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Abstract. We develop a version of Herbrand’s theorem for continuous
logic and use it to prove that definable functions in infinite-dimensional
Hilbert spaces are piecewise approximable by affine functions. We obtain
similar results for definable functions in Hilbert spaces expanded by a
group of generic unitary operators and Hilbert spaces expanded by a
generic subspace. We also show how Herbrand’s theorem can be used
to characterize definable functions in absolutely ubiquitous structures
from classical logic.

1. Introduction

The main motivation for this paper comes from the study of definable
functions in metric structures; this study was initiated by the author in
[11], where a study of the definable functions in Urysohn’s metric space
was undertaken, and continued in [10], where the definable linear operators
in (infinite-dimensional) Hilbert spaces were characterized. However, lacking
any understanding of arbitrary definable functions in Hilbert spaces, we con-
jectured that they were, in some sense, “piecewise affine” in analogy with the
classical case of an infinite vector space over a division ring. In unpublished
lecture notes by van den Dries on motivic integration [9], we came upon a
proof of the piecewise affineness of definable functions in such vector spaces
using the following classical theorem of Herbrand:

Theorem 1.1 (Herbrand [12]). Suppose that L is a first-order signature
and T is a universal L-theory with quantifier elimination. Let ϕ(~x, ~y) be a
formula, where ~x = (x1, . . . , xm), y = (y1, . . . , yn), m ≥ 1. Then there are
L-terms

t11(~x), . . . , t1n(~x), . . . , tk1(~x), . . . , tkn(~x), (k ∈ N>0)

such that

T |= ∀~x∀~y

(
ϕ(~x, ~y)→

k∨
i=1

ϕ(~x, ti1(~x), . . . , tin(~x)

)
.

Although this theorem is not immediately applicable to the case of an
infinite vector space V over a division ring (for the axioms expressing that
V is infinite are existential), Herbrand’s theorem does apply to the theory
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of V with constants added for names of elements of V . Since terms in
this extended language name affine functions, we get the aforementioned
characterization of definable functions in V . (According to van den Dries,
this use of Herbrand’s theorem is well-known and often used.) Although
Theorem 1.1 has an easy model-theoretic proof using compactness, we should
remark that the result was first established using proof-theoretic techniques;
see [6] and [7] for more on the history of Herbrand’s result.

In this paper, we prove a version of Herbrand’s theorem for continuous
logic (Theorem 2.7 and Corollary 2.8 below) and use it to characterize defin-
able functions in Hilbert spaces and some of their generic expansions, prov-
ing, in the case of pure Hilbert spaces, that definable functions are “piecewise
approximable by affine functions.” Along the way, we note that this method
actually works whenever T is a model-complete ∃∀-axiomatizable theory.
In particular, we show that one can use Herbrand’s theorem to understand
definable functions in absolutely ubiquitous structures from classical logic.

Ulrich Kohlenbach pointed out to me that there is a proof-theoretic ap-
proach to metric structures (including Hilbert spaces) which deals with issues
(e.g. Gödel’s functional interpretation) which can be viewed as far reach-
ing generalizations of Herbrand’s theorem; see [13] and [14]. It would be
interesting to understand the connection between these approaches.

We assume that the reader is familiar with the basic definitions of contin-
uous logic as presented in the survey article [2]. In particular, each predicate
take values in a closed, bounded interval in R.

The author would like to thank Vinicius C.L., Aleksander Ivanov, and
Dugald Macpherson for helpful discussions concerning this work and Matthias
Aschenbrenner for pointing out the paper [15] on absolutely ubiquitous struc-
tures. The author is also indebted to the anonymous referee for many valu-
able comments and suggestions.

2. Herbrand’s Theorem in Continuous Logic

In this section, we let L denote an arbitrary continuous signature. Recall
that an L-theory is a set of closed L-conditions. Given an L-theory T and an
L-structureM, we writeM |= T to mean σM = 0 whenever the condition
“σ = 0” is in T . We extend this notation to sets of sentences in the obvious
way: given a set of L-sentences Γ and an L-structureM, we writeM |= Γ
to mean σM = 0 for all σ ∈ Γ. It then makes sense to say that the collection
of sentences Γ axiomatizes the theory T : for all L-structuresM,M |= Γ if
and only ifM |= T .

