Invariants of Normal Surface Singularities

András Némethi

Rényi Institute of Mathematics, Budapest

June 19, 2009

・ロト ・回ト ・ヨト ・ヨト

Notations Motivation. Questions.

Normal surface singularities

$$(X, o) =$$
 a normal surface singularity

$$M =$$
 its link (oriented 3-manifold)

assume: *M* is a rational homology sphere $(H_1(M, \mathbb{Z}) \text{ is finite})$

・ロト ・四ト ・ヨト ・ヨト

Notations Motivation. Questions.

Normal surface singularities

$$(X, o) =$$
 a normal surface singularity

$$M =$$
 its link (oriented 3-manifold)

assume: *M* is a **rational homology sphere** $(H_1(M, \mathbb{Z})$ is finite)

$$\pi: X o X$$
 $=$ a good resolution with dual graph Γ

イロト イヨト イヨト イヨト

Notations Motivation. Questions.

Normal surface singularities

$$(X, o) =$$
 a normal surface singularity

M = its link (oriented 3-manifold)

assume: *M* is a **rational homology sphere** $(H_1(M, \mathbb{Z})$ is finite)

$$\pi:\widetilde{X} o X$$
 $\;=\;$ a good resolution with dual graph ${\sf \Gamma}$

$$L:=H_2(\widetilde{X},\mathbb{Z})$$

freely generated by the classes of the irreducible exceptional curves identified also with the integral cycles supported on $E = \pi^{-1}(o)$

・ロト ・聞ト ・ヨト ・ヨト

э

Notations Motivation. Questions.

Normal surface singularities

$$(X, o) =$$
 a normal surface singularity

$$M =$$
 its link (oriented 3-manifold)

assume: M is a **rational homology sphere** $(H_1(M,\mathbb{Z})$ is finite)

$$\pi: \widetilde{X} o X$$
 = a good resolution with dual graph Γ

$$L:=H_2(\widetilde{X},\mathbb{Z})$$

freely generated by the classes of the irreducible exceptional curves identified also with the integral cycles supported on $E = \pi^{-1}(o)$

 $L':=H^2(\widetilde{X},\mathbb{Z}), \quad L'=Hom(L,\mathbb{Z}),$ L carries an integral intersection form (,) which extends (over \mathbb{Q}) to L'

Notations Motivation. Questions.

Normal surface singularities

$$(X, o) =$$
 a normal surface singularity

M = its link (oriented 3-manifold)

assume: M is a **rational homology sphere** $(H_1(M,\mathbb{Z})$ is finite)

 $\pi:\widetilde{X} o X$ = a good resolution with dual graph Γ

$$L:=H_2(\widetilde{X},\mathbb{Z})$$

freely generated by the classes of the irreducible exceptional curves identified also with the integral cycles supported on $E = \pi^{-1}(o)$

 $\begin{array}{ll} L':=H^2(\widetilde{X},\mathbb{Z}), \quad L'=Hom(L,\mathbb{Z}),\\ L \text{ carries an integral intersection form (,) which extends (over \mathbb{Q}) to L' \end{array}$

One has an embedding $L \hookrightarrow L'$ with $L'/L = H_1(M, \mathbb{Z})$ **Notation:** $H := H_1(M, \mathbb{Z}), \ \widehat{H} = \text{Pontjagin dual of } H$ $\theta : H \to \widehat{H} \text{ natural isomorphism } [I'] \mapsto \theta([I']) := e^{2\pi i (I', \cdot)}$

Notations Motivation. Questions.

Basic invariants of the analytic type

• Cohomology of line bundles on \widetilde{X} .

・ロト ・聞ト ・ヨト ・ヨト

Notations Motivation. Questions.

Basic invariants of the analytic type

- Cohomology of line bundles on \widetilde{X} .
- (Equivariant) Hilbert series

イロト 不得下 イヨト イヨト

Notations Motivation. Questions.

