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Zariski-van Kampen method and braid monodromy Alexander polynomial Characteristic varieties

Zariski foundational paper

O. Zariski, On the problem of existence of algebraic functions of two variables possessing
a given branch curve, Amer. J. Math. 51 (1929), 305–328.

Goal: Compute π1(P2 \C), C = F(x,y,z) = 0 of degree d.

Choose a generic line L0, L0 t C. By Lefschetz Hyperplane Section Theorem:

F := 〈a1, . . . ,ad−1 | _ 〉= 〈a1, . . . ,ad | ad · . . . ·a2 ·a1 = 1〉= π1(L0 \C)� π1(P2 \C)

P ∈ L0 \C generic, P ∈ L∞, L∞ t C. Choose equations: P := [0:1:0], L0 : x = 0, L∞ : z = 0.

f (x,y) := F(x,y,1), f monic in y.

R := {t ∈ C | f (t,y) has no multiple root}

Take a loop α in C\R based at 0. The motion {Lt} defined by α deform a1, . . . ,ad to
aα

1 , . . . ,aα
d . In π1(P2 \C):

aj = aα
j

Van Kampen proves these relations are enough.

E. Artal IUMA, Universidad de Zaragoza
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Braid monodromy

Modern language

There is a morphism ∇ : π1(C\R)→ Bd . The group Bd acts geometrically on the free group in
a1, . . . ,ad
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Braid monodromy

Modern language

There is a morphism ∇ : π1(C\R)→ Bd . The group Bd acts geometrically on the free group in
a1, . . . ,ad

π1(P2 \C) =
〈

a1, . . . ,ad | aj = a∇(β )
j ,β ∈ π1(C\R),ad · . . . ·a1 = 1

〉
.

The group π1(C\R) is generated by elements αγα−1, where γ runs a small circle around a
point of R.
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Puiseux relations and Zariski results

Turn around x = y2

a1 = a2
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Puiseux relations and Zariski results

Turn around x2 = y2

a1a2 = a2a1
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Puiseux relations and Zariski results

Braids define a finite set of relations of the type a′i = a′j, [a′i,a
′
j] = 1, a′ia

′
ja
′
i = a′ja

′
ia
′
j, . . . , where

a′i is conjugated to ai. Difficult Find which conjugated elements a′i.
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j] = 1, a′ia

′
ja
′
i = a′ja

′
ia
′
j, . . . , where

a′i is conjugated to ai. Difficult Find which conjugated elements a′i.

Zariski results

If {Ct}t∈[0,1] is a continuous equisingular family (P2,C0) and (P2,C1) are isotopic.

If {Ct}t∈[0,1] is a continuous family which is equisingular in (0,1] and C0 is reduced, then
π1(P2 \C0)� π1(P2 \C1).

If C is smooth of degree d, then π1(P2 \C)∼= Z/dZ (choose a curve with a high order
flex).

If C is nodal, then π1(P2 \C) is abelian (start from a generic line arrangement).

C tricuspidal quartic, π1(P2 \C) finite non-abelian.

C hexacuspidal sextic, cusps in a conic, π1(P2 \C)∼= Z/2Z∗Z/3Z.

If there exists C hexacuspidal sextic, cusps not in a conic, π1(P2 \C) 6∼= Z/2Z∗Z/3Z. He
proves later abelianity for non explicit examples coming from deformation theory

Oka and A. find explicit examples. Degtyarev proves the space of hexacuspidal sextics
with cusps not in a conic is irreducible.

E. Artal IUMA, Universidad de Zaragoza
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C tricuspidal quartic, π1(P2 \C) finite non-abelian.

C hexacuspidal sextic, cusps in a conic, π1(P2 \C)∼= Z/2Z∗Z/3Z.

If there exists C hexacuspidal sextic, cusps not in a conic, π1(P2 \C) 6∼= Z/2Z∗Z/3Z. He
proves later abelianity for non explicit examples coming from deformation theory

Oka and A. find explicit examples. Degtyarev proves the space of hexacuspidal sextics
with cusps not in a conic is irreducible.
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Braid monodromy, surfaces and topology of curves

Definition
Chisini realizes that Zariski-van Kampen method gives not only the fundamental group but a
stronger invariant for curves
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Braid monodromy, surfaces and topology of curves

Moishezon
Papers of B. Moishezon (alone and with M. Teicher) show that braid monodromy is a extremely
powerful tool in the study of complex surfaces (via projection).
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powerful tool in the study of complex surfaces (via projection).

Libgober I

Libgober proves that Puiseux presentation determine the homotopy type of C2 \C (line at
infinity can be chosen non generic as long as there is no vertical asymptote: braid monodromies
with vertical asymptotes are more subtle, see Carmona and Lönne).
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representation).
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Libgober II

Libgober proves that braid monodromy and braid representations can provide new invariants of
irreducible components of equisingular families of curves (unexplored! up to Burau
representation).

Topology
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Definition and first results

Definition by Libgober

C ⊂ C2 defined by f = 0, f reduced. The mapping f : C2 \C→ C∗ provides an
epimorphism f∗ : π1(C2 \C)→ Z.

Any such morphism produces an Alexander polynomial ∆C .