Definition 2.1. Suppose that ∆ is a set of L-sentences.
(1) We say that ∆ is closed under min if whenever σ1, . . . , σn are sen-

tences from ∆, we have min1≤i≤n σi ∈ ∆.
(2) We say that ∆ is closed under weakening if whenever σ ∈ ∆, then

σ −. r ∈ ∆ for every r ∈ [0, 1].
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The following lemma is in a similar spirit to Lemma 3.4 of [18]; the classical
version, whose proof we mimic, can be found in [8].

Lemma 2.2. Suppose that T is a satisfiable L-theory and ∆ is a set of L-
sentences that is closed under min and weakening. Then the following are
equivalent:

(1) T is axiomatizable by a collection of sentences Γ ⊆ ∆;
(2) For all L-structures M and N satisfying M |= T and σN = 0 for

all σ ∈ ∆ with σM = 0, we have N |= T .

Proof. Clearly (1) ⇒ (2), so we need to prove (2) ⇒ (1). Consider the set
Γ = {σ : σ ∈ ∆ and T |= σ}. We claim that Γ axiomatizes T . Suppose
N |= Γ. Let

Σ = {r
2
−. δ : δN = r, r > 0, δ ∈ ∆}.

We claim that T ∪ Σ is consistent. Suppose otherwise. Then there are
δ1, . . . , δk, r1, . . . , rk such that T |= min1≤i≤k(δi −. ri

2 ) = 0. Since ∆ is
closed under min and weakening, we have that min1≤i≤k(δi −. ri

2 ) ∈ Γ, so
N |= min1≤i≤k(δi−. ri2 ) = 0, which is a contradiction to the fact that δNi = ri
for each i. Let M |= T ∪ Σ. Now suppose that σ ∈ ∆ and σM = 0. Then
σN = 0, else r

2 −
. σ ∈ Σ for some r > 0, contradicting σM = 0. By (2), we

have N |= T . �

Given an L-structureM, let D(M) be the set of closed L(M)-conditions
of the form σ = 0, where σ is a quantifer-free L(M) sentence and σM = 0;
this is just the quantifier-free diagram ofM. The following lemma is proved
just as in classical logic.

Lemma 2.3. If N |= D(M), then the L-reduct of N contains a substructure
isomorphic toM.

Let us call a sentence σ universal if it is formally universal, that is, of the
form sup~x ϕ(~x), where ϕ is quantifier-free, or else logically equivalent to a
formally universal sentence.

Lemma 2.4. The set of universal sentences is closed under min and weak-
ening.

Proof. It is readily checked that min(sup~x ϕ(~x), sup~y ψ(~y)) is logically equiv-
alent to sup~x,~y min(ϕ(~x), ψ(~y)) and (sup~x ϕ(~x))−. r is logically equivalent to
sup~x(ϕ(~x)−. r). �

If Γ is a set of closed L-conditions, we set

Γ+ := {“σ ≤ 1
n
” : σ ∈ Γ, n ≥ 1}.

Corollary 2.5. Given an L-theory T , the following are equivalent:
(1) T has a universal axiomatization;
(2) For anyM |= T and substructure N ofM, we have N |= T .
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Proof. Clearly (1) implies (2), so we prove that (2) implies (1). We use the
criterion developed in Lemma 2.2 applied to the set of universal sentences.
Suppose that M |= T and for all universal sentences σ, we have σM = 0
implies σN = 0. We want N |= T . Let T ′ = T ∪D(N )+. We claim that T ′ is
satisfiable. Fix atomic L(N )-sentences σ1(~b), . . . , σn(~b) such that σNi (~b) = 0.
Then N |= inf~x max(σi(~x)) = 0. Suppose, towards a contradiction, that
M 6|= inf~x max(σi(~x)) = 0. Then there is r ∈ (0, 1] such thatM |= sup~x(r−.
max(σi(~x))) = 0. By assumption, we have N |= sup~x(r −. max(σi(~x))) = 0,
which is a contradiction. Consequently, for any k ≥ 1, there is ~a ∈ M such
thatM |= max(σi(~a)) ≤ 1

k . It follows by compactness that T ′ is satisfiable.
Let A′ |= T ′ and let A be the L-reduct of A′. Then A |= T and N is
(isomorphic to) a substructure of A, whence N |= T . �

Definition 2.6. Suppose that M is an L-structure and A ⊆ M . Let 〈A〉0
be the L-prestructure generated by A. Then the closure of 〈A〉0 in M is the
completion of 〈A〉0, whence a substructure ofM, called the substructure of
M generated by A.

