’°f ={g€Zs|(hyo F)T) =7}

Proof. Let U; = (U, % Up)n G = {[z Lyl |z € Uyy € Uy, § parallels ~,
and f(y) = z}. Parallel here means uniformly close. The claim is that this set
corresponds (via the projection 7) to the points in the plaques of U through EZ’of.
Indeed, for any § € EZ’°f , there is a leafwise path % parallel to v from f(§) to §.
Flowing out from such a [¥] to any point y in the plaque of § via a plaque path as
in the previous lemma gives another element of Uj. So for every y that is in one of
the plaques of Zg"’f , there is a path from f(y) to y that parallels ~.

Conversely, suppose [f(y) LR y} € Uj. Then v and é go through the same
coordinate charts so that we could almost say hs = h, except that they are not

defined on the same transversals. But there is § € ¥3 on the same plaque as y.
From § and the plaque path v,3, we can get a path = f(7y,; ) * 6 *v,; from f(§) to



15

¥ that parallels 4. Then hso f = h, o f, both being defined on X;. Since § is fixed
by hso f, it is fixed by h, o f, or, in other words, § € EZ“’OJ and y is in a plaque
through EZ"”. ‘ |

This proposition shows that, in order to make the space G/ into a manifold,

we need to make an assumption about the transverse fixed sets, $/°7,

Definition 2.2.5 Given a morphism f of (M,F) and an element [y] of G/, f has
dimension k transverse fixed set at [v], if the fized set £F°f is an k-dimensional

smooth submanifold of the transversal ¥ near y = r([v]).

Suppose that for every [y] in G/, there is an integer k such that f has
dimension k transverse fixed set at [y]. In this case, G/ is a (possibly non-Hausdorff)
smooth manifold. Each component of G/ has a fixed dimension p+ & since the set of
elements with neighborhoods homeomorphic to RP** for a fixed k is both open and
closed, but different components may have different dimensions. However if one k

does work for all [y] in G/, then G/ is a p + k dimensional manifold.

Proposition 2.2.6 If there is an integer k such that for every element [v] in G/, f
has dimension k transverse fized set at [y, then G/ is a p + k dimensional smooth
(possibly non-Hausdorff) manifold. G’ is a closed submanifold of G and the map

G — M is an immersion.

Proof. The coordinate charts for G/ come from intersecting the coordinate charts
for G with G/ as in the previous proposition. This makes G/ into a smooth subman-
ifold of G and we already knew it was closed. The proof of the previous proposition
also shows that the projection map r : G — M identifies the chart Uj for G! with
the smooth subchart ¢5'(RP x EZ”"I) of Up for M so that G/ — M is an immer-

sion. |
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Notation. Given a covering of M by foliation charts U,, a morphism f which
has transverse dimension k everywhere, and an element [y] of G/ with r(v) € U,,
we let U2 denote the chart of G/ around [y] whose domain consists of the plaques
of U, through the neighborhood of y in *+°/ that is a k-dimensional submanifold.
This holds even if k., o f is not defined on all of the transversal X,.

In analogy with the Atiyah-Bott simple fixed point assumption, we will
also impose a nondegeneracy condition on the space of fixed leaves, or more precisely
on G/. For any [f(y) = y] in G/, the derivative of ., o f maps the linear transverse
space T,X to itself. The space T, is naturally identified with the fiber of NF at
y. Another way of saying this is that there is a canonical endomorphism of the
pulled-back vector bundle r*(NF). The canonical endomorphism of r*(NF) will
be written as (ko f), and is equal to (h, o f). on r*(NF)[,). Abusing notation, we
shall write r*(NF) as NF so that NF,) = NF, if r([y]) = y. If f has dimension
k transverse fixed set everywhere then (h o f). fixes a k-dimensional subbundle of
NF. Namely, at [7], (hyo f). fixes T,*°/ C T,T = NFp,). This subbundle of
r*(NF) will be written as NF*/. The nondegeneracy condition is then that the
quotient map of (h, o f). on NF/NF" should fix nothing.

Definition 2.2.7 A morphism f of (M, F) is transfixed of dimension k if for every
[yl € ¢7:

1. f has dimension k transverse fized set at [y], and
2. the quotient map (hyo f). on NF/NF* has det(Id — (h, o f),) # 0.

As already mentioned, for any morphism f of (M, F), the space G/ has a
foliated structure obtained by flowing out from [v] to elements [f(y’)~! *y*v']. Since
the maps h, o f and hj(y)-1.ysy 0 f are conjugates, knowing that f is transfixed of
dimension k at [y] implies that this is also true at [f(y')~! x v x 4']. Note however
that over a single leaf L of M, G/ may have several components and k o f may
have different behavior on the different components. Indeed, given two elements
[f(z) B z] and [f(z) B z] of G/ lying over z in L, [12] can be obtained from flowing

out from [v,] if and only if there is an element [y] in the holonomy group GZ such
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that [f(¥)~! * 1 *v] = [12]. In other words, GZ acts on the fiber of G/ over z, and
two elements in the fiber are in the same leaf of G/ if and only if they are in the
same orbits of the GZ action. If they are not in the same leaf of G/, the transfixed
condition could hold for one but not for the other.

Assume now that f is transfixed of dimension k.

Proposition 2.2.8 There i3 a canonical ezact sequence of vector bundles on G/

0 — r*(TF) — TG/ — NFM 0.

Proof. Given an element [v] of G/ with r(y) = y, consider the exact sequence
0 —TF, — TM,-SNF, —0

over y in M. The map r, is an isomorphism from TG/[, to 7=!(NF*°f), in TM,.
Lifting this up to G/ gives

0 — r(TF)py — v (TM)py——r"(NF )y — 0

Now r, identifies TG/[,; with the subspace 7~ (r*(NF"*°f)),; of r*(T M), so that

there is a short exact sequence
0 — r*(TF)py — TG ()75 r"(NFrI)y — 0.

But r*(NF*°f) is what is denoted by NF*/. n

The subbundle r*(TF) is the tangent bundle to the p-dimensional foliation
of G7.

So far we have only considered the transverse character of the morphism
f. Now we shall also impose a leafwise assumption, and this one is much simpler,

namely that if L is a leaf that is fixed by f, then f|; has only simple fixed points.

Definition 2.2.9 A morphism f of (M, F) will be called a Lefschetz morphism of

dimension k if:

1. f i3 transfized of dimension k, and
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2. flr has only simple fized points on any leaf L that i3 fized by f.

A natural question to ask is how the space of fixed points of f compares
with the space of fixed leaves. If f is a Lefschetz morphism of dimension k, then

the space of fixed leaves of f is k-dimensional in some sense. Must the space
M/ = {z € M| f(z) = z} also be k-dimensional? The answer is yes.

Proposition 2.2.10 Suppose f is a Lefschetz morphism of dimension k. Then M/

i3 a k-dimensional embedded submanifold of M transverse to the foliation F.

Proof. Suppose z € M!. Then [z = z] is in G/. Since f has dimension k trans-
verse fixed set at [z > ], ho o f = f must fix a k-dimensional submanifold of a
transversal through z. Pick a foliation chart U, around z so that z has coordinates
0 in RP*? and f|re fixes R* x {0} C R?. Clearly then, any element of U, N M/ will
have to have coordinates in RP**. In fact, working in the coordinate chart given by
U,, f: RP** — RP** has the form f(z',2") = (fi(2/,z"),z"). The point (z',2") is
fixed if and only if f;(2',z") = 2’. The function g(2’,z") = f,(z’,2") — 2’ from RP**
to RP has det[Dg/Dz’})(0) # 0 because f has only simple fixed points when restricted
to the plaque through 0. Then the implicit function theorem says there is a unique
smooth function z’ = h(z”) defined near 0 such that g(k(z"),z") = 0. Thus U,n M/
corresponds to the k-dimensional smooth submanifold {(k(z"),z",0) | z” € R*} of
Rpta, H

Proposition 2.2.11 If f is a Lefschetz morphism of G/, then the flow-out of M/

is an open subset of G/.

Proof. Proposition 2.2.10 shows that for any z € M/, there is a foliation chart U,
around z such that if we let ©f = {y € £, | f’(y) = y}, then every plaque through
¥/ contains a unique point fixed by f. Now suppose [f(z) 5 z] is an arbitrary
element of the flow-out of M. This means that there is a leafwise path z— sz
where zo € M7, such that [y;] = [f(7) * v"!]. The definition of the topology on
G/ implies that for [f(y) 2% y] sufficiently near [y,], there is a representative v, of
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[v,] that is uniformly close to f(vy) * v~

Write v, as 71 * 751 where v; and ~,
are uniformly close to f(y) and < respectively, and let z = r(y;) = r(y;). It is
not necessarily true that f(z) = z, but, since both [f(y) T f(2)] and [f(y) B 2
are uniformly close to [f(z) dxl To], we must have that f(z) and z are in the same
plaque near zy. Thus this plaque is fixed by f so Proposition 2.2.10 shows that
there is a yo in the plaque of z with f(yo) = yo. Composing v, with the plaque path
from z to yo gives a path ¥ from y to M/ such that [y,] = [f(v’) x¥'~!]. Hence [,]

is in the flow-out of M. | ]

For [y] € G, the length of [y] is defined to be the minimum of the lengths

of representatives v of [y].

Proposition 2.2.12 If f is a Lefschetz morphism of (M, F), then there is an € > 0
such that if length [y] < € and [y] € G/, then [y] is in the flow-out of M.

Proof. Suppose not. Then there is a sequence of leafwise paths f(z, )=z, with
length(y,) — 0 such that none of them are in the flow-out of M/. Since M is
compact, a subsequence of the , converges to z in M and then f(z,) — f(z).
Since d(f(2,),2s) — 0, d(f(x),z) = 0 and thus z is in M’. Since [f(z,) 3 .
converges to [z —» z] in the topology of G/ and the flow-out of M/ is open, for n

large enough [v,] is in the flow-out of MY which is a contradiction. ]

For any R > 0, let G/g = {[y] € G/ | length [y] < R}. Let U; be a family
of foliation charts covering M, and for any leafwise path vy from f(Up) to Ug let Uj
be the corresponding chart for G/.

Proposition 2.2.13 G/g can be covered by a finite number of charts of the form

Us. There are constants a and b depending only on the covering {Us} such that the

number of charts needed to cover G/ g is < ae’®.
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Proof. Since M is compact, we can assume that the covering {Us} is finite. For
each U consider r=Y(Ug) NG/r = {[7] € G’ | 7 is a leafwise path from f(Us) to U
of length < R}. A holonomy map k., on g is determined by the sequence of charts
through which v passes. Let € be the Lebesgue number for the covering {Uz} and
let d = max, |{a' | Uy N Uy # ¢}|. Then for any path v of length < R, there is a
covering of this path by a finite sequence of U,’s where the length of the sequence
is at most R/e. Then the number of such possible sequences is at most d?/¢ so that
r~1(Ug) N G' R is covered by at most d®?/¢ charts of the form Ug. Since there are a
finite number of Uy, the result follows. |

Finally we discuss what the transfixed hypothesis means in the case where
k has the maximal value ¢. In this case, every leaf of F must be fixed and fur-
thermore F can have no nontrivial holonomy. For if f has dimension ¢ transverse
fixed set at [f(y) > y] then h. o f fixes an entire transversal ¥ through y. If v, is a
nontrivial element of G¥, then [f(y) "3 y] is also in Gf and hyuy 0 f = hy 0 hyo f
does not fix all of ¥ since h,, is nontrivial. Thus the theory to be developed does

not apply well in the case where k = q.

2.3. Densities

We review some facts about densities [14]. A density on a finite dimen-
sional vector space A is a map ¢ from {ordered bases of A} to the complex numbers
such that for any change of basis T and any basis a, g(Ta) = |det T|g(a). Obvi-
ously, the image of such a map is a real ray in C (or 0), and the set of densities on
A is a complex line. We will write |A| for this complex line. If (u,,...,u,) is a basis
for A, then the density that maps (uy,...,u,) to 1 will be denoted by [ujA... Auk.

An isomorphism A-L5B determines an element of |Al ® |B*|. If B = A,
then |A| ® |A*] is canonically isomorphic to C and under this isomorphism, the
above element of |A| ® |A*| corresponds to |det f|. An exact sequence 0 — A —
B — C — 0 induces an isomorphism of |B| with |A|® |C|.

If F is a vector bundle over a manifold M, then we can form the associated
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density bundle |E| over M. It is a complex line bundle. In particular we can do
this for the tangent bundle to get |TM|. Sections of this are called densities on
M, and the nice thing about them is that they can be integrated over M, i.e., if
s € CX(|TM)|), then [y s is well-defined, regardless of whether M is oriented. This
follows from the local formula for changing coordinates in integrals. Densities on
M correspond to deRham’s top degree forms of odd type [8].

Suppose that f is a transfixed morphism of dimension k of (M, F). Then
G/ is a manifold, but, as it is not Hausdorff, integration is somewhat delicate.
Smooth partitions of unity subordinate to an atlas of charts do not necessarily ex-
ist. When a function which is smooth with compact support in a chart is extended
by zero outside the chart, it is no longer necessarily continuous. Although such a
function is not continuous on G/, we shall nevertheless refer to it as a smooth func-
tion with compact support on G/. Finite sums of such functions are also considered

to be smooth with compact support. In other words make the definition:

Definition 2.3.1 C®(G/) = {functions f on G/ | f can be written as a finite sum
of fi where for each f;, there is a chart U; for G with f; € C(U;)}. Define C*(E)

similarly where E is any vector bundle over G/.

With these definitions, integration of an element s of CZ°(|TG/|) is straight-
forward because such an s comes already decomposed into coordinate pieces. The
existence of partitions of unity on coordinate charts implies that the value of f;; s
is independent of the decomposition of s used.

What does a section of |T'G/| look like locally? From Proposition 2.2.8,
ITG!| = |r*(TF)| ® INF*|. Thus a density on G/ is a leafwise density tensored
with a section of [NF*|. A section v of the density bundle |[NF*f| over G/ will
be called a transfixed density. What does this look like locally? At a particular
element [f(y) — y] of G/, choose a foliation chart ¢, : U, — RP*? around y so that
h,o f on R? fixes R* x {0}. Recall that then U) = (f(U,) X U,)N G/ is a chart for
G/, mapping to RP** by ¢, or. NF"/ is locally spanned by 8/9y?*!,..., 8/8yP+F

so that any section of [NF?/| will be written locally as

A (TR T ek y”“‘)ldy”+l A A dy”+k|.
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Holonomy along leafwise paths in G/ acts on the bundle NF*/. A leafwise
path in G/ from [f(y) 2 9] to [f(z) 3, z] is given by a leafwise path y Yzin M
such that [4] = [f(7/)~! * v *x7']. Since NF*,; = {v € NF, | (hy 0 f)v = v} and
NFMi = {v e NF, | (hyo f)v = v} and k5o f is h, o f conjugated by k., hy
takes thfh] to NFM 4.

Definition 2.3.2 A smooth section of [NF*| over G/ that is invariant under

holonomy along leafwise paths is G/ will be called an invariant transfixed k-density.

The morphism f: M — M naturally induces a map f : G/ — G/, namely
f(f(z) 2 z]) = [fA(=) il f(z)]. The tangent map f. takes NF*/(,) to NFM 5.
and the dual to this pulls back [NF" |y 20| NFH ;.

Proposition 2.3.3 Ifv is an inveriant transfized k-density, then f*v =v.

Proof. The composition h, o f is the identity on NF*/,; and hence
v =_(hyo f)'v=f"(hlv).