Basic invariants of the analytic type

- Cohomology of line bundles on \widetilde{X} .
- (Equivariant) Hilbert series
- (Equivariant) multivariable divisorial multifiltration (Campillo, Delgado, Gusein–Zade)

Notations Motivation. Questions.

Basic invariants of the analytic type

- Cohomology of line bundles on \widetilde{X} .
- (Equivariant) Hilbert series
- (Equivariant) multivariable divisorial multifiltration (Campillo, Delgado, Gusein–Zade)
- Principle cycles (cycles cut out by sections of line bundles or holomorphic functions)

(D) (A) (A) (A)

э

Notations Motivation. Questions.

Basic invariants of the analytic type

- Cohomology of line bundles on \widetilde{X} .
- (Equivariant) Hilbert series
- (Equivariant) multivariable divisorial multifiltration (Campillo, Delgado, Gusein–Zade)
- Principle cycles (cycles cut out by sections of line bundles or holomorphic functions)
- the sheaf $\pi^*(m_{X,o})$, and its base-points

ヘロト 人間ト くほと くほん

Notations Motivation. Questions.

Basic invariants of the analytic type

- Cohomology of line bundles on \widetilde{X} .
- (Equivariant) Hilbert series
- (Equivariant) multivariable divisorial multifiltration (Campillo, Delgado, Gusein–Zade)
- Principle cycles (cycles cut out by sections of line bundles or holomorphic functions)
- the sheaf $\pi^*(m_{X,o})$, and its base-points
- Multiplicity, Hilbert–Samuel function

ヘロト 人間ト くほと くほん

Notations Motivation. Questions.

Basic invariants of the analytic type

- Cohomology of line bundles on \widetilde{X} .
- (Equivariant) Hilbert series
- (Equivariant) multivariable divisorial multifiltration (Campillo, Delgado, Gusein–Zade)
- Principle cycles (cycles cut out by sections of line bundles or holomorphic functions)
- the sheaf $\pi^*(m_{X,o})$, and its base-points
- Multiplicity, Hilbert-Samuel function

Problem: determine these invariants **Question**: when are they topological ? (computable from Γ or M)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Notations Motivation. Questions.

Basic invariants of the topological type

Seiberg-Witten invariants of the link

・ロト ・聞ト ・ヨト ・ヨト

Notations Motivation. Questions.

Basic invariants of the topological type

- Seiberg–Witten invariants of the link
- Heegaard-Floer (co)homologies of the link (Ozsváth-Szabó) Monopole Floer (co)homology of the link (Kronheimer-Mrowka)

ヘロト 人間ト くほと くほん

Notations Motivation. Questions.

Basic invariants of the topological type

- Seiberg–Witten invariants of the link
- Heegaard-Floer (co)homologies of the link (Ozsváth-Szabó) Monopole Floer (co)homology of the link (Kronheimer-Mrowka)
- Lattice (co)homology (N.)

ヘロト 人間ト くほと くほん

Notations Motivation. Questions.

Basic invariants of the topological type

- Seiberg–Witten invariants of the link
- Heegaard-Floer (co)homologies of the link (Ozsváth-Szabó) Monopole Floer (co)homology of the link (Kronheimer-Mrowka)
- Lattice (co)homology (N.)

Problem: determine these invariants
Question 1: what are their peculiar/additional properties (for a singularity link M)?
Question 2: how they influence the analytic invariants?

ヘロト 人間ト くほと くほん

Cohomology of line bundles Sections and functions

Cohomology of line bundles

Most of the analytic geometry of X (hence of (X, o) too) is described by its line bundles and their cohomology groups. Basic problem: For any $\mathcal{L} \in \text{Pic}(\widetilde{X})$ and effective cycle $l \in L_{\geq 0}$ recover the dimensions

(a) dim
$$\frac{H^0(\widetilde{X},\mathcal{L})}{H^0(\widetilde{X},\mathcal{L}(-l))}$$
 and (b) dim $H^1(\widetilde{X},\mathcal{L})$

from the combinatorics of Γ (at least for some families of singularities).