By Theorem 3.5 of [2], any L-formula ϕ(~x) has a modulus of uniform con-
tinuity ∆ϕ : (0, 1] → (0, 1], that is, for any L-structure M, any ε > 0, and
any tuples ~a,~b from M , if d(~a,~b) < ∆ϕ(ε), then |ϕM(~a)− ϕM(~b)| ≤ ε.

Theorem 2.7 (Continuous Herbrand Theorem). Suppose that T is a uni-
versal L-theory that admits quantifier-elimination. Let ~x = (x1, . . . , xm) and
~y = (y1, . . . , yn). Then for any formula ϕ(~x, ~y) and any ε > 0, there are
L-terms

t11(~x), . . . , t1n(~x), . . . , tk1(~x), . . . , tkn(~x) (k ∈ N>0)

such that, for anyM |= T and any ~a ∈Mm, ifM |= inf~y ϕ(~a, ~y) = 0, then

M |= min
1≤i≤k

ϕ(~a, ti1(~a), . . . , tin(~a)) ≤ ε.

Proof. Consider the set of closed L-conditions Γ(~x) given by

T∪{inf
~y
ϕ(~x, ~y) = 0}∪{ϕ(~x, t1(~x), . . . , tn(~x)) ≥ 2ε : t1(~x), . . . , tn(~x) L-terms}.

By compactness, it is enough to prove that Γ is unsatisfiable. Suppose,
towards a contradiction, that M |= Γ(~a), where ~a = (a1, . . . , am) ∈ Mm.
Let N be the substructure ofM generated by {a1, . . . , am}. Then N |= T ,
whence N � M by model-completeness. Consequently, N |= inf~y ϕ(~a, ~y).
Fix δ ≤ ε

2 . Take ~b ∈ Nn such that ϕN (~a,~b) ≤ δ. For each i, let ti(~x) be
a term so that d(ti(~a),~bi) < ∆ϕ(δ), whence ϕN (~a, t1(~a), . . . , tn(~a)) ≤ 2δ ≤
ε. By model-completeness again, ϕM(~a, t1(~a), . . . , tm(~a)) ≤ ε, which is a
contradiction to the fact thatM |= Γ(~a). �

The following rephrasing of the previous theorem more closely resembles
the usual statement of Herbrand’s theorem.
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Corollary 2.8. Suppose that T is a universal L-theory that admits quantifier-
elimination. Let ~x = (x1, . . . , xm) and ~y = (y1, . . . , yn). Then for any for-
mula ϕ(~x, ~y) and any ε > 0, there are L-terms

t11(~x), . . . , t1n(~x), . . . , tk1(~x), . . . , tkn(~x) (k ∈ N>0)

and an increasing continuous function α : [0, 1] → [0, 1] satisfying α(0) = 0
such that

T |= sup
~x

(( min
1≤i≤k

ϕ(~x, ti1(~x), . . . , tin(~x))−. ε)−. α(inf
~y

(ϕ(~x, ~y))) = 0.

Proof. This is immediate from the preceding theorem and Proposition 7.15
of [2]. �

3. Primitive theories

In this short section, L continues to denote an arbitrary (continuous)
signature and T denotes an L-theory.

Definition 3.1. Following [15] (in the classical setting), we say that T is
primitive if there exists sets of closed L-conditions Γ and ∆, where Γ consists
of universal conditions and ∆ consists of existential conditions, such that
Γ ∪∆ axiomatizes T .