Since v is holonomy invariant, hlv = v. Thus v = f*v. |

Note that v lives on G/ and not on M. It may be the case, though, that
v comes from something on M. Haefliger [15] introduced the notion of invariant
transverse k-forms for any k£ with 0 < k < ¢. If a is a smooth transverse k-form on
M, (i.e., a smooth section of A¥ N*F), then |r*a] is a smooth section of [N F"/|. The
definition of |r*a| is the obvious one: given an ordered basis (v1,...,vx) of NF* )
|r*a| assigns to it the value |a(r,v; A ... Ar,)]. Clearly, in order that |r*a| be
an invariant transfixed k-form, it is sufficient that a be holonomy invariant, so that
Haefliger’s invariant transverse k-forms induce invariant transfixed k-densities. We
now investigate some conditions that almost give a converse to this.

First, there is the algebraic lemma:

Lemma 2.3.4 If T i3 an endomorphism of the finite-dimensional vector space V,
then V/ kerT—T—vV/kerT 18 invertible if and only if the natural map kerT* C
V*—(kerT)* is a bijection.
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Proof. The kernel of the map ker T*—(kerT)* is {v* € V* | v*(im T) = 0 and
v*(ker T) = 0}. Thus this map is a bijection <=

im T+kerT =V < im T/kerT = V/kerT <= V/ker TLV/ ker T is bijective.

Assuming f is a transfixed morphism, apply this lemma to V = NF,
and T = Id — (h, o f). at any point [f(z) 2 z} in G/. Then kerT = NF*/; and
kerT* = ker(Id — (hyo f)*) = {a@ € N*F, | (hyo f)*a = a}. The lemma says
that in each fiber of N*F,—(NF"/})* there is a unique covector that is invariant

under (hy o f)*.

Proposition 2.3.5 If f i3 transfized of dimension k and « 13 a transverse k-form

on M such that
1. for every [f(z) D 2} € G/, (hyo f)*a; = @z, and
2. the transfized k-density |r*a| is holonomy invariant on G/

then al,(gs) is holonomy invariant.

Proof. Consider the holonomy along ylm: from [f(y) 2 y] in Gf to [f(z) A z] =
[f(#)~* ¥y * 4] in G/. The linear holonomy h.. from NF, to NF, takes thfh]
to NF*/ 5. Taking the duals to this gives a commutative diagram:

NF,—— (thfh])'

o s
N*F, —— (NFM )"

and then: . .
ANF, —— N(NFH )

58 [ [ 38

k k
AN*Fy —— N(NFHM 5"
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The assumption about the holonomy invariance of |r*a| says that a is invariant
under the holonomy on the right side of the diagram. We want to show that it is
invariant on the left side. The lemma and succeeding discussion imply that in each
horizontal fiber there is a unique element satisfying the first assumption. Thus if
we can show that hZ,a satisfies 1 at [7], then we must have h},a = a. But this is

once again the conjugation argument: since « satisfies 1 at [7],
a=(hzo f)a=(hyohyohs,y-10f)a=(hyohyofohy)a.

Thu.s h;/a == (h-’ (o] f)*h;/a. .



CHAPTER 3
KERNELS AND TRACES

The definition of trace we use in the foliated Lefschetz theorem is motivated
by the formalism of distribution theory. In this chapter, we investigate how this
theory applies to leafwise operators, give the definition of trace, and prove a key

property of the trace.

3.1. Generalized Sections of Bundles

A smooth section of a vector bundle E over a manifold X gives a continuous
linear functional on the topological vector space C°(E* ® |TX|) by pairing E and
E* to get a smooth function and then integrating the product of this with the
density over X. Thus, in analogy with distribution theory, we define:

Definition 3.1.1 ([14]) A generalized section of the vector bundle E over X is a
continuous linear map from C(E* Q@ |TX|) to C. The collection of these is written
as C~°(E).

The support of a generalized section is defined as in distribution theory, and the
space of compactly supported distributions, C;*°(E), turns out to then be the dual
of C*(E* ® |TX]).

Notation. To make the base space explicit, we shall sometimes write C*(E —
X), C~°(E — X), C¥(E — X), and so forth.

One example of a generalized section of E over X is a §-section of E with
support on Z where Z is a closed submanifold of X. Let N*Z be the conor-
mal bundle of Z in X. Then there is a natural inclusion C*(E ® |[N*Z| —
Z)—»C-*(E — X). This is obtained as follows. Given o € C®(E ® [N*Z| — Z)
and s € C®(E* ® |TX| — X), first pull s back to Z. Over each z € Z, the E and

25
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E* factors pair to give a number. What about |N*Z| and |TX|? From the exact
sequence

0 —T,Z —T,X — N,Z—0

we get |T,X| =2 |T,Z|® |N.Z| or |T,X|®|N;Z| = |T,Z|. So o and s pair to give an
element of C°(|TZ| — Z) and this is then integrated to give a number.

Definition 3.1.2 Such a generalized section u of E i3 called a §-section of E with
support in Z and the section 0 € C*(E ® |N*Z| — Z) from which it came is called
the symbol of u, o(u). The set of all such §-sections is written C4(E).

In the same way there is an inclusion of C®(E ® |[N*Z| — Z) into
C;>(E — X). For this inclusion, instead of being a closed submanifold of X,
it is enough that Z —,X be an immersion. (We shall call such a manifold Z an
immersed submanifold, even if 7 is not injective.) In this case N*Z is still a vector
bundle over Z, and C*(E*® |TX| — X) pulls back to C*(E*® |TX| — Z). Pair-
ing with an element of C°(E ® |N*Z|) gives a compactly supported section of [T Z|
which is integrated to get a number. The set of such é-sections will be denoted by
Cez(E).

Actually the inclusion CP*(E ® |[N*Z| —» Z) — C;*°(E — X) can be
extended to C;°(E ® [N*Z| — Z) — C;°°(E — X). This map is just the dual
map to the restriction map C*°(E* Q@ [TX| —» X) — C*(E*Q® |[NZ|® |TZ]).

How do generalized sections transform under morphisms of vector bundles?
A morphism (f,T) from a vector bundle (E — X) to a vector bundle (F — Y) is
a smooth map f: X — Y together with a map T : f*F — E of bundles over X.
Obviously this gives a map (f,T)* : C®°(F) — C*°(E) and hence , by duality, a
map (f,T).: C;°(E*Q|TX|) » C-°(F*®|TY|). We shall usually suppress the T
and write only f* for pull-backs and f. for push-forwards. If f is proper, we also get
f*: Ce(F) » C*(FE) and by duality f. : C~*(E*®|TX|) » C~°(F*Q|TY|). Itis
not always the case that f* can be extended continuously to C~*°(F) —» C~*°(E), or,
in the proper case, to C;7®°(F) — C;*(E). However if f : X — Y is a submersion,
f* does extend as discussed in [14, Chapter 6] or [17, Chapter 6]. We can describe
this extension by the dual mapping: C*(E* ® |TX|) — C*(F* ® |TY|). Starting
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with o from CP(E* ® |TX]), the section T*0 is in C°(f*F* Q@ [TX| — X). Given
y € Y, the inverse image f~!(y) is a submanifold of X since f is a submersion, and

for each z € f~(y),
0 — T.(f(y)) — T.XIHT,Y —0

is exact so |T,X| = |T,f~'(y)| ® |T,Y|. Thus T*o(x) is an element of Fy ®
ITf'(y)| @ |T,Y| and T*0 € CP(f*F* Q@ f*|TY| ® |T(fiber)|). We can now in-
tegrate along the fibers to get f.(¢) in CP(F* @ |TY ).

We summarize this discussion:

Proposition 3.1.3 If(f,T) is a vector bundle morphism from (E — X) to (F —

Y), then under the following conditions, the stated maps are continuous:

1. no additional conditions on f

f 5 C=(F) - C=(E) f.: Cr=(B" ®|TX]|) - Cr=(F* & |TY])
2. f proper
f*: C2(F) - C2(B) f.: C==(E" @ |TX|) - C—(F* & |TY])
8. f a submersion
fr:C72(F) - C~>(E) fo : CR(E* Q |TX]|) » C(F* @ |TY])
4. f a submersion and proper
friCrR(F)  Co(B) [ Co(E"®|TX|) - C=(F* @ |TY)) .

More generally, the question of when the pull-back of functions can be
extended continuously to distributions can be answered in terms of wave front sets.

If f:X —Y is a smooth map, let:
N*f={neTY |3z € X withn € T,)Y and f*n =0}.

Then the pull-back f* extends continuously to all generalized functions v on Y
whose wave front sets WF(u) are disjoint from N*f [17, Thm. 8.2.4]. If u € C{(F)
where Z is a closed submanifold of Y, then WF(u) C (N*Z\0) so a §-section of F
supported on Z can be pulled back to X provided that no nonzero conormal vector
of Z is mapped to zero by f*. But this is exactly the condition that f : X - Y

should be transverse to the submanifold Z. Thus we have the proposition:
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Proposition 3.1.4 If Z is a closed submanifold of Y and f : X — 'Y 1s transverse

to it, then f* : C*(F) — C*(FE) extends continuously to a map f* : C5(F) — Cfy(E)
where W is the closed submanifold f~1(Z) of X. If Z5Y is an immersion and

f:X =Y is transverse to it and proper, then f*: C®(F) — C»(E) eztends con-

tinuously to a map f* : C5(F) — Cs(E) where W 1is the immersed submanifold

X % 7 ={(2,2) | {(2) = i(2)} of X.

The pull-back maps on §-sections given by the proposition are easy to
describe in terms of symbols of the é-sections. An element u of C§(F) has a symbol
o(u) € C®°(F ® |[N*Z| — Z). Since f is transverse to Z, f* is an isomorphism
of the conormal bundle N*Z of Z in Y with the conormal bundle N*W of W in
X. The fiber map T takes the fiber of F' to the fiber of E so we get a section
fro(u) € C*(EQ|N*W| — W), and this is the symbol of the pulled back §-section
fru, ie., f*o(u) = o(f*u).

We shall need to consider a variation of the situation in the proposition.
Suppose that Z is a closed submanifold of Y with codimension gand f: X - Y is

a smooth map such that
1. W = f~1(Z) is a closed submanifold of X of codimension ¢ — r, and
2. f*N*Z—f.—vN*W is surjective as a bundle map over W.

In this case, the kernel of f* is a smooth vector bundle over W of dimension r, and

there is an exact sequence of vector bundles
0—ker f*— f*N*"Z— N*W—0

over W. Given v € C*(| ker f*|* — W), we can form a map f} : C5(F) — C§,(E).
This is obtained as follows. Any u in C§(F) has a symbol o(u) in C*(FQ|N*Z| —»
Z). Over a point z in W, the fiber map T takes Fy(,) to E; and f* takes f*N*Z, =
N*Z;(z) to N*W,. From the exact sequence above |f*N*Z;| = |[N*W.|® | ker f;| so
the pull-back of the symbol, f*(¢(u)), naturally lies in C*(EQ |[N*W|® | ker f*| —
W). Since |ker f*] @ |ker f*|* = C, the section v pairs with f*(o(u)) to give an
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element of C°(E @ |[N*W| — W) which is the symbol of an element of C,(E).
Thus f} : C4(F) — C§,(E) is characterized by a(f;(u)) = f*(o(u)) ® v.

This map of §-sections over Z to é-sections over W is not a continuous
extension of C*(F - Y) — C®(E — X). If r > 0sothat f : X —» Y is
not transverse to Z, then there is a §-section u in C4(F) and a sequence of smooth
sections u, € C®(F) such that u, — u as generalized sections but f*u, = u,o f fails
to converge in C~*°(E) [17]. Thus there is no way of extending C”(F)LC“(E)
in such a way as to both include C4(F) in the domain and to be continuous in the
topology induced from C~*°(F). Nevertheless, the map f} : C{(F) — C§(E) is
certainly continuous by itself and is the best we can do in this situation.

If Z—Y is an immersed submanifold instead of a closed submanifold, and
f: X — Y is proper, we can make the analogous assumptions that W = X § Z —
X is an immersion of codimension ¢ — r and that f*(N*Z) — f*W is surjective.
Then using a smooth section v of |ker f*|* over W, a map on the symbols is defined
in the same way and this induces a map f} : C’,(F) — C%/(E).

In some situations, the push-forward of a é-section is again a -section.

For example, if there is a commutative diagram:

w— .z

|

X —Y

where W and Z are immersed submanifolds of X and Y respectively, and if g is a
submersion, then the push-forward f. : C;®°(E*®|TX|)— C;°(F*®|TY)) actually
carries C%y (E* ® |TX|) into C%,(F* ® |TY|) . Once again the map on §-sections is
readily described in terms of the symbols. Any u in C%;,(E* ® [TX|) has a symbol
o(u) in CP(E*Q|TX|Q|N*W| - W). But [TX|Q|N*W|x|TW|andg: W — Z
is a submersion so we can push forward to get g.o(u) € CP(F* Q |TZ| — 2Z)
which is the same as C®(F* ® |[TY|® |[N*Z| — Z). Then one can check that the
corresponding element of C¢,(F* ® |TY)) is actually f.u.

In the context of generalized sections of bundles, the Schwartz kernel the-
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orem takes the following form:

Theorem 3.1.5 ([17, Thm. 5.2.1]) Suppose E and F are bundles over X and
Y respectively. Then any element k of C~*°(Hom(n} F,7%xE) @ ny|TY| —» X x Y)
defines a continuous linear map k : C(F) = C~(E) by g — mx.(k - 7y g). Con-
versely, for every such continuous linear map T, there i3 a unique such element k
with T = k. If dual spaces are given the topology of uniform convergence on bounded
subsets, then the space L(CX(F),C~®(E)) of bounded linear maps is topologically
isomorphic to C~°(Hom(r} F, 7% E) @ my|TY|).

3.2. Kernels of Leafwise Operators

We shall now study leafwise operators on a foliated manifold (M, F).
Roughly speaking, a leafwise operator is an operator D on M that restricts to
operators on each of the leaves of M. That is, for any leaf L, there is an operator
Dy, such that (Ds)|p = Dr(s|p) for every section s of the appropriate bundle. One
can impose various conditions on the transverse regularity of the operators and in
keeping with the smooth theme of this work, the condition will be that the oper-
ators vary smoothly in the transverse direction. More precisely, we will make the

following definition.

Definition 3.2.1 A smooth leafwise operator from C®(F — M) to C~*(E — M)
is an operator whose Schwarz kernel is in Co;(Hom(F,E) ® n3|TM| — M x M).

2N

M2 x M==20f

The picture is:

Note that Hom(F, E) is an abuse of notation for Hom(#3 F, 7} E).
According to the definition of é-sections, any smooth leafwise operator
comes from a symbol in CZ®(Hom(F, E)®|r;TM|®|N*G| — G). Thus the definition

of a smooth leafwise operator actually requires that the kernel be smooth and
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compactly supported along leaves as well as being smooth transversely. The reason
for making the compactness of support requirement is twofold. First, just as for
G!, the C2 theory on the non-Hausdorff manifold G is well-behaved while the C*
theory is not, as discussed in Section 2.3. Second, the theory of é-sections supported
on immersed submanifolds requires compactly supported symbols as discussed in
Section 3.1.

The wavefront set of a smooth leafwise operator is contained in N*G.

Proposition 3.2.2 Over G there is a canonical isomorphism r*|TM| ® |N*G| =
r*|TF|.

Proof. Over a point [y] in G, there is an exact sequence of vector bundles
0——>Tg——>(s X T)*T(M X M)——)NQ'——)O

and thus an isomorphism s*|TM| @ r*|TM| = |TG| ® |NG| so r*|TM| ® |N*G| =
|TG| ® s*|TM|*. Using coordinates around [y] on G coming from the leafwise and
transverse coordinates of the source and the leafwise coordinates for the range, we

see that there is also an exact sequence
0—s*TM—TG—r*F—0

and thus an isomorphism |TG| = s*|TM|® r*|TF|. Combining these isomorphisms
gives

r|ITM|® |[N*G| & r*|TF| ® s"|TM| @ s*|TM|* = r*|TF|.