ヘロト 人間ト くほと くほん

Natural line bundles

For arbitrary line bundles (and when $Pic^0(\widetilde{X}) \neq 0$) this question can be very hard.

There is an increasing optimism to understand this problem for 'special' line bundles: the **natural** line bundles.

They are provided by the splitting of the cohomological exponential exact sequence:

we associate canonically to each $l' \in L' = H^2(\widetilde{X}, \mathbb{Z})$ a line bundle on \widetilde{X} whose first Chern class is l':

Cohomology of line bundles Sections and functions

.

イロト 不得下 イヨト イヨト

Natural line bundles

The first Chern class c_1 is surjective and it has an obvious section on the subgroup L: it maps every element to its associated line bundle: $l \mapsto O(l)$ This section has a *unique extension* O to L'. We call a line bundle *natural* if it is in the image of this section:

$$l'\mapsto \mathcal{O}(l')$$

Natural line bundles

Example of natural line bundle:

Let $c: (Y, o) \to (X, o)$ be the **universal abelian cover** of (X, o), $\pi_Y: \widetilde{Y} \to Y$ the normalized pullback of π by c, $\widetilde{c}: \widetilde{Y} \to \widetilde{X}$ the morphism which covers c. The action of H on (Y, o) lifts to \widetilde{Y} and one has an H-eigenspace decomposition

$$\widetilde{c}_*\mathcal{O}_{\widetilde{Y}} = \bigoplus_{l' \in Q} \mathcal{O}(-l'),$$

where $\mathcal{O}(-l')$ is the $\theta([l'])$ -eigenspace of $\tilde{c}_*\mathcal{O}_{\tilde{Y}}$. This is compatible with the eigenspace decomposition of $\mathcal{O}_{Y,o}$ too.

Above: $Q = \{ \sum l'_{\nu} E_{\nu} \in L', \ 0 \le l'_{\nu} < 1 \}.$

・ロト ・四ト ・ヨト ・ヨト

Equivariant Hilbert series

Once a resolution π is fixed, $\mathcal{O}_{\mathbf{Y},o}$ inherits the divisorial multi-filtration

$$\mathcal{F}(l') := \{ f \in \mathcal{O}_{Y,o} \, | \, \operatorname{div}(f \circ \pi_Y) \geq \widetilde{c}^*(l') \}.$$

 $\mathfrak{h}(l') = \text{dimension of the } \theta([l'])\text{-eigenspace of } \mathcal{O}_{Y,o}/\mathcal{F}(l').$ The equivariant divisorial Hilbert series is

$$\mathcal{H}(\mathbf{t}) = \sum_{l'=\sum l_v \in L'} \mathfrak{h}(l') t_1^{l_1} \cdots t_s^{l_s} = \sum_{l' \in L'} \mathfrak{h}(l') \mathbf{t}^{l'} \in \mathbb{Z}[[L']].$$

・ロト ・回ト ・ヨト ・ヨト

Equivariant Hilbert series

Once a resolution π is fixed, $\mathcal{O}_{\mathbf{Y},o}$ inherits the divisorial multi-filtration

$$\mathcal{F}(l') := \{ f \in \mathcal{O}_{Y,o} \, | \, \operatorname{div}(f \circ \pi_Y) \geq \widetilde{c}^*(l') \}.$$

 $\mathfrak{h}(l') = \text{dimension of the } \theta([l'])\text{-eigenspace of } \mathcal{O}_{Y,o}/\mathcal{F}(l').$ The equivariant divisorial Hilbert series is

$$\mathcal{H}(\mathbf{t}) = \sum_{l' = \sum l_v E_v \in L'} \mathfrak{h}(l') t_1^{l_1} \cdots t_s^{l_s} = \sum_{l' \in L'} \mathfrak{h}(l') \mathbf{t}^{l'} \in \mathbb{Z}[[L']].$$

The terms of the sum reflect the *H*-eigenspace decomposition too: $\mathfrak{h} \cdot \mathbf{t}^{l'}$ covers a \mathfrak{h} -dimensional subspace of $\theta([l'])$ -eigenspace.