Remark 3.2. In classical logic, it is mentioned in [15] that T is primitive if
and only if: wheneverM0,M1 |= T andM0 ⊆ N ⊆ M1, then N |= T . It
is also mentioned in [15] that T is ∃∀-axiomatizable if and only if: whenever
M0,M1 |= T , M0 � M1, and M0 ⊆ N ⊆ M1, then N |= T . It follows
that for model-complete theories T , T is primitive if and only if T is ∃∀-
axiomatizable. An interesting example of a model-complete ∃∀-theory is
Example 3 of [16].

Proposition 3.3. Suppose that T is a complete, model-complete primitive
L-theory. Let M |= T and let TM be the L(M)-theory of M. Then TM is
universally axiomatizable and admits quantifier-elimination.

Proof. Let Γ be a set of universal sentences and ∆ a set of existential sen-
tences such that Γ ∪ ∆ axiomatizes T . In order to prove that TM has
a universal axiomatization, it suffices to prove that TM is axiomatized by
Γ ∪ D(M). Suppose that N |= Γ ∪ D(M). Then M is a substructure of
N . Now any axiom from ∆ is true in N since it is witnessed by things in
M. Consequently, N |= T , whence N |= TM by model-completeness of T .
Clearly, TM is still model-complete; since model-completeness and quanti-
fier elimination are equivalent for universal theories, we have that TM admits
quantifier elimination. �

The following proposition explains how we use Herbrand’s theorem in
connection with definable functions.
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Proposition 3.4. Suppose that T is a complete, model-complete primitive
L-theory. Suppose M |= T and f : Mn → M is a definable function.
Then for any ε > 0, there are L(M)-terms t1(~x), . . . , tk(~x) such that: for all
~a ∈Mn, there is i ∈ {1, . . . , k} with d(f(~a), ti(~a)) ≤ ε.

Proof. Fix ε > 0. Let ϕ(~x, y) be an L(M)-formula such that

|d(f(~a), b)− ϕM(~a, b)| ≤ ε

3

for all ~a ∈Mn and b ∈M . By Herbrand’s theorem applied to TM (which is
applicable by Proposition 3.3), there are L(M)-terms t1(~x), . . . , tk(~x) such
that, for all ~a ∈Mn, ifM |= infy(ϕ(~a, y)−. ε

3) = 0, then

M |= (ϕ(~a, ti(~a))−. ε
3

) ≤ ε

3

for some i ∈ {1, . . . , k}. Notice that the antecedent of the preceding con-
ditional statement holds since ϕM(~a, f(~a)) ≤ ε

3 . Consequently, for every
~a ∈Mn, there is i ∈ {1, . . . , k} such that d(f(~a), ti(~a)) ≤ ε. �

Remark 3.5. Fix a definable function f : Mn → M . Fix ε > 0 and
let the L(M)-terms t1(~x), . . . , tk(~x) be as in the conclusion of the previous
proposition. Suppose thatM� N and f : Nn → N is the natural extension
of f to a definable function in N . Then, for every ~a ∈ Nn, there is i ∈
{1, . . . , k} such that d(f(~a), ti(~a)) ≤ ε. Indeed, repeat the proof of the
preceding proposition, using Corollary 2.8 instead of Theorem 2.7.

We end this section with an application to classical logic. A source of
primitive theories in classical logic comes from the notion of an absolutely
ubiquitous structure. Suppose that L is a finite first-order signature andM
is a countable L-structure. Recall thatM is said to be locally finite if every
finitely generated substructure ofM is finite andM is said to be uniformly
locally finite if there is a function g : N>0 → N>0 such that, for all A ⊆ M ,
if |A| ≤ n, then |〈A〉| ≤ g(n), where 〈A〉 denotes the substructure of M
generated by A. Also recall that the age ofM, denoted Age(M), is the set
of isomorphism classes of finitely generated substructures ofM. Finally, we
say thatM is absolutely ubiquitous if:

(1) M is uniformly locally finite, and
(2) whenever N is a countable, locally finite L-structure with Age(M) =

Age(N ), thenM∼= N .
It follows immediately from the definition that ifM is an absolutely ubiqui-
tous L-structure and T := Th(M), then T is primitive and ℵ0-categorical,
whence model-complete (see also Lemma 2.1 of [17]). Consequently, T meets
the hypotheses of Proposition 3.4. It follows that definable functions in abso-
lutely ubiquitous structures are piecewise given by terms. In particular, if G is
an absolutely ubiquitous (pure) group (these are discussed at length in [17]),
then definable functions are piecewise given by words, that is, if f : Gn → G
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is a definable function, then there are words w1(x, y), . . . , wk(x, y), and pa-
rameters b from G such that, for each a ∈ Gn, f(a) = wi(a, b) for some
i ∈ {1, . . . , k}.