This proposition shows that the symbol of the kernel of a smooth leafwise
operator is an element of C®°(Hom(F, E) ® r*|TF|—G). By the definition of C°
over G, this symbol is actually a finite sum of smooth sections with support inside
coordinate charts. If £ € C*(Hom(F, E) @ r*|TF]) is supported in the coordinate
chart U, % Uﬁ%—x—(’;BRZH" of G, then in this coordinate chart k can be expressed as

kv(z',z”,y")|dy* A. . . dyP| where k7 takes values in Hom(F, E). In other words we see
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that k really is a leafwise operator parametrized transversely. The coordinates z”
are the transverse parameters while k7(z’,y')|dy’| represents the kernel of a leafwise
operator. As an operator

Op(kNg(e',a") = [ K(e',a", 4oy, ho(a"))ldy'|

hy(2")

where P () is the plaque of Us through h,(z”) and ¢ is a smooth section of F

over Ug.

Proposition 3.2.3 Any smooth leafwise operator takes C®(F) to C*(E).

Proof. This follows immediately from the local description of the operator just
given. An alternate proof uses the formalism of §-sections. The Schwartz Theorem
says that (Opk)¢ = s.(k-r*¢) . The distribution k - r*g is a §-section supported
on G whose symbol is in C®(E ® r*|TF|) . The map G—M is a submersion with
T(fibers) = r*TF so that the push-forward s,(k - r*¢) is actually a smooth section
.of E over M. |

As a distributional section of Hom(F, E) ® n3|TM|, any k in C; is an
element of the dual of C®°((Hom(F, E) ® m3|TM|)* @ |T(M x M)|). But

| TM|* ® |T(M x M)| 2} |TM)|

and Hom(F, E)* = F ® E*. Thus k pairs with a smooth section of F'@ E* @ n|T M|

over M x M to give a number.

Proposition 3.2.4 The pairing between k € C5;(Hom(F,E) @ 73|TM|) and ¢ €

C>®(F Q@ E* @ ni|TM]) 1is
(k,6) = [

T€

M ([768“(:::) b = y)¢(x’y)|dy'|) |dz|.
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Proof. The definition of the é-section k is that the pairing is given by pulling ¢ up
to G and then integrating k¢ over G. But for any coordinate chart U, ;Y< Us for G, the
Fubini theorem says the integral over U, X Up can be obtained by first integrating
over the fibers of U, X Us — U, and then integrating over U, in M. This remains
valid after summing over a finite number of charts, and hence integration over G
may be obtained by integrating over the fibers of G—> M and then integrating over

M. This is precisely what the equation asserts. ' N

Next we shall consider the composition of two smooth leafwise operators.
To make the notation less cumbersome, we shall drop the bundles F' and E and
only deal with functions and densities. With the functorial approach, convolving

the distributional kernels of two operators By and B, involves:

1. taking the tensor product kp, ® kp, as a generalized section of n3|TM| ®
3| TM| over M x M x M x M,

2. pulling this back to M x M x M via the diagonal map A(z, z,y) = (, 2, 2, y)
so that A*(kg, ® kp,) € C~°(m3|TM| @ n3|TM|—M x M x M); and

3. pushing this down to M x M via the projection n(z,z,y) = (z,y).

Thus kp,oB, = T«(A*(kp, ® kp,)) € C~°(n3;|TM|—M x M) [9, page 33].

Proposition 3.2.5 Suppose B, and B, are smooth leafwise operators with symbols
k" and k7 supported in the coordinate charts U, X U, and Us X Uy respectively.
Then if UyNU;z = ¢, the composition Byo By = 0. If Uy, NU; # ¢, then the kernel

Y1*72

of By o By 13 supported in Uy x Uy and i3 symbol

(! 2" ') dy'| = (/ kM (!, 2", 2"k () hoy (27), yl)ldzll) |dy'|

where the integral i3 taken over all 2' € (Plaque of U, through h., (z")) N Us
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Proof. kp, ® kp, is a §-section with support in the immersed submanifold G x
G— M x M x M x M. The diagonal A is transverse to this so the pull-back

A*(kp, ® kp,) is a é-section with support in the immersed submanifold
G E {2 Dol LY €G)—M x M x M.

The symbol of A*(kp, ® kp,) at [z 5 2 2 y] is the symbol of kp, at [z 5 2] times
the symbol of kp, at [z 2, y] so if U;NUz = ¢, this is clearly 0 everywhere. Otherwise
the symbol of A*(kp, ® kp,) becomes

k(2! 2", 2)d2'| - kP (2, by (27), ¥')1dy|

on {[z > z 2, yl | [v] € Uy X Ua, [¥] € Us % Us}. The projection © : M x M X
M—M x M is of constant rank 2p+¢ on G? so that the push-down of the é-section
A*(kp, ® kp,) will be a §-section on M x M. In fact, the map G*—G given by

[t 525 yl— [z y] makes the following diagram commute.

G — ¢

J |

MxMxM—MxM

Pushing down the symbol is simply a matter of integrating over the fibers of G*—g,

which is to say, integrating over 2’. |

Suppose f is a morphism of (M, F) and B is a smooth leafwise operator
on M. What is the kernel for the composition f*o B? The kernel of f* is a é-section
of m3|T M| supported on the graph of f [13] so ks« ® kp is a §-section with support
in (graph f) x G—M x M x M x M. The diagonal A is transverse to this so
A*(ks+ @ kp) is a 6-section supported on

{(z,f(z),[7]) e M x M x G | f(z) = s(7)}—M x M x M.

This is a 2p+¢ dimensional manifold with coordinates coming from coordinates for

together with leafwise coordinates for r(y). The projection 7 : M XM xM —MxM
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has constant rank 2p 4+ ¢ on this immersed submanifold, and, in fact, induces a
diffeomorphism of it with the manifold {(z,[y]) € M x G | f(z) = s(y)} which
immerses in M x M. We will write f o G for this manifold and U, ’Q Up for the
coordinate chart {(z,{y]) € fo G|z € Uy, [¥] € f(U,) X Us}. What the above
discussion shows is that the kernel for f*o B is a §-section supported on f oG which

is obtained by pulling the kernel for B back via the map M x MESn x M.

foG —— @G

der JSXT

MxMLE mxm
Proposition 3.2.6 Suppose E° E', E? are vector bundles over M, (f,T) is a vec-
tor bundle morphism of E' to E°, and B is a smooth leafwise operator C*(E?) —
C>(E") with symbol k" supported in the coordinate chart U, X Ug. Let {Uy,...,U,}
be a covering of f~Y(U,) and in,...,¥, a partition of unity subordinate to it.
Then the kernel of f*o B is a é-section of Hom(E?, E®) @ n3|TM| supported on
YU ’Q U with symbol ¢;(z)T, o k?(f'(z',z"), f"(z"),y")|dy’| on U; ’Q Usg.

Proof. Recall that there is a canonical isomorphism r*|TM|®|N*G| = r*|TF| over
G. In the same way there is a canonical isomorphism r*|TM|Q |[N*(foG)| = r*|TF|
over f o G. The pull-back via f x id identifies |N*G| with |N*(f o G)|, and this
identification commutes with the isomorphisms. Thus replacing z by f(z) in kY
and then composing with the fiber map T, : E}, — E7 gives the value of the
symbol at the point (z,[f(z) 2 y]) of f oG, namely T, o K"([f(z) 2, y])|dy’|. The
partition of unity allows this to be presented as a finite sum of terms with support

on coordinate charts. |

The final situation we need to consider is the composition B, o f*o B; where
B, and B, are smooth leafwise operators on M. The ideas are no more difficult

than in the previous two propositions although the notation gets more cumbersome.
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Proposition 3.2.7 If E,i = 0,1,2,3 are vector bundles over M, and:
1. By is a smooth leafwise operator C°(E1)—C*(E®) with symbol k] supported
in Uy X Uy,
2. (f,T) is a vector bundle morphism of E? to E!,

3. B is a smooth leafwise operator C°(E?)—C>®(E?) with symbol k™ supported
in Us X Uy, |
then the kernel of By o f* o B, 1s a é-section of Hom(E?®, E®) @ w3|T M| supported
on f oG with symbol k supported in U, X Uy where v = f(m) * 2 and given by

k(z', 2",y )dy'| =
([#7@"12",2) 0 Ty oy 0 K™ (£ B (a”), £y ("), ')l d21) Iy
the integral being taken over all

z' € (Plaque of U, through h., (z")) N f~1(Us).

Proof. The proof is similar to Proposition 3.2.5. From the previous proposition,
kgeop, is a §-section supported in foG. Thus kg, ® k+op, is a 6-section with support
in the immersed submanifold G x f o G—M x M x M x M. The diagonal A is
transverse to this so the pull-back A*(kp, ® ks+,p,) is a é-section with support in the
submanifold GfG & {([v),[¥]) € G x G| fr(v) = s(v")}. This 2p + ¢ dimensional
manifold immerses in M x M x M via ([7],[Y]) = (s(7),7(7),7(v’)). The symbol of
A*(kp, ® kgeoB,) at ([7), [¥']) is KM ([¥])|dz’| 0 T;(y) 0 k2 ([7'])|dy’| where 2’ = leafwise
coordinates of 7(y) and y’ = leafwise coordinates of r(y’).

The projection 7 : M x M x M— M x M is of constant rank 2p + ¢ on
GfG, and if we define a map GfG— foG by ([v],[¥]) = (s(7), [f(7) *¥]) then the
diagram

gfg — fog

J J

MxMxM——MxM
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commutes. The fibers of GfG— f 0 G are ¢-dimensional and parametrized by the
leafwise coordinates of r(7), i.e., by z’. Integrating over the fibers then gives the

result. - |

3.3. Distributional Traces and Tr,

For an operator T' with a smooth kernel k7 on a compact space M, the
trace of T is [y, k7(z,z)dz [2]. In other words, given the kernel kr(z,y)dy of T,
taking the trace involves first restricting it to the diagonal (setting z = y) and
then integrating over M. Any operator B on M, B : C®(M)—C~°(M) has a
distributional kernel kg in C~°(73|TM|) from the Schwartz kernel theorem, and
one can try to take its trace in the same way. Let A : M— M x M be the diagonal
map and 7 : M—{-} be projection to a point. Then we define the distributional
trace Tr(B) 4 r.A*(kg). Since distributions on a singleton space are none other
‘than complex numbers, Tr(B) € C. Unfortunately, of course, this procedure for
taking the trace of an operator does not always work. Pushing down via =, is
never a problem, at least if M is compact, since 7, : C™®°(|TM|)—C~>®({-}) is
always defined. The problem is with A* that is, with restricting to the diagonal. As
discussed in Section 3.1, distributions pull back only if their wave-front set is disjoint
from the conormal bundle of the map. In the case of the map A : M— M x M,
the conormal bundle N*A = {(z,z,£,—€) | £ € Tx M\0}. Thus the above definition
for Tr(B) is only valid if WF(kg) N N*A = ¢.

In the case of operators f* o B or B; o f* o B, on a foliated manifold as
discussed in the previous section, the Schwartz kernel is a é-section supported on
the immersed submanifold f o G— M x M. §-sections pull back via maps that are

transverse to their support, but A : M— M x M is, in general, not transverse to
foG—M x M. The pull-back

M % (f0G)={(z,l) € FoG | s(v) = f(a),r(y) =z} = {[f(z) 2 2] | ;Y] € G)
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which is precisely G/. In other words, we have the commutative diagram:

G/l —— foG —— ¢

Lo l

A Fxid
M—MxM-— MxM
Proposition 3.3.1 If the morphism. f i3 transfized of dimension k, then G/ is a
smooth tmmersed (p+ k) dimensional submanifold of M, A*(N*(fo g))f;N*(gf)

is surjective, and over the point [f(z) 5 z] of G/,
ker A" = {(=£,€) | € € N:2F and € = (hy 0 f)"€}.

Proof. The first part has already been shown (Proposition 2.2.6). At a point
(2, [f(5) > ) of oG, T(f 0G) = {(v', 0", 0, 0") € Tpay(M x M) | (hy o f)uof" =
w"} and hence N*(f 0G) = {(1,6) | 1 € N.F,€ € N, Fn = —(hy 0 f)€}.
Pulling back via A, A*N*(f o G) at a point [f(z) 5 z] of Gf is {(=(hy 0 £)*€,€) |
£ € N*,F}. Then, since the tangent map A, is v — (v,v), the cotangent map
A ATN*(f 0 GY—sN"GY is (=(hy 0 F)€,€) s £ — (hy o f)'E.

Note that ker A* & ker(Id — (h, o f)*) on N*F so that

dim(ker A*) = dim(ker(Id — (h,, o f).) on NF).

But the transfixed assumption implies that no transverse vectors are fixed by
(hy o f). except for those in NF*/, so ker(Id — (h, o f).) = NF*/;} and this has
dimension k. Since dim N*(f o G) = q and dim N*G/ = ¢ — k, A" is surjective. W

This proposition shows that if f is transfixed of dimension k, then, al-
though A : M—M x M is not transverse to f o G, it has constant transverse
rank ¢ — k. Provided that a section v € C®(|ker A*|* — Gf) is given, one
can then proceed as in Section 3.1 to obtain a pull-back map A} : Cfog—ch,.
To analyze |ker A*|*, we can apply the discussion in Section 2.3. With V =
NF, and T = Id — (h, o0 f). at a point [f(z) > z] of G/, kerT = NF* and
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ker T* = ker A*. Lemma 2.3.4 says that in the presence of the transfixed assump-
tion, these spaces are naturally dual to each other: ker 7™ = (ker T)*. Thus there
is a natural identification of |kerT| with |ker T*|* or |[NF*/| = |ker A*|*. In co-
ordinates this takes the following form. Choose transverse coordinates y?*+1,... y?
such that 8/8yP*!,...,8/0y?** are fixed by (k. o f). and the subspace spanned by
8/0yPt*+1 ... 8/8y? is mapped to itself by (h, o f).. Then dy?*!,..., dy?** are
fixed by (h, o f)* and |dy?*! A ... A dy?**| can be considered, on the one hand, as
a density on the space spanned by 5/8y”+1, ...,8/8y?** and, on the other hand,
as an (unordered) basis of ker A* which gives an element of | ker A*[*. The identifi-
cation |[NFM| 22 | ker A*|* is simply this identification of |dy?*! A ... A dyP*¥| as an
element of |[NF"f| with itself as an element of | ker A*|*.

We are now ready for the key definition.

Definition 3.3.2 Let f be a morphism of (M,F) that i3 transfized of dimension
k. Let v be an invariant transfized k-form on Gf. Let A be an operator on a vector
bundle E over M whose Schwartz kernel is in Cf(fog)(Hom(E, E)®n;|TM|). Then
Tr,(A) s defined to be m.(trA%(ka)).

Remarks.

1. m, represents the projection of M x M to the second factor. When pulled
back via the diagonal map A*, 75|TM| becomes |TM| since w3 0 A = Id.

2. A}(ka)isin C%;(Hom(E, E)Q|TM]). Overa point (z, [v]) in G/, Hom(E, E) =
Hom(E,, E;) and ‘tr’ means the trace of this endomorphism of the finite di-
mensional vector space E;. Thus trA}(ks) € C4;,(ITM]).

3.  represents the projection of M to a point so that m.(trA}(k,)) is a complex

number.