Equivariant Hilbert series

Once a resolution π is fixed, $\mathcal{O}_{\mathbf{Y},o}$ inherits the divisorial multi-filtration

$$\mathcal{F}(l') := \{ f \in \mathcal{O}_{Y,o} \, | \, \operatorname{div}(f \circ \pi_Y) \geq \widetilde{c}^*(l') \}.$$

 $\mathfrak{h}(l') = \text{dimension of the } \theta([l'])\text{-eigenspace of } \mathcal{O}_{Y,o}/\mathcal{F}(l').$ The equivariant divisorial Hilbert series is

$$\mathcal{H}(\mathbf{t}) = \sum_{l'=\sum l_v E_v \in L'} \mathfrak{h}(l') t_1^{l_1} \cdots t_s^{l_s} = \sum_{l' \in L'} \mathfrak{h}(l') \mathbf{t}^{l'} \in \mathbb{Z}[[L']].$$

The terms of the sum reflect the *H*-eigenspace decomposition too: $\mathfrak{h} \cdot \mathbf{t}^{\prime}$ covers a \mathfrak{h} -dimensional subspace of $\theta([l'])$ -eigenspace. **E.g.**:

 $\sum_{l \in L} \mathfrak{h}(l) \mathfrak{t}^{l} = H \text{-invariants of } \mathcal{H}$ Hilbert series of the $\pi^{-1}(o)$ -divisorial multi-filtration of $\mathcal{O}_{X,o}$

Second central problem: Recover $\mathcal{H}(t)$ from Γ (for some families of singularities).

Cohomology of line bundles Sections and functions

The Campillo–Delgado–Guzein-Zade series

$$\mathcal{P}(\mathbf{t}) = -\mathcal{H}(\mathbf{t}) \cdot \prod_{v} (1 - t_v^{-1}) \in \mathbb{Z}[[L']].$$

(Above, $\mathbb{Z}[[L']]$ is regarded as a module over $\mathbb{Z}[L']$.)

Note: $\mathcal{P}(t)$ nd $\mathcal{H}(t)$ determine each other.

Campillo, Delgado and Gusein-Zade for rational singularities proposed a *topological description for* $\mathcal{P}(t)$.

Question: how general is this topological characterization, and where are its limits?

э

Cohomology of line bundles Sections and functions

Some results:

Theorem [N.] With the notation $E_I = \sum_{v \in I} E_v$, consider

$$h_{\mathcal{L}} := \sum_{I \subseteq \mathcal{V}} (-1)^{|I|+1} \operatorname{dim} \frac{H^0\left(\mathcal{L}\right)}{H^0\left(\mathcal{L}\left(-E_I\right)\right)} \,,$$

イロト イロト イヨト イヨト 三日

Cohomology of line bundles Sections and functions

Some results:

Theorem [N.] With the notation $E_I = \sum_{v \in I} E_v$, consider

$$h_{\mathcal{L}} := \sum_{I \subseteq \mathcal{V}} (-1)^{|I|+1} \dim \frac{H^0\left(\mathcal{L}\right)}{H^0\left(\mathcal{L}\left(-E_I\right)\right)} \,,$$

Then

$$\dim \frac{H^{0}\left(\mathcal{L}\right)}{H^{0}\left(\mathcal{L}\left(-l\right)\right)} = \sum_{a \in L_{\geq 0}, a \not\geq l} h_{\mathcal{L}\left(-a\right)}.$$

This, for any $l' \in L'$ implies

$$\mathfrak{h}(l')=\sum_{a\in L,\ a\not\geq 0}h_{\mathcal{O}(-l'-a)}.$$

$$\mathcal{P}(\mathbf{t}) = \sum_{l' \in L'} h_{\mathcal{O}(-l')} \mathbf{t}^{l'}.$$

Cohomology of line bundles Sections and functions

Some results:

Moreover,

there exists a constant $const[\mathcal{L}]$, depending only on the class of $[\mathcal{L}] \in Pic(\widetilde{X})/L$, such that

$$-h^{1}\left(\mathcal{L}\right)=\sum_{a\in\mathcal{L},\,a\nleq0}h_{\mathcal{L}(a)}+\operatorname{const}_{\left[\mathcal{L}\right]}+\frac{\left(\mathcal{K}-2c_{1}\left(\mathcal{L}\right)\right)^{2}+\left|\mathcal{V}\right|}{8}\,.$$

(Above: K = canonical class in L', $|\mathcal{V}| = \text{number of vertices in } \Gamma$.)