4. Applications

In this section, we present some continuous, model-complete primitive
theories (which actually have quantifier-elimination) and use Proposition 3.4
above to understand the definable functions in models of these theories.

Until further notice, we suppose that K ∈ {R,C} and we set

D := {λ ∈ K : |λ| ≤ 1}.
Also, L denotes the (1-sorted) continuous signature for unit balls of K-Hilbert
spaces. More specifically, when D = R, L contains:

• a constant symbol 0;
• a binary function symbol fα,β for every α, β ∈ D with |α|+ |β| ≤ 1;
• a binary predicate symbol 〈·, ·〉 that takes values in [−1, 1].

If D = C, then rather than having one predicate symbol for the inner
product, we have two: one for the real part and one for the imaginary part.

If H is a K-Hilbert space, the unit ball of H, B1(H), is naturally an L-
structure, where 0 is interpreted as the zero vector ofH, fα,β is interpreted as
the function (x, y) 7→ αx+βy, and 〈·, ·〉 is interpreted as the inner product of
H. For sake of readability, we often write H instead of B1(H) when speaking
of this way of treating B1(H) as an L-structure.

Let T be the L-theory of (the unit ball of) an infinite-dimensional K-
Hilbert space. Then T is primitive as the Hilbert space axioms are universal
and the axioms for infinite-dimensionality are existential. We should remark
that we could work in the many-sorted setting for Hilbert spaces (as in [10])
if we name the bijections x 7→ nx : B1 → Bn and x 7→ 1

nx : Bn → B1, for
then the resulting theory of Hilbert spaces is universal.

In the rest of this subsection, H |= T and H∗ is an elementary extension
of H. In order to make any sense of Proposition 3.4 in this context, we must
first understand L(H)-terms.

Lemma 4.1. If t(x) is an L(H)-term, then there are λ ∈ D and v ∈ B1(H)
so that t(a) = λa+ v for all a ∈ B1(H).

Proof. One proves this by induction on the complexity of t(x), the base case
being immediate. Now suppose that ti(x) = λix + vi for i = 1, 2 and α, β
are so that |α|+ |β| ≤ 1. Then

fα,β(t1(a), t2(a)) = αt1(a) + βt2(a) = (αλ1 + βλ2)a+ (αv1 + βv2).

It remains to observe that |αλ1 + βλ2| ≤ 1. �

Corollary 4.2. Let f : H → H be definable. Then given ε > 0, there are
λ1, . . . , λk ∈ D and v1, . . . , vk ∈ B1(H) such that, for all a ∈ B1(H∗), there
is i ∈ {1, . . . , k} with d(f(a), λia+ vi) ≤ ε.
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Fix a ∈ B1(H∗). Then there are sequences (λn) from D and (vn) from
B1(H) with λna + vn → f(a) as n → ∞. By taking subsequences, we may
suppose that λn → λ ∈ D. It then follows that (vn) is a Cauchy sequence in
B1(H), whence vn → v ∈ B1(H). It follows that f(a) = λa + v. We have
just proven the following result:

Corollary 4.3. For any a ∈ B1(H∗), there are λ ∈ D and v ∈ B1(H) such
that f(a) = λa+ v.

Corollary 4.4. Suppose that H∗ is ω1-saturated and f(H⊥) ⊆ H⊥. Fix
ε > 0 and let λ1, . . . , λm be a finite ε-net for D. Then there is a finite-
dimensional subspace K of H such that, for all a ∈ B1(H∗) ∩K⊥, there is
i ∈ {1, . . . ,m} such that d(f(a), λia) < ε.

Proof. Let a ∈ B1(H∗) ∩ H⊥. Take λ ∈ D and v ∈ B1(H) such that
f(a) = λa+ v. Then

0 = 〈f(a), v〉 = 〈λa+ v, v〉 = 〈v, v〉.