4. The operators to which we shall apply this definition are operators of the
form (f,T)*o B or By o(f,T)*o B, where B, By, and B, are smooth leafwise
operators on a bundle E over M and (f,T) is a vector bundle endomorphism

of FE as in Propositions 3.2.6 and 3.2.7.
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By abuse of notation, we will use k4 both for the kernel of A and for its
symbol, which is a smooth section of Hom(E, E) ® r*|TF| over f o G. This symbol
restricts to G/, and, after taking the fiber trace, gives an element of C2(r*|TF|)

over G/. The trace Tr,(A) has a nice description in terms of this.

Proposition 3.3.3 Let A be an operator as in the previous definition. Then:

tr(ka) @ v
Tr,(A) = /gf | det(Id — (h, 0 f).)|

Proof. Note that tr(ks)®v is a density on G/ since r*|TF|®|NF*/| 2 |TG/|. The
factor in the denominator is the determinant of the map restricted to NF/NF"/
and is guaranteed not to vanish by the transfixed hypothesis.
The claim is that at any point (a,[y]) in G/,
ka®v
| det(Id — (hy o f).)|’

This identity only involves the various vector bundle maps and identifications over

AL(ka) =

the point (a,[y]). To establish it, choose transverse coordinates y?*!,...,y? as

before, i.e., such that

ker(Id — (h, o f).) = span(8/dy**l,...,8/8yP**) and

im(Id — (hy 0 f).) = span(8/9yP+*+l ... 8/8yP*?).
In fog, ka(a,[y]) has a value ka(a’,a”,a’)|dy’| in Hom(E, E) @ r*|TF|. In co-
ordinates the identification of r*|TF| with r*|TM| Q |[N*(f o G)| is |dy'| = |dy| ®
|8/8y"]. This identification is compatible with the isomorphism of N*(f o G) =
{(=(hyo f)*¢,€) | € € N*F} with N*F. But then the pull-back map A* from
N*(f 0G) to N*G' is £ — & — (h, 0 f)*¢ and its kernel is span(dyPt!, ..., dyPt*).
Thus AZ(ka) at (a,[v]) is

ka(a',a”,d')|dy| - v(8/ByP*Y,...,0/8yPtF) . A*|9/OyPHF+I AL . A B DyPHI|.

The map A* : span(dy?t*+1, ..., dy?*?")— N*G/ = span(dyPt*+! ... dy?P*?) is an

isomorphism with determinant

det(Id — (hy o f)*) = det (Id — (hy o f). on NF/NFHM).
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Now an isomorphism AL B determines a map |B|—|A|. If B = A, then this
second map is multiplication by |det f| so that the inverse map |4|—|B| is multi-

plication by 1/|det f|. This shows that

|0/ 0yPH 1 AL A DOy

A*|0]OyPHFHI A L A BByPHI| = [ det(ld = (he o )]
y =

so that

QyPHHI A L A BByt
[Get(td — (R o 1)0)]

Ax(ka) = kala',a",a)|dy| v(8/0yP*, ..., 8/3yPt¥) 19/

kA(a” a”’ a’)ldyll Qv

[det(Td — (hy 0 )-)]
kA Qv

| det(Id — (hy o f).)]

This proves the claim. The final step in the definition of Tr, is pushing

|dy"| ® |0/0y"|

down via 7, which just means integrating over G and this gives the result. |

What does Tr,(A) look like using coordinates? Suppose k4 is supported
in the coordinate chart U, f)? Usg={(2",2",y,y") € Uy x Ug | (hyo flz" = y"} for
foG with symbol k4(z’, 2", y')|dy’'|. Pulling this back with the diagonal map A yields
something supported on {(z’,z",y',y") € U, x Ug | &' = ¢/, 2" = y" = (h, 0 f)z"}
so that the pull-back is non-zero only if U, N Us # ¢ and (h, o f) fixes a subset of
the transversal through U, N Ug. If this is the case, let U] be the corresponding
chart for G/ and let Z%°f = {z” € &, | (hy 0 f)z” = 2"}. Recall that

U? = {z € U, | the plaque P.» of z is fixed by h, o f} = X/ x RP,
Then the previous proposition shows that

tr ka(z', 2", 2')| 2% ||dz| @ v

dz!

Tr,(4) = /U; | det(Id — (hy 0 £)u)l(om)

1/(:1:") / dy’
t k 'I’ 1 ! d ! .
/z,,ezgw [det(Id — (hy 0 £)a)l(er) JaePanp?, a(@', 2", 2)| == |lde’|

Note that dy’/dz’ is the factor coming from leafwise change of coordinates between

Uy and Ug. If U, = Up, this factor disappears.
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The factor in the denominator is constant along leaves in G/ since, by
Lemma 2.2.3, the k., o f maps are conjugate to one another. However, it is not nec-
essarily constant along leaves in M. As was pointed out in the discussion following
Definition 2.2.7, over a single leaf in M, there may be several leaves in G/, and the
denominator factors may differ between these. The denominator factor is only de-
fined on G/, the holonomy coverings of the fixed leaves, and not on the fixed leaves
themselves. On the other hand v will usually be taken to be a Haefliger invariant
k-form so that v is defined everywhere on M. This is why the denominator factor

is not simply absorbed in the density v.

3.4. The Key Property of Tr,

Theorem 3.4.1 If

1. B; and B, are smooth leafwise operators on a vector bundle E over (M,F),

and

2. (f,T) is a vector bundle morphism ofE where f i3 transfized of dimension k,

then Tr,(f* o Byo By) = Tr,(B; o f* 0 B,).

Proof. The proof is a calculation using the Fubini theorem. We may assume that
the Schwartz kernels of B, and B; are each supported in a single chart for G. So
we suppose that By has symbol k™ supported in U, % U, and B, has symbol k™
supported in Uj % Us. If f(U)NUs = ¢ or UyNU; = ¢, then both sides are zero so
we assume these are not the case. We shall use the variable z for U; coordinates, y
for U;, z for Us, and w for Us.

Work first with Tr,(f* o B;0 B;). Proposition 3.2.5 gives the symbol k"*"

nMn

of BoByon U; x U, as

el =yl [ R o R by
wle h-y2.t“

Sy

The kernel of f* o B, o B is supported on f~}(U3) ~ X Us, and it may take several

coordinate charts to cover f~!(Us3), but since, in taking Tr,, the only part that
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contributes is f~!(Us) N U,, we only need to consider the kernel of f* o B, 0 B, on
frmn

U, x Uj;. Proposition 3.2.6 shows that on this chart, the kernel has the value
T, o K" (f'(y), f'(y"),y")|dy’]. Then the expression for Tr, in coordinates gives

Tr,(f*o By o By) = (3.1)

v(y") '

. dy'| -

/y"ez?l 27 |(Id = oy By f )l (yr) /v'ef’inl v
Loone (T 0 KR S0 0 K (0, o P )

h72 !II(yII)

Now work with Tr,(B, o f* o B;). Proposition 3.2.7 shows that the kernel

. ff(n) ;
of By o f* o By is supported on U ’>y<l ” U, with value

k(z',z",w")|dw'| =

(/y,epz k(22" y') o Tty by 2) © k2 (f'(y's hyz”), f Ry ", w')ldy'[) |dw'|.

h‘n
Thus
TI',,(BI &) f* [¢) B-z) = (32)
V(:l}”)
. dw'/dzx’ dz'| -
Loestramiont T Tohe s Lo e, 14611l
/ o tr(k (2", 2", y") 0 Tiy py, 2y © K2 (F'(Y's Ry "), f' Ry 2, 2"))ldy'|.
y'€E hy, 2

Now transform this integral so that it becomes equal to the one in Equation 3.1.
First, make a change of variable in the second integral from z’ to w’. Second, use
Fubini’s Theorem to switch the order of the two innermost integrals. Third, replace
tr(k” o T o k") with tr(Tok™ok™). This step is justified because these are traces
on the fibers which are finite-dimensional vector spaces. After these three steps,
Tr,(B, o f* o B;) has become

/ . V(x”) ./ Idyl|'
r”ez,"’ 1! [(Id _ h'yzhf('n)f)*l(x") y'eP2

heyy E

/z:;'eP4 tr(Tiyt pyy o7y © K2 (F/ (Y, By 2”), [ Ry, w0") 0 K7 (w0, 2", ")) |d|.

The final step is to make a change of variables on the outermost integral. The

hyyh hyyh .
holonomy h., takes &;™ st PINE "/ 50 we can make the change of variable
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h.,z" = y" or, equivalently, z” = h., fy”. Since v is holonomy invariant, v(z") =
v(y") and the same applies to the determinant factor in the denominator. Thus the

integral is transformed into the integral that occurs in Equation 3.1. |



CHAPTER 4
INVARIANCE AND TIME ZERO

4.1. Leafwise Dirac Complexes

The following three definitions are adapted from Roe [20].

Definition 4.1.1 A leafwise Clifford bundle over a foliated Riemannian manifold
(M,F) is a smooth bundle S over M such that each fiber S, i3 a module over the
Clifford algebra CY(T,F ® C) and S has a Hermitian metric (-,-) and compatible

connection V such that

1. the Clifford action of a vector £ € T, F on S, i3 skew-adjoint
(651732) + (317652) = 07

2. the connection on S 13 compatible with the Levi-Civita connection restricted

to TF, in the sense that for vector fields X,Y € C®(TF) and s € C*=(S),
Vx(Ys)=(VxY)s+YVys.
Definition 4.1.2 The leafwise Dirac operator D of a leafwise Clifford bundle S

i3 the first order differential operator on C(S) that is defined by the following

composition:
C®(S) —C®(T"MQRS) — C*(T"FQRS) — C?(TF®S) — C*®(S)

where the first arrow is given by the connection, the second by the projection, the

third by the metric, and the fourth by the Clifford action.
Definition 4.1.3 A leafwise Dirac complex on (M, F) is

1. a sequence of smooth finite dimensional Hermitian vector bundles E°, ..., E*

over M with connections over TF and with first order differential operators

d; : C®(E') = C=(E**'); and

45
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2. a leafwise Clifford bundle S over M together with a Hermitian vector bundle
isomorphism of S with @ E'

such that
1. di+1 (o) d,’ = 0,'
2. the d; differentiate only in the leafwise directions;

3. when the leafwise formal adjoints di : C*°(E**!) — C*(E") are formed using
the metrics, the operator @(d; +di_;) on C®(@ E’) corresponds to the Dirac
operator D under the isomorphism of S with @ E".

The (non-foliated) deRham complex is a Dirac complex [20, pages 30—
31]. This example can be adapted to the leafwise context. Let Ef = A'T*F ® C
be the bundle of complex-valued leafwise i-forms on M and let d; be the exterior
derivative in the leafwise directions. Then @ E' is isomorphic as a vector bundle
to CI(TF ® C) which we can consider as a bundle of Clifford modules over itself.
Under this isomorphism, the Dirac operator D of CI(TF ® C) corresponds to the
operator d; + di_, on C*(E").

If p = 2m is even and the leaves are Kahler manifolds, then let (E*,9.)
be the leafwise Dolbeault éomplex. If S is the Clifford bundle of leafwise spinors,
then S is isomorphic as a vector bundle to @7, E* and the Dirac operator of S
corresponds to v2(9; + ;_,) [20, pages 34-35). This gives a second example of a
leafwise Dirac complex.

The other two classical examples of Dirac complexes are the signature
complex and the spin complex. Both of these can also be adapted to the leafwise
context in a straightforward fashion.

Note that when restricted to a leaf, a leafwise Clifford bundle becomes a
Clifford bundle and a leafwise Dirac complex becomes a Dirac complex. The Dirac
operator D of a leafwise Dirac complex restricts to a Dirac operator Dy, on the
leaf L of M. L is a complete Riemannian manifold. Chernoff [6] established two

important facts about Dirac operators on complete Riemannian manifolds. The first
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is that they are essentially self-adjoint, and the second is that the corresponding

wave operators have unit propagation speed:

Proposition 4.1.4 (Chernoff [6,21] ) IfD is a Dirac operator on a Clifford bun-
dle S over a complete Riemannian manifold, then the operator "L maps CX(S) to
C(S) and the support of €'Ps is contained within a |t|-neighborhood of the support
of s.

Definition 4.1.5 An endomorphism of a leafwise Dirac complez (E*,d,) is a col-
lection of maps C“(E‘)LC“(E‘) that commute with the differential operators d;.
A geometric endomorphism of a leafwise Dirac complez is a morphism f of (M, F)
together with vector bundle maps f'E‘LE’" lying over f such that d;T* = T**'d;
as maps from C®(E*) to C®(E™*'). (Note that the endomorphisms of a complex

do not necessarily commute with the adjoints di.)

For the four classical complexes, the following are the requirements on

a morphism f of (M,F) so that it will induce a geometric endomorphism of the

complex:
complez condition on f restricted to a leaf
deRham
Kéahler holomorphic isometry
Signature | isometry and orientation-preserving
Dirac isometry and spin

A Clifford bundle is said to have bounded geometry if its curvature tensor
is uniformly bounded as are all its covariant derivatives. The compactness of M im-
plies that a leafwise Clifford bundle over M has bounded geometry when considered

as a Clifford bundle over the disjoint union of the leaves.
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4.2. The Heat Kernel and Approximations

Suppose E* is a leafwise Dirac complex on (M, F). Let D = @(d; + d;_,)
be the corresponding Dirac operator on C®(S) = C*(@ E*). On each leaf L, D,
is a first-order elliptic operator whose closure in L? of the leaf is self-adjoint. This
closure will also be written D;. By the spectral theorem, for any bounded Borel
function f on the real line, f(Dy) is 2 bounded operator on L? of L. When we
write f(D), we shall mean the operator that is f(DL) on the leaf L. The leafwise
Laplacian on S is A = D2

We now want to analyze the leafwise heat operator e=*?* and explain why
its kernel is a é-section supported on the holonomy groupoid G5 M x M. Unfortu-
nately, this kernel is not compactly supported so that it is not in C;(Hom(S, S) ®
n5|TM|), but using the finite propagation speed property, we shall show that it can
be approximated by elements of this space.

To begin, consider a leaf L of M. What is the inverse image of L x L in
G? Let L- L be the holonomy covering of L, that is, L = L/N where L is the
universal cover of L and N is the kernel of the map of II;(L,z) to the holonomy
group GZ for any z in L. This is a Galois covering since N is normal. Let G be the

group of deck transformations of L.
Proposition 4.2.1 There i3 a canonical isomorphism

(Lx L)/G2(sxr) (L x L).

Proof. Define a map L x L-"5(s x 7)™ (L x L) by a(%, ) = [x(¥)] where 7 is any
path in L from # to §. The equivalence class of 7(¥) is independent of the path ¥
chosen. Clearly « is surjective since any path in L lifts to a path in L. Note that
G acts on L x L by (%,7) ¥» (%g, §g) and that the map « is invariant under this
action.

We claim that the fibers of the map « are precisely the orbits of G. For
suppose a(#;, ;) = a(&z,3.) and let 3; and % be the corresponding paths in L.
Since m(%1) = s[r(f1)] = s[7(%2)] = 7(&:), # and %, are in the same fiber over L

and so there is a deck transformation g with #,9 = &,. The path %, ¢ has the same
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image in L that 4; does, and hence ;! * ;¢ is a path in L whose image in L is a
loop based at m(§2) = m(§1) with trivial holonomy. This implies that 47! * 5,g is a
loop in L, and since it starts at §, and ends at ¢, we must have §,¢ = §,. Thus
(%2, 92) = (%1, 1)g which proves the claim. But then the claim immediately implies

the proposition. u

Now we want to compare the heat kernel on L with the heat kernel on
L. Since Dy is a local operator, it lifté to an operator D; on L with the same
properties—D; is first-order, elliptic, and essentially self-adjoint. The lifted oper-
ator commutes with the deck transformations g € G and also satisfies Dj(x*p) =
n*(Dry) where ¢ is any function on L in the domain of Dy. The usual elliptic
methods show that e=tP1 has a smooth kernel, kX, on L x L and that e*P} has a
smooth kernel, k,L ,on Lx L. Since D 7, commutes with the isometries g € G, so does
¢~*P1, and this fact implies that the kernel kL satisfies kL(&g, §ig) = kL(#,§). This
G-invariance means that the kernel descends to (L x L)/G which by the previous
. ‘proposition is isomorphic to (s x 7)~1(L x L). We shall also write k£ for the kernel
on either one of these spaces.