Cohomology of line bundles Sections and functions

Corollary:

The invariants

dim
$$rac{H^0\left(\mathcal{L}
ight)}{H^0\left(\mathcal{L}\left(-l
ight)
ight)}$$
 and $h^1\left(\mathcal{L}
ight)$

(for natural line bundles), and the Hilbert series $\mathcal{H}(t)$ are determined by

$$\mathcal{P}(\mathbf{t})$$
 and $\{\operatorname{const}_h\}_{h\in H}$.

Question: When are $\mathcal{P}(t)$ and $\{\operatorname{const}_h\}_{h\in H}$ topological ?

(日) (四) (日) (日) (日)

Cohomology of line bundles Sections and functions

Positive result:

Theorem [N.] If (X, o) is splice quotient singularity (including rational, minimally elliptic, weighted homogeneous singularities), then

$$\mathcal{P}(\mathbf{t}) = \prod_{\mathbf{v}\in\mathcal{V}} \left(1 - \mathbf{t}^{\mathcal{E}^*_{\mathbf{v}}}\right)^{\delta_{\mathbf{v}}-2},$$

 $(E_v^* \in L' \text{ dual basis: } (E_v^*, E_w) = -\delta_{v,w}; \ \delta_v = \text{degree of vertex } v$).

$$\operatorname{const}_{h} = \operatorname{sw}_{h * \sigma_{\operatorname{can}}},$$

the Seiberg–Witten invariant of M associated with the $spin^{c}$ –structure $\sigma = h * \sigma_{can}$. (Spin(M) is an H-torsor, with a canonical element σ_{can} .)

Cohomology of line bundles Sections and functions

Principal cycles:

Principal cycles $\mathcal{P}r =$ it consists of the restrictions to E of the divisors of π -pullbacks of analytic functions from $\mathcal{O}_{X,o}$.

Principal Q-cycles: $\mathcal{P}r'$ = those rational cycle $l' \in L'$ for which $\mathcal{O}(-l')$ has a global holomorphic section which is not zero on any of the exceptional components. $(\mathcal{P}r' \cap L = \mathcal{P}r)$

Natural topological background for $\mathcal{P}r$ and $\mathcal{P}r'$:

$$\mathcal{S}' := \{ l' \in L' \ : \ (l', E_v) \leq 0 \ \text{ for all } v \in \mathcal{V} \}.$$

and

 $\mathcal{S} := \mathcal{S}' \cap L$ (Lipman's cone)

Fact: $\mathcal{P}r$ (resp. $\mathcal{P}r'$) sub-semigroup of \mathcal{S} (resp. $\mathcal{P}r$) Problem: Find $\mathcal{P}r$ and $\mathcal{P}r'$. Are they topological (for some singularities)?

Principal cycles:

Theorem [N.] Assume that (X, o) is splice-quotient. Then $\mathcal{P}r'$ (hence $\mathcal{P}r = \mathcal{P}r' \cap L$ too) is topological.

(日) (四) (日) (日) (日)

Principal cycles:

Theorem [N.] Assume that (X, o) is splice-quotient. Then $\mathcal{P}r'$ (hence $\mathcal{P}r = \mathcal{P}r' \cap L$ too) is topological.

Indeed, let \mathcal{E} be the set of *end-vertices*. A monomial cycle is defined as $D(\alpha) = \sum_{i} \alpha_i E_i^* \in L'$, where $\{\alpha_i\}_{i \in \mathcal{E}} (\alpha_i \in \mathbb{Z}_{\geq 0})$.