Thus, f(a) = λa. Let (an) be an orthonormal basis forH. Then the following
set of conditions is unsatisfiable in H∗:

{〈x, an〉 = 0 : n < ω} ∪ {d(f(x), λix) ≥ ε : i = 1, . . . ,m}.

By saturation, there is n < ω such that, setting K := span(a1, . . . , an), we
have d(f(x), λix) < ε for all x ∈ B1(H∗) ∩K⊥. �

How does Corollary 4.2 relate to functions definable in the many-sorted
language for Hilbert spaces considered in [10]? In order to elucidate this,
we first clarify how the syntax of continuous logic works in the case that
the predicates take values in intervals other than [0, 1]. (This is omitted
in the survey [2] and was communicated to me by Ward Henson.) Let L′
be a many-sorted (continuous) signature with sort set S. In particular, one
associates to each predicate symbol P of L a closed, bounded interval IP in
R. Then one also associates to each formula ϕ a closed, bounded interval Iϕ
in R as follows:

• Given two terms t1(~x) and t2(~x) of arity (s1, . . . , sn, sn+1), the for-
mula ϕ(~x) = d(t1(~x), t2(~x)) is an atomic formula with Iϕ := [0, N ],
where N is the bound on the metric of sort sn+1.
• If P is a predicate symbol of arity (s1, . . . , sn) and t1(~x), . . . , tn(~x)
are terms such that ti takes values in sort si, then the formula ϕ(~x) =
P (t1(~x), . . . , tn(~x)) is an atomic formula with Iϕ := IP .
• Suppose that ϕ1(~x), . . . , ϕn(~x) are formulae with associated intervals
Iϕ1 , . . . , Iϕn . Suppose that u is a continuous function with domain
Iϕ1 × · · · × Iϕn and range I, a closed, bounded interval in R. Then
ϕ(~x) = u(ϕ1(~x), . . . , ϕn(~x)) is a formula with Iϕ := I.
• If ϕ is a formula with associated interval Iϕ, then ψ = supx ϕ is a
formula with Iψ := Iϕ. Similarly for infx ϕ.
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For an interval I = [a, b] ⊆ R with a < b, define uI : I → [0, 1] by
uI(x) := 1

b−a(x−a). Note that uI is a homeomorphism with inverse u−1
I (x) =

a+ (b− a)x.
We let Lms denotes the many-sorted theory of Hilbert spaces used in [10].

Lemma 4.5. For any quantifier-free Lms-formula ϕ(~x), where ~x is a tuple
of variables of sort B1(H), there is a quantifier-free L-formula ψ(~x) with
Iψ = [0, 1] such that

H |= sup
~x
|uIϕ(ϕ(~x))− ψ(~x)| = 0.

In particular, when Iϕ = [0, 1], we have H |= supx |ϕ(~x)− ψ(~x)| = 0.

Proof. The proof goes by induction on the complexity of ϕ, the main work
taking place in the case when ϕ is atomic, which involves a painful case
distinction. Let us illustrate the idea by considering terms ti(x, y) = λix+µiy
(i = 1, 2) where |λi|, |µi| ≤ n. (In the general situation, terms can be much
more complicated due to the number of variables and the inclusion maps.)
First suppose that ϕ(x, y) = d(t1(x, y), t2(x, y)). Since each ti takes values
in B2n, we have Iϕ = [0, 4n]. Then Iϕ(ϕ(x, y)) = 1

4nd(t1(x, y), t2(x, y)). Let
ψ(x, y) = ‖λ1−λ2

4n x + µ1−µ2

4n y‖. Since |λ1−λ2
4n | + |

µ1−µ2

4n | ≤ 1, we have that ψ
is an L-formula with Iψ = [0, 1]. Clearly ψ is as desired.

Now suppose that ϕ(x, y) = 〈t1(x, y), t2(x, y)〉. Now Iϕ = [−4n2, 4n2], so
uIϕ(ϕ(x, y)) = 1

8n2 (〈t1(x, y), t2(x, y)〉+ 4n2). This time, let

ψ(x, y) =
1
2
〈λ1

2n
x+

µ1

2n
y,
λ2

2n
+
µ2

2n
y〉+

1
2
.