Over any (z,y) € L x L, the fiber of the projection (s x r)~}(L x L) =
(LxL))G—LxLis{[y) €G|s(y) ==z r(y) =y} = G5 It is well-known
“that kl(z,y) = hjecs kL([y]). This follows from the uniqueness of the heat kernel
together with the calculation:

/Lé: kF(lz B y)e(y)dy / e k(x> y)e(y)dy

= [ @ De(r(@)dg
= (Pinp)(2)
= 7w oetPiy(%)

= e *Dip(z)

= /ka (z,y)e(y)dy

where the fourth equality follows from the fact that D; o 7* = 7* o Dy. Since the
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fibers of s x r are discrete, pushing down just means summing over the fibers, and
thus we have shown that (s x r).kL = kL.

For each leaf L, kL is a section of Hom(S, §)®r*|TL| over (sxr)"}(LxL) C
G. Globally, this gives a leafwise smooth section of Hom( S, S)®r*|TF| over G which
will be denoted by k.. This is almost a é-section of Hom(S, S) ® n3|TM| over M
(recall that m3|TM|® |[N*G| = r*|TF|) except that £, is, in general, not corhpactly
supported and not smooth transversely in G. Nevertheless, the previous paragraph

D2 . . .
tD* on M. The verification is as

shows that k, represents the Schwartz kernel of e
follows. Given a smooth section ¢ of S on M, the value of ﬂ'].(kg -T3p) at T is given
by f4-1(z) k([z 5 y])¢(y)dy. The previous paragraph shows that with L = L_, this
= [, kE(z,y)e(y)dy = (e~*Piypr)(z) which is the definition of (e~*P*p)(z).

In [21], Roe proved

Theorem 4.2.2 (Roe) If D 1s a leafwise Dirac operator and f is a function on
R whose Fourier transform f is smooth and compactly supported, then f(D) has a
kernel whose symbol i3 in C°(Hom(S, S) ® r*|TF|—G).

The proof uses the finite propagation speed property of /P and actually shows that
if R is a number such that f is supported in the interval [~ R, R], then the kernel
ks(py has support in G'R.

The function g(z) = e~**" is in the Schwartz space S and has Fourier
transform #e-e’/ 4 Although § does not have compact support, it is super-
exponentially decreasing in the sense that it and all its derivatives are o(e=%) for
any b as £ — +o0o. To approximate g, consider a sequence g, of smooth even func-
tions on R such that g, — ¢in S, g, € C°, and g, — § super-exponentially in the
sense that for every ¢ and b, supf(lg,\,(i)(f) — §(¢)|e¥) = 0 as n — 0o. One way to
do this is to use cutoff functions. Take ¢ : R — [0,1] a smooth even function with
support in [—2,2] and ¢ =1 on [—1, 1] and then let g,(¢) = ¢(§/n)#e"fz/‘“.

For each of these g,, g.(D) has a kernel that is compactly supported on
G and thus Tr,(f* 0 g,(D)) is well-defined and finite. We would like to show that
Tr,(f* o go(D)) converges as n — oo. To do this we shall need a pointwise estimate

on the kernels of g,(D). To get these pointwise estimates, let F be the disjoint
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union of the holonomy coverings of the leaves of F. Then F is a manifold of
bounded geometry, S is a Clifford bundle of bounded geometry, and we can apply
the following theorem of Cheeger, Gromov, and Taylor [5)].

Theorem 4.2.3 If M is a manifold of bounded geometry and S is a Clifford bundle
of bounded geometry over M, then for every 6 > 0, there is a constant C such that

for any even function g in S and any points r,,z, in M,

o ~(2i)
by enl <€ 3 [ IOl

where k, is the kernel of g(D), N = [n/2] + 1, and d is the distance between z, and

Iy.

This theorem is proved using the finite propagation speed and a local Sobolev
embedding theorem together with bounds on the elliptic constant for the Dirac
operator D. Since the kernels on L x L descend to G as explained above, this
theorem gives uniform pointwise bounds on the kernels of ¢,(D) on G.

Recall that in the local expression for Tr,(f* o B) where B is a smooth
leafwise operator on a bundle E , the contribution of U} is

tr k3(F'(y),v,y") ., , o
/U;' ’Id _ (h_y o f).l(y//)ldy | (y )

where kg(z',y',y")|dy’| is the leafwise kernel of B on Ug x Uy with Ug D f(U,). In
estimating errors obtained by approximating an arbitrary kernel on G with com-

pactly supported ones, we shall use the estimate that

e K@)
/(.J;' [Id — (hy o f)_|(yu)‘dy lv(y") <
v(y")

suplts [ (1)

The plaque volumes [ P |dy’| are clearly globally bounded on M. Since v is assumed
to be an invariant transfixed k-density, the v(y")/|Id — (h, o f).](y") factor is holon-

omy invariant. The fixed set M/ is compact and therefore this factor is bounded

on M/, and hence also on the flow-out of M/. In proving the Lefschetz theorem,
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the important data is on the flow-out of M/ so there is no harm in assuming that

v/lId — (h, o f).] is globally bounded on G/. With this assumption, then, there is

a number B such that /o™
dyl v yII
< B
/UZ 1Id — (hy 0 ).I(¥")

for all charts U for G/.

Now we use Theorem 4.2.3 to obtain the following estimate.

Proposition 4.2.4 Given (M,F), (E*,d.), D, f, and v as before, then for any
6 > 0, there are constants b and C’ such that for any even function g € S with §
compactly supported and for any R > 6,

tdkg(o)[f(:t) — :l:]) ' ) al b * i
dr'lv < C € (R+")/ G (€)|d 4.1

Jongr, TRt S N [ Ol (4
Proof. 'Take a finite covering {Ug} of M by foliation charts, and recall that there
are constants a and b so that G/ i can be covered with no more than ae?® charts of the
form Uj where v is a leafwise path from f(Up) to Ug (Proposition 2.2.13). Decom-
pose GI\G! p as U o(G7 Rek+2\G’ r4s). For each chart Uj covering G/ ryx42\G’ Rt
the most it can contribute to the integral is B times the supremum of the kernel of
g(D) on G\GRr4s. By Theorem 4.2.3, there is a constant C such that this supremum
is < C N [ ko515 (€)]d¢. Thus the contribution of G/ pyx42\G/ ryx to the inte-
gral is < ae®F+H+ABC TN [ 1§ (€)|d¢. Taking C’' = ae? BC and summing

over k then gives the result. n

Corollary 4.2.5 There is a constant C" such that for any even function g in S
with § compactly supported and any R > 6,

tr(ky(p)[f(z) = «]) R e
de'lv < C" () ( £y[(6+1E
/gf\gfn 11d = (ks 0 f)a| el € lelZRf‘S{POSiSng (Ole
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Proof.  Suppose |§*)(¢)|e*1)¢ < C for all ¢ with |¢]| > R — § and for all i with
0<:< N. Then

520 (£\1d C/ —+0)Ege <« _C —(b+1)(R+E=0)
./R+k-5 g (E)lde < Rkmt S s b1 )
Hence the right-hand side of inequality 4.1 is
°° C C'(N +1) &
: b(R+K) ~(b+1)(RHk=5) _ (b+1)5 §= ,~k _~R
<C§=:O(N+1)e Tk b1 ¢ k§=oe e RC.
Thus the result follows with C” = G’bﬁ_’:'l e(b+1)6 5~ o=k, ]

The point of this result is that it enables Tr, to be extended to operators

f* o g(D) where § is super-exponentially decaying.

Theorem 4.2.6 If § is super-ezponentially decaying and g, are all compactly sup-
ported and converge to § super-exponentially, then Tr,(f* o g,(D)) converges as

n — oQ.

Proof. First we claim that for any ¢, there is an R such that, for all n sufficiently
large, the contribution of the complement of G/g to Tr,(f* 0 g.(D)) is less than
e. This follows from 17236 < |Fa3(€) — §®)(€)] + [?(€)] together with the
previous corollary and the assumptions on § and g, — §. |

Thus to show that Tr,(f* o g.(D)) converges, we only need to consider
Gfr. Another application of Theorem 4.2.3 shows that the kernels of g,(D) con-
verge uniformly on G/g. Since the volume of Gf g is finite, the Gfz contribution to

Tr,(f* o go(D)) converges. ]

We can now define Tr,(f* o e=tP*) to be this limit.



54

4.3. Time Invariance

Let E*, D, f, and v be as before. Recall that D = @(d; + d}) so that
D? = @A, and e7P* is 7' on E'. Thus Tr,(f* o0 e~tP?) = 3, Tr,(f* o e~t8).
For the heat operator approach to the Lefschetz theorem, we need to consider
instead ¥;(—1)Tr,(f* 0 e~*4¢). To do this, introduce a Z, grading by decomposi_ng
S = @;E into St = @; even E' and S~ = @; oq4 E*. The Dirac operator then
decomposes into D* : C®(S§%)—C=(S~) and D~ : C°(5~)—C>(S+). Define
the super-trace tr® on the fibers of S to be the usual trace on S* and minus the
usual trace on S~. Then define Tr} exactly as for Tr, except that the fiber trace
tr® replaces tr. In other words, Tr}(A) = m.(tr’Al(k4)) and

S (=1 Tr,(f* 0 e=t4i) = Tel(f* 0 e~tD*) =

cmiagge o tr (kg ([f(2) 2 2]))
lim Tr}(f* 0 ga(D)) = lim ! Idet(M_(,wf)_ﬂldw |v.

The fiber trace tr® has the property that tr’(Ao B) = tr*(Bo A) if either A
" or B preserves the Z, grading but tr*(4o0 B) = —tr*(Bo A) if either one reverses the

grading. Thus, using the super-trace instead of the trace, Theorem 3.4.1 becomes
Tr)(f* o By o By) = Tr,(Byo f* o By)
if the operator B, preserves the grading and
Trl(f* o B;0 By) = —Tr)(B1o f* 0 B,)

if it reverses the grading. Note that D, d, and d* all reverse the grading while D?,
A;, and f* all preserve it. _
We shall now show that Tr?(f* o e=*P) is constant as a function of ¢. To
do this, we use a trick from Roe [21] that shows that one can find a sequence of
approximations g, ¢ to e~**" as in the previous section, such that Tt} (f* 0 gm (D))
is itself constant as a function of ¢ for m fixed. Let ¢,, be a sequence of smooth even

-z2/2

functions converging to e in § and with @, compactly supported and converg-

ing to e~¢"/? super-exponentially. Then 2 converges to e~ in §, and the Fourier
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transforms ., * ,, are compactly supported and converge super-exponentially to

712-6‘52/4. Since ., is even, we can write @, (z) = ¢n(z?) where ¢,, is smooth. Let
gma(z) = ¢2.(t2?) = @2 (Vizr). Then gm.(z) — e~ in S with Fourier transform

Gmi(€) = -\}ch’,\n*@; (¢/V/t) compactly supported and converging super-exponentially
to 71-276'52/ at,

In this situation, the previous section shows that
Te)(f* 0 e*P") = lim Tr}(f* 0 gm(D))-
Before proving that Tr)(f* o gm (D)) is constant in ¢, we need the following lemma.

Lemma 4.3.1 If ¢ € S(R) is such that the function p(z) = ¢(z?) has compactly

supported Fourier transform, then so does the function z — ¢'(2?).

Proof.  Since ¢(z) has compactly supported Fourier transform, so does ¢’(z) since
@'(€) = i€@(€). Then ¢'(z?) = ¢'(z)/2z has Fourier transform ¢’ * sign because the

Fourier transform of 1/2z is the function

1 ifE>0

Sgﬂo:{-A if £ <0

(7 +sign)(&) = [ Gy~ [ Flmydn
n<¢ n2¢
If the support of ¢ is contained in [a, b], then for any £ outside of [a, b},

(@ +sign)(©) =+ [ Flndn

But ¢ is even, so ¢’ and thus also ¢’ is odd. Thus the integral is 0, and we have
shown that the Fourier transform of ¢'(z?) has support contained in [a, 8] if the

support of ¢ is. [ |

Proposition 4.3.2 Tr)(f* 0 gm (D)) is constant in t for 0 < t < oo.
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Proof. Differentiate Trl(f* o ¢2,(¢D?)) with respect to t to get
2Tr}(f* D4, (tD*)$m(tD?))
= 2T (f*(dd" + d*d)¢,,(tD*)ém(tD?))
= 2Tr}(f*(dd*)¢/(tD*)$m(tD?)) + 2Tr}(f*(d"d)¢, (¢ D*)m(t D?)).
It is thus sufficient to show that
T (f*(dd*)¢7,(tD*)¢m(tD?)) = —Tr}(f*(d*d)4}, (tD*)$m(tD?)).

We shall now establish this fact by a chain of equalities transforming the
left-hand side into the right-hand side. First apply Theorem 3.4.1 with B, =
dd* ¢! (tD?) and By = én(tD?). The lemma implies that ¢/ (tz?) has compactly
supported Fourier transform, and thus the kernel of ¢/ (¢tD?) is in C>(G/). The
same is then true of the kernel of dd*¢! (¢D?) so that application of the theorem is
justified. Also, since B, is a function of D?, it preserves the grading, and we can

conclude
Tr; (f* 0 (dd*)4,(tD?) 0 ¢ (tD?)) = Tr}(¢m(tD?) 0 f* 0 dd"¢,,(tD?)).
Since f* is a map of the Dirac complex (E*,d), f* commutes with d, and we get
Tr}(¢m(tD*)df*d" ¢, (tD?)).

Now apply Theorem 3.4.1 with B; = ¢,,(tD?)d and B, = d*¢/,(¢tD?). This time B,

reverses the grading so we get
Tr (¢m(tD*)d o f* 0 d°¢,,(tD?)) = =Tr}(f* 0 d"4,,(tD?) 0 $m(tD?)d).
Finally, d commutes with D? = dd* + d*d and hence with any function of D? so that
—Tr}(f*d* ¢, (tD*)¢m(tD?)d) = —Tr}(f*(d*d)$,,(¢D?)pm (tD?))

which establishes the claim. |

Corollary 4.3.3 Tr’(f* o e~tP?) is constant in t for 0 < t < co.
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Proof.  This follows from Tr’(f* 0 e*P*) = lim,, oo Tro(f* 0 gma(D)). |

4.4, The Time Zero Limit

Since Tr)(f* o e“Dz) is independent of ¢ for 0 < ¢ < oo, the time zero limit
and the time infinity limit must be equal. The time zero limit is determined by
quantities defined over the fixed point set of f. First we shall show that as t — 0t,

the integrand defining Tr’(f* o e~*P*) concentrates on the fixed point set.

Proposition 4.4.1 For any R > 0,

tlir(g(contribution of GING/ g to Tr(f*o e"Dz) ) =0.

Proof. Let g,(z) = e™** so that §(¢) = -\715(3‘62/‘“. Then

GR(€) = (1/2t)*F 1py(€, t)e ¢/

where p; is a polynomial of degree k in { and t. Now pick a § < R and apply
Corollary 4.2.5. For any 1,
lim sup |§(®)(€)]e®Vt = 0.
t=0% je|>R-s
|

This proposition shows that in determining the time zero limit, we only
need consider G/ where R is arbitrarily small. Proposition 2.2.12 says that for R
small enough, G/ is contained in the flow-out of the fixed set Af/. But the analysis
of the time zero asymptotics of the leafwise heat operator near the fixed set reduces

to the usual time zero asymptotics along the leaves integrated transversely.