イロト イポト イヨト イヨト

Principal cycles:

Theorem [N.] Assume that (X, o) is splice-quotient. Then $\mathcal{P}r'$ (hence $\mathcal{P}r = \mathcal{P}r' \cap L$ too) is topological.

Indeed, let \mathcal{E} be the set of *end-vertices*. A monomial cycle is defined as $D(\alpha) = \sum_{i} \alpha_i E_i^* \in L'$, where $\{\alpha_i\}_{i \in \mathcal{E}} (\alpha_i \in \mathbb{Z}_{\geq 0})$.

Then $l' \in \mathcal{P}r'$ iff there exists finitely many monomial cycles $\{D(\alpha_{(k)})\}_k \in l' + L$ so that $l' = \inf_k D(\alpha_{(k)})$.

イロト イポト イヨト イヨト

э

Cohomology of line bundles Sections and functions

$\pi^* m_{X,o}$, multiplicity

Theorem [N.] Assume that (X, o) is splice-quotient, $m_{X,o}$ the maximal ideal of $\mathcal{O}_{X,o}$, and write

$$\pi^*m_{X,o}=\mathcal{O}_{\widetilde{X}}(-Z_{max})\otimes igotimes_{P\in\mathcal{B}}\mathcal{I}_P$$

$$(Z_{max} = maximal (ideal) cycle, B base points.)$$

Then, Z_{max} and $\{\mathcal{I}_P\}_{p\in\mathcal{B}}$ can be characterized topologically. Moreover, there is an explicit closed combinatorial formula for the multiplicity too.

Cohomology of line bundles Sections and functions

$\pi^* m_{X,o}$, multiplicity

Theorem [N.] Assume that (X, o) is splice-quotient, $m_{X,o}$ the maximal ideal of $\mathcal{O}_{X,o}$, and write

$$\pi^*m_{X,o}=\mathcal{O}_{\widetilde{X}}(-Z_{max})\otimes igotimes_{P\in\mathcal{B}}\mathcal{I}_P$$

 $(Z_{max} = maximal (ideal) cycle, B base points.)$

Then, Z_{max} and $\{\mathcal{I}_P\}_{p\in\mathcal{B}}$ can be characterized topologically. Moreover, there is an explicit closed combinatorial formula for the multiplicity too.

(Rational singularities: Artin; minimally elliptic: Laufer; elliptic: N.)

Heegaard Floer homology Lattice (co)homology

Heegaard Floer homology

Expectation: Besides the 'Seiberg-Witten invariant formula', there is a deeper, and more complex relation at the level of Heegaard-Floer homology (of Ozsváth-Szabó)

 $HF^+(M, \sigma)$ is a $\mathbb{Z}[U]$ -module, with two gradings (a \mathbb{Z}_2 and a \mathbb{Q} -grading), depending on $\sigma \in Spin^c(M)$.

In the sequel we assume σ is the 'canonical $spin^c$ -structure (induced by the complex analytic structure, but it can be identified topologically too).

Lattice (co)homology

The bridge between singularity invariants and Heegaard-Floer theory is realized by the **lattice cohomology** (introduced by the author).

$$M =$$
singularity link, $\sigma \in Spin^{c}(M)$, $q \geq 0$ integer:

We define: $\mathbb{H}^{q}(M, \sigma)$, a $\mathbb{Z}[U]$ -module.

(we will consider here only $\sigma = \sigma_{can}$)

臣

Heegaard Floer homology Lattice (co)homology

Lattice cohomology

L= the lattice, generated by the irreducible exceptional divisors.

・ロト ・聞ト ・ヨト ・ヨト

Heegaard Floer homology Lattice (co)homology

Lattice cohomology

L= the lattice, generated by the irreducible exceptional divisors.