It is easily verified that this ψ is as desired.
For the induction step, suppose that ϕ = u(ϕ1, . . . , ϕn), where

u : Iϕ1 × · · · × Iϕn → Iϕ

is a surjective continuous function. By the induction hypothesis, there are
L-formulae ψi(x) (i = 1, . . . , n) with each Iψi

= [0, 1] such that H |=
sup~x |uIϕi

(ϕi(~x))− ψi(~x)| = 0. Consider the L-formula

ψ(x) = uIϕ(u(u−1
Iϕ1

(ψ1(~x)), . . . , u−1
Iϕn

(ψn(~x)))).

It is clear that H |= supx |uϕ(ϕ(~x))− ψ(~x))| = 0. �

Corollary 4.6. If P : B1(H)n → [0, 1] is a uniformly continuous func-
tion, then P is an L-definable predicate if and only if P is an Lms-definable
predicate

Proof. This follows from the preceding corollary and the fact that the Lms-
theory of H admits quantifier-elimination. �

Corollary 4.7. Suppose that f : H → H is an Lms-definable function such
that f(B1(H)) ⊆ B1(H). Then f |B1(H) is an L-definable function.
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The definition of an Lms-definable function is given in [10]. We should also
remark that a similar discussion appears in [1].

Remark 4.8. It follows from the preceding corollary and Corollary 4.2 that
for any Lms-definable function f : H → H, any n ≥ 1, and any ε > 0, there
are scalars λ1, . . . , λk and vectors v1, . . . , vk ∈ Bm(n,f)(H) such that, for all
x ∈ Bn(H), there is i ∈ {1, . . . , k} with d(f(x), λix + vi) ≤ ε. Using the
main result of [10], we can give a different proof of this fact in the case that
f is linear. Indeed, write f = λI +K, where K is a compact operator. Let
{v1, . . . , vk} be a finite ε-net for K(Bn(H)). Then for a ∈ B1(H), we have
d(K(a), vi) ≤ ε for some i ∈ {1, . . . , k}, whence d(f(a), λa+ vi) ≤ ε. (Notice
here that λi = λ for all i.)

We now suppose that K = C and set S1 := {λ ∈ C : |λ| = 1}. We let
LU := L∪{U,U−1}, where U and U−1 are both unary function symbols. We
let T ∀U denote the L-theory obtained from T by adding (universal) axioms
saying that U is linear, preserves the inner product, and U and U−1 are
inverses. (TU axiomatizes the theory of an infinite-dimensional Hilbert space
equipped with a unitary operator; one adds a symbol for U−1 so as to avoid
the ∀∃ axiom stating that U is onto.) We add to T ∀U the following axioms:

inf
x

[|〈x, x〉 − 1|u d(Ux, σx)|] = 0,

where σ ranges over a countable dense subset of S1. (These axioms assert
that the spectrum of U is S1.) Then TU is complete and admits quantifier
elimination (see [3]); TU is the theory of infinite-dimensional Hilbert spaces
equipped with a generic automorphism. Since TU is primitive, we can once
again apply Proposition 3.4.

Lemma 4.9. If t(x) is an LU (H)-term, then there are l,m ∈ Z, l ≤ m,
αl, . . . , αm ∈ D and a vector v ∈ B1(H) such that, for all a ∈ B1(H), we
have

t(a) = v +
m∑
j=l

αjU
j(a).

Proof. This is proved by induction on the complexity of t(x) exactly as in
Lemma 4.1. �

Suppose that (H∗, U∗) is an elementary extension of (H,U).