Theorem 4.4.2 Let f be a Lefschetz morphism of dimension k of (M, F) and let
v be an invariant transfized k-density. Let (E*,d.) be a leafwise Dirac complez and
let (f,T.) be a geometric endomorphism of it. For any z in the fized set M/, let

i(=1)'tr(T*(2))
| det(Id — To(fc)l’

a(z) =
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the Atiyah-Bott local indez for fl, at . Then

lim ST (T 0e™) = | [det((lgcai:)z(fai))l(x)'

Proof. The definitions of Dirac complex and super-trace imply that
Y=L T (£, T 0 ™) = Tr((f, T) 0 e™2%).

The previous proposition shows that to compute lim,_o+ Trl((f,T)" 0 e~*P?), we

only need consider G/ for any positive R. Thus, using Proposition 3.3.3,

L ms .o o—tD?\ _ I; trok([f(z) > z}) @ v
tl_l.l(l)}l- Tru((f, T) oe ) - gl.i.r(?f '/ng Idet(Id — (hq o f)-)l

where k; is the (symbol of the) leafwise heat kernel on G. Since M/ is a transverse
embedded submanifold of M (Proposition 2.2.10), M/ can be covered by a finite
number of foliation charts U, so that for each U,, U, N M/ = £/ is a k-dimensional

submanifold transverse to the foliation. In G/, M/ is covered by the charts

U = {[f(z) A z) | z € U,, the plaque P, intersects =/, and 7 is a plaque path}
~ %/ x RP.

For R small enough, Proposition 2.2.12 implies /g C JU?. Let {¢4} be a partition
of unity for M/ subordinate to £ and extend ¢, to U2 by defining ¢,(z) = wq(z").

Then the local expression for Tr} leads to

. trek([f(z) =2 z)@v . po(T)k(f'(2), 2, ") |d2"|v (")
Jm /ng [det(id — (Ao F] — oo ;/ /Ug [det(ld — £.)1(=")

Note that on U?, the holonomy h, is trivial. On each chart,

[ ] el )
vz Jdet(ld - f)l(27)

(,Oa(.’l,‘”)l/(.’l:”) ! ron [
«/;"e.\:é | det(Id — f.)|(z") Jzrep,u ki(f'(z), ', 2")|dz’|.

As t — 0%, for z” fixed, the asymptotics of the heat kernel on the plaque P,» imply

that [,cp , ke(f'(x),2',2")|dz'| converges to the leafwise local index for f at the
fixed point z”, i.e.,

' ] ' " _Z(—l)iTr(Ti(x))
Loy, BF@) 2, 2de')  ala") = Fiora—am s
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where T« f is the derivative restricted to T;F [12, Section 1.8] or [20, Chapter 8]. To
establish the theorem, then, we only need the fact that this convergence is uniform

in z”, for then we will have

va(z)k(f'(z), 2, 2")|dz'|v (")
e Fr YA e

Pa(z(z") . et ot g
= ;/;"ezé | det(Id — f£.)|(z") tl_‘fgi /;'eP,,, k(f'(z), =, z")|dz|
= (Pa(:l:”)l/(:z:”) "

- ;/;3{, | det(Id — f.)l(:z:”)a(x )

/ a(z)v(z)
s |det(Id — £)l(z)

It remains to show that the convergence is uniform in z” on the chart U?.

lim
t—0t

But this follows by carrying out the Gilkey-Seeley expansion for the asymptotics
of the leafwise heat kernel on U, with the transverse variable z” acting as a pa-
rameter and showing that the necessary estimates are all uniform in z”. Briefly,
the argument is as follows. Let k,(y',z’,2")|dz'| be the leafwise heat kernel for
e~tP* at the point (v/,2",z’,z") in U, X U, as before. Let kj(y’,2’,z")|dz’| be
the kernel for the approximation constructed on the chart U, ; U, using the re-
solvant. In Gilkey’s notation, we let r,(z',z", ¢, A) be the homogeneous symbol of
degree —(n + 2) in the local approximation for (D? — A)~!. Here ((«',2"),¢’, ) €
U, X R? x R where R is a region in the complex plane as in [12]. Then e,(t,2’,2",¢’)
is defined to be - [ e~z 2", &, ))d), and K,(t,y’,z',z") is defined to be
Sre e W=V ee (t, 4, 2", ¢)dE'. For any k, if ng is large enough, there is an estimate
[12, Lemma 1.7.3]
no
sup sup |k(y',2',2") — Z K.(t,y, ', 2")| < Cy pntt.
o y'€PA, 0<t<1 =
This estimate is obtained on each plaque from a Sobolev embedding theorem to-
gether with an estimate on the local Sobolev norm of the operator
—tD? 1 -
&P — L e Ron(A)dA
where R,#(\) is the resolvant with symbol Y 12 7.(z’,2",€&’, ). The constant in-

volved in the Sobolev embedding theorem depends only on p, the leaf dimension,
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and is thus independent of the transverse parameter z”. The Sobolev norm esti-

mates depend continuously on:

1. the local Sobolev norms of a finite number of powers of D2,;

N

. the elliptic constants of a finite number of powers of D?,;
3. the distance from R to the spectrum of D2,; and
4. the local symbol of D2,.

Since all of these depend continuously on the transverse parameter z”, we see that
Ci,z» is a continuous function of z”. Thus on the compact set supp(ps) C T, there
is a Cx such that

sup sup  sup |k(y',2’,2") = ) Ka(t, ', 7', 2")| < Cit*.
z''€supp(pa) =y’ €PZ, 0<t<1

Thus ¥ K, (¢,y',z’,z") gives an asymptotic expansion for the heat kernel uniformly
in z”. Substituting y' = f'(z) gives an asymptotic expansion for k;(f'(z),z’,z")
that is still uniform in z”; and then taking integrals, we get that

/P (k(f'(2), 2", 2" = Y- Kalt, ¥, 2", 2")) |da'] < Citt

where C|, is independent of z”.

To calculate the limiting value as t — 0%, we can take k to be any positive
number. Since we have assumed that on each leaf f has isolated nondegenerate
fixed points, a calculation shows that only the Ky term contributes terms of order
0 in ¢ {12, 1.8.3] or [20, 1.8.11]. In fact,

tlir(g » Ko(t, v/, 2, 2")|dz'| = a(z"),

and a similar argument to that above, shows that the error is bounded by Ct!/?

independently of z”. n

For the four classical complexes, Atiyah and Bott [3] described the local

indices. These are as follows:
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. deRham: a(z) = sign det(Id ~ T.(f|.));
. Dolbeault: a(z) = 1/ detc(Id — T.(f|L));

. Signature: ‘a(a:) = [1;(—i cot(8;/2)) where T, L is decomposed into j 2-dimensional
oriented orthogonal invariant subspaces so that T,( f|;) is rotation through the

angle 6; on the jth subspace; and

. Spin: a(z) = ]'[J-(:i:% csc(6;/2)) where the angles 6; are as before and the sign
+ depends on the lifting of T* f to the spin bundle.



CHAPTER 5
TIME INFINITY AND HOMOLOGY

We have established that if (f,T*) is a Lefschetz morphism of a leafwise
Dirac complex on a foliated manifold, then Tr!(f* o e=tP") is independent of ¢ for
0 < t < oo and the time zero limit can be evaluated by quantities defined on the fixed
point set of f. We now consider the time infinity limit. The general philosophy here
is that the time infinity limit is a global quantity involving the trace of (f,T*) on the
homology, in some sense, of the Dirac complex. This is modeled after the classical
case of a (non-foliated) compact manifold where the heat kernel converges in the
C*>topology to the kernel for the projection on the (finite-dimensional) homology
as t — +o00.

For the foliated Lefschetz theorem, the answer is not so straightforward. To
identify some of the difficulties, we first recall that the definition of Tr(f* o e=tP?)
is m.tr*A*((f x id)*k, ® v) where k; is the leafwise heat kernel on M x M. The
question of whether the time infinity limit commutes with the various operations
involved in this definition thus arises naturally. A related question is what lim,_ . k,
represents if it does exist as a distribution on M. Is it projection on the homology
of the leafwise Dirac complex? In what sense should we consider the homology of
the complex? We shall give partial answers to these questions in this chapter, and
in the next chapter we shall study the variety of behavior that can result in specific
examples.

For the first question, note that the push-forward map . : C~*°(|TM|) —

C~>({.}), which is just integration over M, is continuous (Section 3.1). Thus
tlim Tt A ((f X id)*k, @ v) = 7. tl_l}g tr* A™((f x id)*k: ® v)

provided that this second limit exists. Here we are considering tr*A*((f x id)*k; @ v)

as a distributional section of |TM| over M. The fiberwise supertrace, tr*, is also

62
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continuous so that the time infinity limit can also be commuted past tr* provided
that the limit exists.

The next operation, A} : £ — A*(k®v) from Cf(joc)(n';{TMlcg)Hom(S, SY)
to Cf(c,)(lTMl ® Hom(S, S)) is continuous if Cf(fog) and Cf(g,) are given the
topologies induced from the inclusions into C~*° (Section 3.1). However, as defined,
the space Cf( fog) consists only of é-sections. It does not contain smooth sections,
and as mentioned in Section 3.1, the map A} is not a continuous extension of the

pull-back map on smooth sections:
A*: C*(n3|]TM| ® Hom(S,S) = M x M) — C>(|TM|® Hom(S, S) - M).

Although the kernel k; is a é-section on G for all finite ¢ > 0, it may be that the time
infinity limit is not. An example where the limiting distribution is not a §-section
is the irrational foliation of the torus discussed in the next chapter. In this case the
time infinity limit is constant and thus an element of C* rather than C§ .
Nevertheless, in some cases the time infinity limit can be commuted. If the
transfixed dimension & = 0 and v is trivial, then Tr, is a continuous extension of
the trace on operators with smooth kernels. Consider the immersion M DM x M.

Recall from Section 3.1 that the conormal bundle of the map f x id is defined by

N*(fxid) = {n € T(MxM) | 3z € M with 1 € T¢;,)yMxM and (fxid)'n = 0}.

Recall also from Section 3.3 that if f is transfixed of dimension 0, then M DM x M

is transverse to the groupoid X5 M x M so that N*G\0 is disjoint from N*(f x
id)\0. Suppose that the closure of N*G\0 in T*(M x M)\0 is also disjoint from
N*(f x id)\0 and let I" be a closed cone in the complement of N*(f x id)\0 that
contains N*G\0.

Proposition 5.0.1 If k = 0, v is trivial, I" is as above, and k, converges to a

limiting distribution ky, in Cr°°, then

lim Tey(f* 0 e~P*) = Te'(f* o Jim e™P"),
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Proof Since v is trivial, Tré(f*oe~*P*) is defined by m.tr*(f x id)*k;. Note
that m.tr*(f x id)*k is defined for all distributional sections k in C=°(7}[TM| ®
Hom(S, S)) such that WF(k)N N*(f xid) = 8. Also note that &, is in CF™ because
WF(k;) C N*G\0 C T. Theorem 8.2.4 of Hormander [17] implies that (f x id)*
is continuous from CFr® to C~*°. Since 7, and tr® are continuous, the assumption

that k; — ko in Cr®° implies that

tlirglo Tt (f xid)*ky = mtr’(f X id) koo

= Tr'(f*o Jim e~tD?),

Another situation where the limit commutes is when the limiting distri-

bution k. is a §-section in the same space as k; for ¢ finite.

Proposition 5.0.2 If k; converges to a distribution k., continuously in the space
C4(r3|TM| ® Hom(S, S)), then

lim Tr}(f* o e~t0%) = Tr!(f* o lim e=tD?),

Proof. The map k; — m.tr* A*((f x 1d)*k: ® v) is the composition of the continu-

ous maps

CY(n3|TM| ® Hom(S,S)) 22 C4,5(m3|T M| ® Hom(S, 5))
Coy(ITM| ® Hom(S, S))
2 CE(ITM))
I o)),

ll>
Te

Note that in these propositions, the limit of the operator e~tP*is being

considered only in the sense that its kernel converges on M x M. In other words,

tD*i5 the topology of the Schwartz kernels theorem,

that is as an operator from C®(M) to C~(M).

the topology of convergence for e~



65

If the time infinity limit does commute, as in the two cases just described,
then the global part of the Lefschetz formula is the v-trace of f* on the image of
P, where P = lim;_. e~tP* . Thus we can state the following Lefschetz formula for

foliated manifolds:

Theorem 5.0.3 If f is a Lefschetz morphism of dimension k of a leafwise Dirac
complez over (M,F) and v 1s an invariant transfized k-density, and if lim;—.co
commutes with Tr)(f*), then
az) o
/Ml o =T o P)
where a(z) is the leafwise indez of f at the fized point x and P = lim,_,, e~tD*.

The right-hand side of the equation is traditionally considered to be a
trace on homology. In the case of compact leaves, discussed below, the time infinity
limit P is projection onto the leafwise harmonic sections of the Dirac complex so
that Trl(f* o P) is the trace of f* on this space. Even in this case, however, we
shall see that the holonomy of the leaves cannot be ignored. The holonomy covers
of leaves must be considered and the value of Tri(f* o P) is a trace of f* on the
covers weighted by factors which take into account the holonomy transport along
the various paths from f(z) to z.

If the holonomy groupoid G is compact, the time infinity limit does com-
mute. We now analyze this situation. First note that compactness of G is equivalent

to several other conditions involving the orbit structure of F.

Proposition 5.0.4 For a foliated manifold (M, F), compactness of G is equivalent

to all leaves L being compact plus any one of the following conditions:

1. there 1s a bound on the volumes of leaves;

2. all leaves have finite holonomy;

3. each leaf has arbitrarily small saturated neighborhoods;
4. the quotient space of leaves of M 13 Hausdorff;

5. if K C M 13 compact, then the saturation of K is also compact.
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Proof. Suppose G is compact. For any leaf L, pick an z € L. The holonomy
cover L is isomorphic to the closed subset r~!(z) C G. Since G is compact, so is L.
This implies that L is compact and has finite holonomy. Given that all leaves are
compact, the eqdivalence of finite holonomy with any of the other four conditions
is proved in Epstein [11].

The converse also follows from Epstein. If all leaves are compact and any
one of the five equivalent conditions is satisfied, then there is a local model for
the foliation in a saturated neighborhood U of any leaf L. This local model is as
follows. There is a finite subgroup K of the orthogonal group O(gq) such that K is
isomorphic to the holonomy covering group of L — L and the foliated neighborhood
U is isomorphic to the foliated neighborhood L I)E D? where D? is the unit disk in
R?. The space L I)i D7 is the quotient of L x D? obtained by identifying (Z, kd) with
(£k,d), and it is foliated by the quotients of the L x d’s. With this local model, the
holonomy groupoid over U x U C M x M is isomorphic to (L x L x D?)/ ~ where
the equivalence relation is given by (Z, 9, kd) ~ (&k, gk, d). With this isomorphism
the source and range maps are given by [(, 7, d)] +> [(Z,d)] and (&, §, d)] = (¥, d)}.
Since L and D are both compact, this space (s x r)~Y(U x U) is compact. Since
M is compact, it can be covered by a finite number of U. But then G is covered by

a finite number of the (s x r)~!(U x U) and hence is compact. |

As explained in Section 4.2, the holonomy groupoid lying over L x L is
isomorphic to (L x L)/G where G = GZ is the holonomy group of L. The symbol
of the kernel k, is equal to the equivariant kernel kZ for e’ on (L x L)/G. Since
L is compact, k{“ — Icfs in the C*topology as t — oo, where P is the L? projection
onto the harmonic sections of S|;. (See, for example, Lemma 8.4 of [20]). Thus the
symbol of k, converges pointwise on G to the kernel for leafwise projection onto the
harmonic sections. Since G is compact and since there is a uniform pointwise bound
on the kernels ktf' for all I and ¢t large (Theorem 4.2.3), the limiting symbol on G
is a bounded Borel function. This limiting symbol ks, on G defined by hy = k,f; on
(L x L)/G is the symbol of the limiting distribution because for ¢; € C*(S) and
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¢y € C*(S*® |TM)),

(620 b1, ko) = Jim (62 ® 61, k)
= Jim [ a2 k(= 2p)er(v)
= [ #:@healzB)1(y)
by the dominated convergence theorem. We have shown:

Proposition 5.0.5 IfG is compact, then the limit of the distributions k, as t — oo
exists and is equal to the generalized section of 73|TM|® Hom(S, S) over M x M
which i3 supported on G with symbol equal to leafwise projection onto harmonic

sections of S.