 $\chi: L \to \mathbb{Z}, \ \chi(l) = -(l, l + K)/2$ (the 'Riemann-Roch function')

Lattice cohomology

L= the lattice, generated by the irreducible exceptional divisors.

$$\chi: extsf{L} o \mathbb{Z}$$
, $\chi(extsf{l}) = -(extsf{l}, extsf{l} + extsf{K})/2$ (the 'Riemann-Roch function')

Each $l \in L$ and $l \subset \mathcal{V}$ with |l| = k determines a $\Box_k = a \ k$ -dimensional cube in $L \otimes \mathbb{R}$, which has its vertices in the lattice points $(l + \sum_{j \in I'} E_j)_{I'}$, where l' runs over all subsets of l.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Lattice cohomology

L= the lattice, generated by the irreducible exceptional divisors.

$$\chi: extsf{L} o \mathbb{Z}$$
, $\chi(extsf{l}) = -(extsf{l}, extsf{l} + extsf{K})/2$ (the 'Riemann-Roch function')

Each $l \in L$ and $l \subset \mathcal{V}$ with |l| = k determines a $\Box_k = a \ k$ -dimensional cube in $L \otimes \mathbb{R}$, which has its vertices in the lattice points $(l + \sum_{j \in I'} E_j)_{I'}$, where l' runs over all subsets of l.

For any $n \in \mathbb{Z}$: S_n = union of all the cubes (of any dimension) \Box_k , such that

 $\chi(\text{any vertex of }\Box_k) \leq n$

イロト 不得下 イヨト イヨト

Heegaard Floer homology Lattice (co)homology

Lattice cohomology

Definition:

$$\mathbb{H}^q(\Gamma) := \oplus_n H^q(S_n, \mathbb{Z})$$

 $\mathbb{Z}[U]$ -module structure (*U*-action): restriction

$$\ldots \rightarrow H^q(S_{n+1},\mathbb{Z}) \rightarrow H^q(S_n,\mathbb{Z}) \rightarrow \ldots$$

イロト イヨト イヨト イヨト

Heegaard Floer homology Lattice (co)homology

Lattice cohomology

Definition:

$$\mathbb{H}^q(\Gamma) := \oplus_n H^q(S_n, \mathbb{Z})$$

 $\mathbb{Z}[U]$ -module structure (*U*-action): restriction

$$\ldots \rightarrow H^q(S_{n+1},\mathbb{Z}) \rightarrow H^q(S_n,\mathbb{Z}) \rightarrow \ldots$$

Fact: $\mathbb{H}^{q}(\Gamma)$ is independent of the choice of the resolution/plumbing graph Γ , it is an invariant of M.

イロト 不得下 イヨト イヨト

臣

Heegaard Floer homology Lattice (co)homology

Lattice cohomology

Definition:

$$\mathbb{H}^q(\Gamma) := \oplus_n H^q(S_n, \mathbb{Z})$$

 $\mathbb{Z}[U]$ -module structure (*U*-action): restriction

$$\ldots \rightarrow H^q(S_{n+1},\mathbb{Z}) \rightarrow H^q(S_n,\mathbb{Z}) \rightarrow \ldots$$

Fact: $\mathbb{H}^{q}(\Gamma)$ is independent of the choice of the resolution/plumbing graph Γ , it is an invariant of M.

Examples: \mathbb{H}^* is computed for any 'almost rational graph' (including rational, elliptic and 'star-shaped graphs'). Rational and elliptic singularities can be characterized via \mathbb{H}^* .

・ 同 ト ・ ヨ ト ・ ヨ ト

Heegaard Floer homology Lattice (co)homology

Lattice cohomology

Conjecture: $\mathbb{H}^*(M)$ determines $HF^+(M)$. (proved for 'almost rational graph-manifolds')

Heegaard Floer homology Lattice (co)homology

Lattice cohomology

Conjecture: $\mathbb{H}^*(M)$ determines $HF^+(M)$. (proved for 'almost rational graph-manifolds')

Conjecture: $\mathbb{H}^*(M)$ contains a lot of information about the analytic structure.

イロト 不得下 イヨト イヨト

臣