Corollary 4.10. Suppose that f : H → H is an LU -definable function and
ε > 0. Then there are l,m ∈ Z, l ≤ m, λ1

l , . . . , λ
1
m, . . . , λ

k
l , . . . , λ

k
m ∈ D, and

v1, . . . , vk ∈ B1(H), such that, for all a ∈ B1(H∗), there is i ∈ {1, . . . , k}
such that

d(f(x), vi +
m∑
j=l

αijU
j(x)) < ε.
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One can generalize this situation as follows: Let G be a countable (dis-
crete) group and let LG be the language for Hilbert spaces as above aug-
mented by unary function symbols τg for g ∈ G. Let TG be the universal
LG-theory of a unitary representation of G on an infinite-dimensional Hilbert
space. (As above, the axiom supx d((τg(τg−1(x)), x) = 0 allows us to assert
that τg is onto without using a ∀∃ axiom.) Let π : G→ U(H) be a unitary
representation of G on an (infinite-dimensional) Hilbert space H such that
(H,π) is an existentially closed model of TG (such an existentially closed
model exists because TG is an inductive theory). Let Σ be the set of exis-
tential consequences of (H,π). Then it is shown in [4] that TGA := TG ∪ Σ
axiomatizes the class of existentially closed models of TG, whence is the
model companion of TG. Moreover, since TG has the amalgamation prop-
erty (see [4]), it follows that TGA admits quantifier elimination. As above,
one can show that any LG term t(x) has the form v +

∑n
i=1 λigix for some

v ∈ B1(H), some λ1, . . . , λn ∈ D, and some g1, . . . , gn ∈ G. (Here we abuse
notation and write gx instead of τg(x).) Consequently, we have:

Corollary 4.11. Let (H,π) be any model of TGA and let f : H → H be an
LG-definable function. Then, for any ε > 0, there are v1, . . . , vk ∈ B1(H),
scalars λ1

1, . . . , λ
1
m, . . . , λ

k
1, . . . , λ

k
m ∈ D, and group elements g1, . . . , gk ∈ G

such that, for all a ∈ B1(H∗), there is i ∈ {1, . . . , k} such that

d(f(a), vi +
m∑
j=1

λijgja) < ε.

There is yet another expansion of Hilbert spaces that fits into this context.
Let LP := L ∪ {P}, where P is a new unary function symbol. We consider
the theory TP obtained from the theory of infinite-dimensional Hilbert spaces
obtained by adding the following axioms (the latter two are axiom schemes,
including one such axiom for every n ≥ 1):

• P is linear;
• supx d(P 2(x), P (x)) = 0;
• supx,y |〈P (x), y〉 − 〈x, P (y)〉| = 0;
• infv1 · · · infvn max(maxi,j |〈vi, vj〉 −. δij |,maxi d(P (vi), vi))) = 0;
• infv1 · · · infvn max(maxi,j |〈vi, vj〉 −. δij |,maxi d(P (vi), 0))) = 0.

The first three axioms say that P is a projection operator on H and the
latter two axiom schemes say that P (H) and P (H)⊥ are infinite-dimensional.
Then TP is a complete theory with quantifier elimination ([5]); in fact, it is
the theory of beautiful pairs of Hilbert spaces and its unique separable model
is the Fraisse limit of the family of finite-dimensional Hilbert spaces equipped
with projection operators.

Since TP is a primitive theory with quantifier elimination, we may use
Proposition 3.4. Let (H,P ) be a model of TP . Then in (H,P ), all L-terms
t(x) are easily seen to equivalent to terms be of the form αx + βP (x) + v,
where α, β ∈ D and v ∈ B1(H). Thus:
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Proposition 4.12. Let f : B1(H) → B1(H) be an LP -definable function.
Then for any ε > 0, there are v1, . . . , vk ∈ B1(H) and α1, . . . , αk, β1, . . . , βk ∈
D such that, for all a ∈ B1(H), there is i ∈ {1, . . . , k} such that

d(f(a), αia+ βiP (a) + vi) < ε.

Consequently, for any elementary extension (H∗, P ∗) of (H,P ) and any a ∈
B1(H∗), there are α, β ∈ D and v ∈ B1(H) such that f(a) = αa+βP ∗(a)+v.

Remark 4.13. The referee pointed out that the preceding examples are
specific instances of a more general phenomenon: Given a fixed unital C∗-
algebra A, one can consider the theory of presentations of A, that is, of
Hilbert spaces H with a C∗-algebra morphism from A to B(H), presented
as Hilbert spaces with each a ∈ A named as a unary function, and with
universal axioms expressing that this is indeed a representation. The model
completion of this theory can be obtained by adding some existential axioms
essentially saying that the presentation is faithful.
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