If we pass down from G to M x M, what does k., look like? First recall
the local description of k; on M from Proposition 3.2.4. Given sections ¢, € C*°(S)
and ¢; € C°(5* ® |TM]),

(28 61k) = [ &) ([, | HEIawldy) ldal.

From Section 4.2, for fixed =

[yelzkt[.'(z:l»y)qh(y)ldy'l =/y S kE(E,79)é:(y)ldy]

€L, geG§
= [ E@pam)la
yELs

so that
($2 @ b1, ki) = /

z€

L@ ([ H@nawld) dal

Analyzing k. is thus equivalent to analyzing the functional

51— Jim [ 6a(e) ([ k@ n)au(w)la) el

This description of k, is valid regardless of any assumptions about compactness of
leaves.

If the leaf L is compact, then

lim [ kE(z,y)e(v)ldyl = lim ePhg(o)ldz| = Pro(a)

o
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where P, is now the projection on the leaf L, rather than on the holonomy cover L.
If all the leaves are compact with bounded volumes, then by the dominated conver-
gence theorem applied to M, the time infinity limit commutes with the integral to
give
(62 ® 1, k) = /M ¢2(z) Pr_d1(z)|dz|.

This is just a different description of the distribution described in the proposition
above. Note that if all leaves are compact, but their volumes are not bounded
[23,10], then this description of ko is still valid, provided only that there is a bound
on [ kLl(z,y)$1(y)|dy| that is independent of z. For if there is, the dominated
convergence theorem can be applied.

What is lim;— Tr)(f* o e"‘Dz)? Expressed as an integral over G/,

oo o [ tR((f(2) D a))
T(foe ) = [ ld — (s o f).]

|dz|v

where k;|dz| is the symbol of e~*P* on G.

Proposition 5.0.6 If G is compact, then

. s/ pn ~tD2\ __ tr’kt([f(x)l’x])
lim Try(f"oe D)—/g; |IdP—(h.,0f)-|

where P i3 the operator of leafwise projection onto harmonic forms on the holonomy

|dz|v = Tr,(f* o P)

covers of the leaves. Thus the Lefschetz theorem for compact leaves can be written
B (=)
a(z
=y = Tr(f* o P).
fo g7 =TS o P)
Proof. From the assumption that G is compact, it follows that G/ is also, since
G/ is a pull-back of G to the compact space M. Then the dominated convergence
theorem together with the pointwise bounds on the k; kernels implies that the time
infinity limit commutes with the integral. For any [v] in G/, lim,_.o, k.([f(z) A z)) =
kL([f(z) 2 x]). This gives the first equality. The second equality is just the defini-

tion of Tr). |
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Note that the operator P in this proposition is the same as the operator
in Proposition 5.0.5.

To understand this integral over G/, we first analyze G/. The following
analysis is valid for any foliation, not just for those with compact leaves. Over a fixed
leaf L, G/ may have several components. (See the discussion after Definition 2.2.7).
To describe G/|;, pick an £ € L. The points of G/ over z are the elements of
GI®) = {[4] € G | s(v) = f(z), r(y) = z}. For each v € G{#), flowing out from ~
defines a map C, from s~!(z) to G/|;. In other words, for any path « starting at

z, C,(a) = f(a)™" * v x a. This gives a map of covers over L:
I s (2)Snim(e,) C ¢/)1.

Note that im(C,) = { elements of G/|; obtained by flowing out from v } . If v
and 7, are two elements of G{(*) that can be obtained from one another by flowing
out, then im(C,,,) = im(C,,); otherwise im(C.,, ) and im(C.,,,) are disjoint. Since any
element of G/|; can be obtained by flowing out from some element of G{©), G/|,
is partitioned by the im(C,)’s. Since im(C,,) = im(C,,) if and only if v, and 7,
are in t};e same orbit of the ﬂowing out action of GZ on GZ(®), we have shown the

following proposition:

Proposition 5.0.7 Over L, G/ is a disjoint union of covers of L, one for each
orbit of Gi(‘”) under the action of GZ. The cover corresponding to v € GL(*) is a
quotient of L by the isotropy group of 7, that is by {a € G | fla)y T *y*xa =~}

On each component of G/|1, the factor |Id — (h, 0 f).| is constant, but these may
vary from component to component.
Now return to the case of compact leaves with finite holonomy. Over a

particular point z in a fixed leaf L, the integrand in the proposition is

tr kB ([7])
L (o

1€GL
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If all the denominator factors were equal to a constant A, this would equal
tr*kB(f(x),z)/A because Loea: kE([y]) = k%(z,y) (Section 4.2). If they are not
all equal, then this is a weighted sum, the weights taking into account the trans-
verse behavior of f near ~.

Consider the contribution of a single fixed leaf L to this integral. The
previous proposition says that over L, G/ consists of a disjoint union of covers
intermediate between L and L. With the finite holonomy assumption, there are
only finitely many of these. Pick represénta.tives Ys---y¥m in GI®) representing
the orbits of the GZ action. Let G; be the isotropy group of 4; and let n; be the
cardinality of the ith orbit. Let L; = im(C.,) C ¢|x.

Proposition 5.0.8 With the above assumptions:

trk5([f(z) > z]) ~ 1 o )
fn TG = L f)I'trG-'(f 0 Py on L)

1
H'(L))Z |Gr| Id — (hy; 0 f).]

= W

where trg, 1s the supertrace analogue of the I'-trace defined by Atiyah [1] for the

covering L — L;.

Proof. Using the decomposition from the previous proposition, it is clear that the

first integral is equal to

Z|Id—(h T /tr’k ([f(z) 2 <])|da].

The integral over L; resembles the integrals used for the I'-trace in Atiyah’s index

theory for coverings [1]. To prove the first equality, we apply that theory to the
covering I:J—c:’i»L; and the operator f*oP; on L. To do this, we need to show that the
kernel k for this operator is invariant by G; and that for any [f(y) LA y] in L; and
any a in C31(B), k(a,a) = kL ([f(y) — y]). Throughout this discussion, z is fixed
and L is identified with s~!(z). Note that with this identification, an extension of

f:L > Lto f:L — L can be written as

flz S o)) = 47t f(a) = [ F(2)S ().
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The kernel for P; on L x L 2 s7}(z) x s7}(z) is given by (a,8) — kh(a™!  §).

Thus the kernel for f* o Pj is

k(a, B) = kB(F(a)™" * B) = kB(f(a)™ * 7 * §).

The covering group G; acts on L by v(a) = v * a so that

k(va,v8) = kB(f(a)™ % f(7)™ % 3% v + ).

But since v is in G, f(7)~! *4; ¥y = 4; which shows that k is G; invariant. Also, if
C,(a) = B, then f(a)™ xv;*a = § so that k(a,a) = EE(fla) ™t *yix a) = kL(8).
For the second equality, simply note that since L — L, is a finite covering,

1 . _
tre,(f*o Pp) = 1GAl -tr*(f" o P; on L).

But 1/|G;} = n;/|GZ%| and P; is projection onto the finite dimensional homology of
L. u

The formula in the proposition for the integral over L can be viewed as a
version of the Selberg trace formula applied to the covering G/ — L as discussed
by McKean in [18, Section 3]. In McKean’s treatment, the trace of a kernel on the
base space of a covering is decomposed as a sum of traces on various coverings, the
coverings being determined by the conjugacy classes of the covering group. We have

the same situation here with, in addition, a transverse weighting factor.



CHAPTER 6
EXAMPLES

6.1. Fibrations

The first example we consider is a fibration M— B where M is foliated
by the fibers F' & n~1(b). In contrast to a general foliation, the quotient space of
leaves in this case is a manifold, namely B. At any point z in M, the projection
m identifies a transversal ¥ through z with a subspace of B through n(z), and the
tangent map 7. identifies the normal space NF, with the tangent space TBy(y). If
r and y are in the same fiber so that m(z) = m(y) = b, then the holonomy from z
to y is simply the identification NF, & TB, =N Fy. Thus a transverse form or
density on M that is holonomy invariant is always the pull-back of a unique form
or density on B.

If f: M — M is a Lefschetz morphism, the requirement that it take
leaves to leaves means that f induces a map f on the base space B. The condition
that f has dimension k transverse fixed set means that f fixes a k-dimensional
submanifold Bf of B. The morphism f is transfixed of dimension k if, in addition
to this, for every b € BY, Id — f. is invertible on TB/TB’. Finally, the definition
of a Lefschetz morphism includes the condition that f restricted to a fiber over Bf
has only simple fixed points. Note that Proposition 2.2.10 implies that the fixed set
M/ is a k-dimensional submanifold transverse to the fibers.

An invariant transfixed k-density v on M descends to a density on BY.
This section of |[TB/| will also be denoted by v. For any  in M/, let a(z) be the
Atiyah-Bott index at = for f restricted to the fiber through z. Then the local part
of the Lefschetz theorem for a fibration is

a(z) v(b)
/Ml = A=) /Bf (IEW_%OM, “(x)) Id— £.1(6)°

In other words, the time zero index is the local index for f on each fiber integrated
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over the space of fixed fibers with respect to the measure v/|Id — f.].

For the global part, note that since M is assumed to be compact, the
fiber F' must be compact. Since all leaves are compact and the holonomy is trivial,
the groupoid G is compact and the analysis of Chapter 5 applies. From Proposi-
tion 5.0.7, the global part of the Lefschetz theorem is

terk([f () = a)) _ s e
/gl i |dz|v = Try(f* o P).

|1d — (hy 0 f).|

Since the holonomy is trivial, I = L = n~(b), ¢/ = x~1(BY), and the denominator

factor is a function of b alone. Thus the integral over G/ decomposes to become

feas (/m-xm Y (x)’””)'d””') fre yor

The integral over the compact fiber 77!(b) is equal to the Lefschetz number for f

restricted to that fiber:

/T.ew-x(b) kp O(f(2), 2)lde| = Lef (f*]e1(s)-

Thus the Lefschetz theorem

a(@®) i
Jo =Ty = U P)

reduces for a fibration to
v(b) . v(b)
L (EEW_%OM, “(x)) = £.16) Joy (Lt (£ L) Il — £.1(5)

This is just an integrated version of the Lefschetz formula for the fibers that are
fixed.

6.2. Irrational Flow on the Torus

The next example we consider is the torus foliated by lines with irrational
slope. Here M = T? = R?/Z%. Coordinates (z,y) on T? shall mean the equivalence

class {(z + m,y +n) | (m,n) € Z?} of coordinates on R?. The foliation is generated
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by the unit vector field X = cos(8)0/0z + sin(0)0/0y where A = tan(f) is irra-
tional. Each leaf is a line y = Az + C in R? projected to T2, so that the leaves are
parametrized by C € R'/Z? where the action of (a,b) € Z2 on C € R! is given by
(a,b)C = C — Aa + b. Every leaf is dense and since all leaves are simply connected,
the holonomy is trivial.

Linear morphisms (z,y) — (mz,ny) that preserve the foliation must have

m = n. Consider any such morphism f(z,y) = (nz,ny) where n # 1.

Proposition 6.2.1 The morphism f is transfized of dimension 0 with (n — 1)?
fized leaves. Each fized leaf has a single non-degenerate fized point so that f is a

Lefschetz morphism.

Proof. The morphism f takes the leaf y = Az + C to y = Az + nC . Thus the
leaf corresponding to C' is mapped to itself if and only if there is (a,b) € 2% such
that (n —1)C = —Aa + b. Any such C is equivalent to one of the (n — 1)? values
Ck,1 = (—Ak+1)/|n—1| where k and ! run from 0 to [n—1|—1. Furthermore, these Cy;
are all inequivalent under the Z? action. For if Cy; ~ Cyp, then there is (a,b) € Z2
with (=Ak+1)/|n—1| = —Aa+b which implies that A(a—k/|n—1]) = (b—1/|n—-1]).
Irrationality of A then implies that a — k/|n — 1| and b —!/{n — 1| are both 0. Since
k and ! are in {0,...,|n—1| =1}, k = = 0. This shows that f fixes (n—1)? leaves.

It is easy to check that f has (n — 1)? fixed points, namely the points
(k,1)/|n — 1| where k and [ are as before, and that these correspond to the (n —1)?
fixed leaves. At a fixed point (z,y), the tangent map dilates the tangent space
T(zy)M by n. Since n # 1, the dilation in the transverse direction shows that f is
transfixed of dimension 0 at (z,y), and since the holonomy is trivial, this is true on
the entire leaf through (z,y). The dilation in the leafwise direction shows that f is

also a Lefschetz morphism. |

Note that in this example, the space G/ is just (n — 1)? copies of the real
line, each immersing as a dense leaf in 7. Since k = 0, the transfixed density v is
just a holonomy invariant function on the (n —1)? fixed leaves. If v is defined on M

and not just on G/, the only possibility is that v is constant. We shall take v = 1.
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Since M/ is a discrete set of (n—1)? points and since | det(Id—£,)| = [1—n],
the local part of the Lefschetz formula is

- Y az,y)

11 =7l ez

where a(z,y) is the leafwise local index at (z,y). For example, if the complex is
the leafwise deRham complex, then the local index is sign (det(Id — T,(f|.))) =

sign(l — n) at each fixed point. In this case, then, the local index is
(n —1)%sign(l —n)/|1 —n|=1—n.

For the global part, since v is trivial, we can use Proposition 5.0.1. To ap-
ply this proposition, we analyze the limiting heat kernel on 7% x T?2. First introduce
some notation. For the leafwise deRham complex, let s; be the constant function 1
and s, be the constant leafwise 1-form of unit length. Thus s, = cos(8)dz +sin(8)dy
is the 1-form dual to the vector field X that generates the foliation. Using the basis

[s1 s2], the Dirac operator

so that

-tD? _

and e ¢'X?.1d. Each leaf L is a line; on this line the operator X2 corresponds

to d?/dz®. The kernel for the operator e'?*/42* on the line is

1 P
e” % |dy|.

k =
i(z,y) \/4—”?
This shows that the symbol of k, on L x L is 1/v/4nt - e=l*=¥*/4|dy| . Id.

For the irrational foliation on the torus, the holonomy groupoid G is

isomorphic to the space T? x R' with T? x R'Z5T? x T? given by (z,y,r)
(z,y,2 +rcosb,y+ rsinf). The preceding discussion shows that the symbol of k,
on T? x R! is 1/v/4xt - e~ /4|dr| - Id. As an operator on C®(S), then, e=*?” is

(e—¢D2 ¢) (z,y) = /; 4L_7rte"2/4t¢(x +rcosf,y + rsinf)dr
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and its distributional kernel k, is characterized by

(61 @ ¢, k) = /T2 ¢1(z,y) (/T

where ¢, € C*®(S) and ¢,dzdy € C°(S* @ |[TM]|). (We shall henceforth ignore
the |TM| factor.) Let P be the operator of projection onto constants so that
P¢ is the constant section of S with value [, ¢(z,y)dz dy. The kernel of P is

1 2
\/21_7r_te_r /4, (x +rcos b,y +rsin O)dr) dz dy

kp(z1,y1, 2, y2) = 1 dz2 dy,.

Proposition 6.2.2 As a distribution on T? x T?, k, — kp as t — oo.

Proof. The bundles S and S* shall be dropped for notational clarity. The topol-
ogy on the space C~°(M x M) of distributions is that of uniform convergence on

bounded sets. Thus we must show that

(¢1 ® ¢, kt) - /p /p ¢1(a:1,y1)¢2(x2,y2) dzy dy, dzy dy,

uniformly for ¢, and ¢, lying in a bounded set of C*. A bounded set B in C* is
characterized by bounds on supyep sup ez |D*¢(z)| for each multi-index a.

To prove the convergence, work on the Fourier transform side. Any ¢ €
C*(T?) can be expressed as ¢ = ¥z @p ¥+ with the coefficients a,,,
rapidly decreasing. The uniform bounds on the sup norms for ¢ in a bounded set
become uniform bounds on the decay constants of the a,, ,’s. On the transform side,
the operator e~*P* becomes a multiplication operator. That is, if ¢, = 27 (me+7m9),

then

e—tD2 ¢m,n(x, y) — / 1 e—r2/4te21rz(m1:+mr c089+ny+nrs'm€)dr
Rl \/47l
_ e21n(m:1:+ny) 1 e—rz/‘lte2m(m cos §+nsin 9)rdr

R \/4mt
621n(m:1:+'ny)e—41r2t(m cos 4+nsin §)2

- e—Ct(m+ﬂ.,\)2 ¢m,n(x’ y)

where C is the constant 472/ cos 8. Thus

2 _ 2
e—tD? . Zam,n¢m,n — Zam,ne Ct(m+n)) B
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Since A is irrational, m + nA is zero only if (m,n) = (0,0). Hence each Fourier

coefficient except for agp converges to zero as t — oo.
If $1 = ¥ @mn®mn and @2 = ¥ by b n, then
<¢1 ® ¢2, kt) = <¢17 e_tD2¢2> - Zam,nb—m.—ne—c‘t(m—‘-m\)z-
Z2
The uniform bounds on the decay of an, and b, , for ¢; and ¢, in a bounded
subset together with the fact that each factor e=C#m+™\)* with (m,n) # (0,0) is

individually converging to zero, then implies that

(61 ® b2, k) — agpboo

uniformly on the bounded set. But agpboo = [ ¢1(x1,y1) dz1 dy1- [ d2(z2,v2) dzo dys.
|

Although the pointwise limit of the symbol of %, is zero on the groupoid
G, the limiting distribution on M x M is not zero. The distribution ks is not a
§-section supported on G, but is rather a smooth section on the closure of G in
M x M, namely the entire space.

To apply Proposition 5.0.1, we need to know that k¥, — kp in Cg* where T’
is a closed cone containing N*G and disjoint from N*(f x id). The proof of this fact
shall be omitted. The image of P is the two-dimensional space of constant sections
a181 + az83. Proposition 5.0.1 then implies that the global part of the Lefschetz
formula is the supertrace of f* on this space. With f as before, f* maps s; to itself
and s, to ns; so that the global index is 1 — n in agreement with our calculation of

the local index.

6.3. Reeb Foliation of the Torus

This example concerns the suspension of a diffeomorphism of S! with fixed
points. Let g : S — S! be a diffeomorphism and let M = (S! x R')/Z" where the
action of n is given by (6,7r) — (¢"(8),r — n) so that (¢*(8),7) ~ (6,7 + n). Note
that M 2 T2, Foliate S! x R! by the R! factors. Since the Z action takes leaves
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to leaves, this foliation descends to the quotient. Parametrize S* by s € [0, 1] with

s — e2™* We shall assume that

1. ¢ : S' — 5! has a finite number of fixed points 0 < a; < a; < ... < a, < 1,

and

2. at each fixed point ¢'(a;) # 1.

This then implies that n is even and that on alternate intervals (a;, a;+1) (@41, aiy2)
g is increasing and decreasing. With no loss of generality we may take a¢; = 0 and
g decreasing on the interval (0, ;). For each fixed point a;, the leaf through (a;, 0)
is a circle, but for any other 8, the leaf through (4,0) is a line. The compact leaves
have holonomy with the holonomy once around the circle ¢t — (q;,1), 0 <t <1
given by the diffeomorphism ¢ near a; and the linear holonomy by ¢'(a;). If 8 is in
an interval (agg, k1) of increase of g, then the leaf (6, r) through (8,0) approaches
the leaf through agcy1 as r — oo. This follows from (8,n) = (9*(8),0) — (azk41,0)
as n — oo. It approaches the leaf through as; as r - —oo, and a similar result
holds for the intervals of decrease of g¢.

Give M a metric so that the induced metrics on the leaves are dr? and
consider the leafwise deRham complex over M. Just as in the example of irrational
flow on the torus (which is the suspension of the diffeomorphism ¢(8) = 6 + X), the
symbol of k; on the groupoid G is:

ki(6,y,r) = —\/i—_ﬂ—?e—”/‘" -Iddr.

As an operator on C®(S),

(P 8)0) = [ e T80y + ) .

Despite the similarity with the irrational flow example, the time infinity limit in this

. g . D2 - . .
case is different. In fact lim,_,, e7*P" ¢ is not, in general, smooth or even continuous.

Proposition 6.3.1 As an operator from C®(S) to C~=(S), e=D? converges to the

operator
1 & 1
PQS(G, y) = § ,'§=1: X[a;_l,a;+1](0)A ¢(aia 7') dr

where X(q ) 18 the characteristic function of the interval [a, b].
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Proof. We first show that, in agreement with the above formula, for fixed 7 and

§, e=P*$(8,y) converges uniformly to the constant value

';' </01 #(a;,r)dr + /01 ¢(a;+1,r)d7-)

for (6, y) in the subset (a; +8,a;41 — §) x [0,1] of M x M. Without loss of generality,

we shall assume : is even so that g is increasing on the given interval. First write

(P80 = [ e o0y +r)dr

11 2
— —(r+k)“ /4t k 0 dr.
> | T 6(g"(8),y +r)dr

keZ

The idea is that for large , the terms coming from k near zero can be neglected
while those from large positive k give the 1/2 f ¢(a;41,7)dr term and those from
large negative k give the 1/2 f ¢(a;,r)dr term. Given an e, there is a §' depending
only on sup |04/88)|, such that if @ — a;] < § and |8 — a;4,| < &, then

'/01 #(a,y + r)dr — /01 é(a;,y + r)dr

<€

and

< €.

1 1
[ By +ryr = [ dlaies,y+ryar
Then there is an N, depending only on § and §’, such that for all 8 in the interval
(a; 4 6,ai41 —6), [g5(0) —a;| < & if k < —N and [¢*(6) — ai1| < § if & > N. There
is a T, depending only on N and sup|d|, such that for ¢t > T,

N 1 —r2/4t
/ —¢ #(0,y+r)dr| < e€and

-N /4mt

o 1 2 1
-7 /4td _ -
e r < €/su
/N Vant 2| / Pkﬁ[

Combining these estimates gives

1 1
e'tD2¢(9,y)—%(/0 Haiy +r)dr+ [ bainn,y +r)dr)| < 5e

for all t > T. Since fy ¢(ai,y +7r)dr = [} ¢(a;,r)dr, we get the desired result. The
size of T depends only on ¢, §, sup |¢|, and sup |9¢/56.
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Since we can do this for each i, we get uniform convergence of e=tP%4
to P¢ for (6,y) € Ui(a; + 6,aiy1 — ) x [0,1] and ¢ in a bounded set of C=(9).
Furthermore, since on the deleted intervals [a; — 6,a; + 8] x [0, 1], |e~*P*$(8,v)] is
clearly bounded by sup [¢]| for all ¢, and since these deleted sets have arbitrarily
small measure, e~*P*$ converges in L' to P¢ uniformly on bounded sets of C=(S).

Since L!'(T?) includes continuously in C~*°(T?), we are done. ]

The image section P¢ is constant on the regions a; < 6 < @;4; but has

tD

jump discontinuities at the boundaries. The kernel for lim;_, ., e~ ? in this case can

be written as:
1
kP(oh 1,02, 7'2) = '2‘ Z X[a;_;,ai+1](91)5(9‘2 - ai) df; dr,.

We now consider morphisms of the Reeb torus that are transfixed of di-
mension 0. If f is a smooth map on S! with the property that fog = ¢%o0 f,
then we define a map on S! x R! by (6,r) — (f(8),2r). This map descends to an

endomorphism of the foliated torus because

(¢"(8),r — n) = (fg"(6),2r — 2n) ~ (97" fg"(8),2r) = (f(6),2r).

The induced map on T? will also be denoted by f.

From the property fog =g?o f, it is clear that f(a;) = a; for each fixed
point a; of g. One can actually show that each interval [a;, a;41] is either mapped
to a point by f or is mapped onto another interval [a;, a;4;]; however we omit the
proof. In order to get a nonzero Lefschetz index, we shall assume that f(a;) = a;

and each interval is mapped to itself.

Lemma 6.3.2 If g is a diffeomorphism as before and f : S! — S! is a smooth map
such that f og = g*o f and f(a:) = ai, then f'(a;) = 0 for every i and f has at

least one fized point on every open interval (a;,aiyy).
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Proof. Differentiating fo g = g% o f at a; gives f'(a;)¢'(a;) = ¢'(a;)2f'(a;). But
g'(a;) # 0 because g is a diffeomorphism and ¢'(a;) # 1 by assumption. The only
remaining possibility is f’(a;) = 0. This shows that f(z)—z is negative for z slightly
larger than a;. The fact that f'(aiy1) = 0 implies that it is positive for z slightly

smaller than a;;;. Hence it has a root in the open interval as claimed. |

For simplicity we shall assume that in each interval (a;, ai+1), f has exactly

one fixed point b;.

Proposition 6.3.3 The morphism f of M has 2n fized leaves, n compact ones
through the fized points (a;, 0) and n noncompact ones through the fixed points (b;,0).
These are the only fized points. If f'(b;) # 1 for any i, then f is a Lefschetz
morphism of dimension 0. Ifv =1, then the local indez 13 3 ;(—1+—1/|1 — f'(&:)]).

Proof. Any point in M can be represented uniquely as (6,r) with § € S! and
0<r<1. If(0,r)is fixed by f, then (8,r) ~ f(8,r) = (f(8),2r). Butif 0 <r <1,
this implies that r = 0 and hence that f(6) = 6. But by our assumptions, the only
fixed points of f on S! are the a; and b;. Hence M/ = {(a;,0), (b;,0)} as claimed.

Note that these 2n points are all on distinct leaves. Are there any other
fixed leaves? If f(68,7) is on the same leaf as (8, r), then ¢" f(6) = 6 for some n. Let
a = g*(8). Then f(a) = fg™(8) = ¢** f(6) = ¢g™(0) = a so that « is one of the a; or
b;. Hence (6,r) is on one of the leaves through the fixed points.

Since the set of fixed leaves is discrete, f has dimension 0 transverse fixed
set. The transfixed condition at the point (b;,0) is that the transverse derivative
should not be 1. But this is precisely the condition that f'(b;) # 1. Since the
leaf through (b;,0) has trivial holonomy, the condition is satisfied everywhere on
the leaf. For the fixed points (a;,0), we need to consider not only f, but also the
composition of f with the holonomy maps ¢g". But since f'(a;) = 0, we also have
(9" o f)(ai) = 0 for any n and the transfixed condition is satisfied.

Along any of the fixed leaves, f is a dilation by a factor of 2 so that f is
a Lefschetz morphism. This also shows that the leafwise local index of f on the

deRham complex at any of the fixed pointsis 1 — 2 = —1. With v = 1, then, the
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foliation local index is the sum of the leafwise local indices divided by the factors

|1 — f'| at the 2n fixed points. u

We now study the time infinity limit. Despite the fact that ¥ = 0 and v is
trivial, the time infinity limit does not commute with Tr® in this case. One can see

this directly by computing m,tr*( f X id)*kp where kp is the kernel computed earlier.

10

1 |
(f xid)"kp = 52‘; X[oi-1,2i01](f(62))6(62 — a;) [ 0 2 } dfs dr,

Taking the fiberwise supertrace replaces the matrix with a factor of —1 and inte-

grating over M then gives:
1 n
5 Z(_l)X[a.'_l,a.'H](f(ai)) = "5

which does not agree with the local trace.

The reason that Proposition 5.0.1 does not apply to this example is that
N*(f x id) is not disjoint from the closure of N*G. Being transfixed of dimension
zero guarantees that N*(f x id) and N*G are disjoint, but N*G is not necessarily
closed. In this example, N*G includes the cotangent vectors (£,0,—(¢")*¢,0) in
T 00 (ai0) (M x M). As n — oo, (9™)*(€) — 0 since ¢'(a;) < 1 and thus (£,0,0,0) is
in N*G. But since f'(a;) =0, (£,0,0,0) is also in N*(f x id).

To understand the time infinity limit in this case, then, we must study
limy_,oo(f X id)*k, directly. The distribution (f x id)*k; is a é-section supported
on Gf. In this example, G/ is a disjoint union of 2n lines immersing in M. If
L is one of the non-compact leaves, the fact that Gf|; = L follows immediately
from the fact that L has no holonomy. For the circle leaves through the (a;,0), use
Proposition 5.0.7. Since f wraps the circle t — (a;,t), 0 < t <1 around itself twice,
the flowing out action of ¢ € GZ takes a v € GI(*) to g2 # y x g = ¢g~! * 4. Since
this action is transitive on G£(¥), G/|,, is isomorphic to the holonomy cover L which
is a line.

Parametrizing G/ over L by (a;,r), we find that the symbol of the pulled
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back distribution (f x id)*k; is:

1
1-0|

dr.

1 2 1 0
x id)*k i — ~(2r—-7)% /4t
(f xid)*ky(a;, 1) ——\/me 0 2

Since the transverse factor 1/|1 — 0| is the same for every point in G/ lying over a
point & in L, this distribution is the same as the é-section supported on the compact
submanifold L — M with symbol k/(f(z),z). Thus:

tlirglo mtr'(f xid) k|, = ,li.rg/;,trsktl'(f(x),x) = tr’(f* (1))

which in this example is —1.
For the non-compact leaves through (¥;,0), f maps (4;,7) to (b;,2r). The
symbol of the pulled back distribution (f x id)* at (b;,7) is then:

1 1 0 1
e—(2r—r)2/4t [ ]

—dr.
Vart 0 2 |11 f(b)

As above, this is the same as the é-section supported on the (immersed) submanifold
L — M with symbol kL(f(z),z)-1/|]1— f'(b;)]. But since L is now the line instead of
the circle, the time infinity limit of this cannot be considered as the trace of f* on the
L?-harmonic sections over L. As a distribution on M, the total mass —1/|1 — f'(b;)]
of tr*(f x id)*k; concentrates half on the limiting circle through (a;,0) and half
on the limiting circle through (ai41,0) as t — co. Thus lim¢_ tr®(f x id)* is the

distribution:

1 -1 1 -1
286 -a) (‘1 T w2l —f(bf_l)r) 46 dr.

In agreement with the irrational flow examples, then, the time infinity

limit of Tr, for the noncompact fixed leaves is related to the behavior of the ends of
the leaf. In the irrational flow case, an end of one of the lines “spreads out equally”
over the torus in the sense that the percentage of time it is in a given neighborhood
is proportional to the measure of that neighborhood. In the Reeb case, an end

approaches one or the other of the bounding compact leaves.
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