Let ρ : X→ C2 \C be the unramified covering associated to ρ .

Deck(ρ) induces a finitely generated C[t, t−1]-module structure MC on H1(X;C)

C[t, t−1] principal and the torsion part of MC ⇒ Alexander polynomial.

First results

Zariski: Alexander polynomial is trivial if C is irreducible with degree a prime power.

Zariski, for nodal and cuspidal curves: nodal points do not contribute to Alexander
polynomial. Position of cusps is important. For hexacuspidal sextics, ∆C equals either 1 or
t2− t +1.

Formulæ to compute ∆C in general by Libgober, Esnault, Loeser-Vaquié, A.

Libgober: ∆C determined by Burau representation and braid monodromy.
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Local and global Alexander polynomials

Links associated to affine curves

Local links: Given P ∈ C singular point, 0 < ε � 1: (S3
ε ,Kε ), Kε := C∩S3

ε is the local
link of C at P. We denote it by KP

C .

Global link: (S3
M ,KM), KM := C∩S3

N is the link at infinity of C. We denote it by K∞
C .

Theorem (Libgober)

∆C divides both ∏P∈Sing(C) ∆KP
C

and ∆K∞
C

.

Remark
Cogolludo and Florens compute the extra factor (∏P∈Sing(C) ∆KP

C
)/∆C .

Remark
If C = f−1(0) is smooth and K∞

C is isotopic to K∞

f−1(t), t small, then K∞
C determines the topology

of (C2,C) (Neumann) and π1(C2 \C)∼= Z (Kaliman).
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Definitions

Characteristic varieties are a generalization of Alexander polynomial for reducible curves.

Invariant of G := π1(C2 \C) and depends only on G/G′′.
The invariant is related with the Green-Lazarsfeld set and the Bieri-Neumann-Strebel
invariant.
Fix G a finitely presented group, and let H := G/G′.
k := rkH and h number of torsion elements.
Λ := C[H] the group algebra (if H is free it is a ring of Laurent polynomials).
TH algebraic variety associated to Λ; it is a complex abelian Lie group diffeomorphic to h
disjoint copies of tori (C∗)k .

Alexander Invariant

Y be a space (with the homotopy type of a cellular complex) such that π1(Y) = G.

ρ : X→ Y the universal abelian unramified covering associated to G→ H

MG := H1(X;C) = G′/G′′⊗C is a finitely generated Λ-module.

Jk(G)⊂ Λ be the Fitting ideals of MG.

Definition
The characteristic variety V ′k(G)⊂ TH is the zero locus of Jk(G).
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Definitions II

Twisted cohomology

Identify TH ≡ H1(Y;C∗) = Hom(G,GL(C;1)).

For σ ∈ TH , define a local system of coefficients Cσ

Definition

V ′′k (G) := {σ ∈ TH | dimH1(Y;Cσ )≥ k}

Remark
These two definitions may differ in 1 ∈ TH .

Remark
More general characteristic varieties can be defined using Hom(G,GL(C;m)), m > 1.
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Properties

Characteristic varieties are defined over Z.

Let σ 6= 1 a torsion element of TH of order ` > 1

ρ is associated to a cyclic `-fold covering ρσ : Xσ → Y

There is a natural decomposition of H1(Xσ ;C) =⊕`−1
j=0 Hσ j

σ ∈ Vk(G)⇔ dimHσ ≥ k.
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Computation of characteristic varieties

In general, it is very expensive to compute the characteristic varieties of a group. In case of
π1(C2 \C) or π1(P2 \C) it is also expensive to compute it in terms of C.
Libgober’s theory of quasiadjunction polytopes provide a way to compute the characteristic
varieties of π1(P2 \C) in terms of superabondance of some linear systems associated to the
singularities of C.

Theorem
Let C = C1 ∪·· ·∪Cr be the irreducible decomposition of a curve, G := π1(P2 \C). Then, the
non-coordinate irreducible components of Vk(G) can be computed using quasiadjunction
polytopes of the singular points of C.

Remark
As in the case of Alexander polynomial, nodal points are irrelevant.

Example (A., Cogolludo, Tokunaga)

Let C1 be a smooth conic and C2 be an irreducible quartic, such that C1 and C2 intersect
tangentially at four points. Let C := C1∪C2; then V1(π1(P2 \C)) is trivial if C2 is smooth but it
has a non trivial point if C2 has 3 nodes.
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Orbifold groups

Orbifold
An orbifold Xϕ is a quasiprojective Riemann surface X with a function ϕ : X→ N with value 1
outside a finite number of points.

Orbifold group

For an orbifold Xϕ , let p1, . . . ,pn the points such that ϕ(pj) := mj > 1. Then

π
orb
1 := π1(X \{p1, . . . ,pn})/〈µ

mj
j = 1〉

where µj is a meridian of pj. We denote Xϕ by Xm1,...,mn .

Definition
A dominant algebraic morphism ρ : Y→ X defines an orbifold morphism Y→ Xϕ if for all
p ∈ X, the divisor ρ∗(p) is an n-multiple.
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A dominant algebraic morphism ρ : Y→ X defines an orbifold morphism Y→ Xϕ if for all
p ∈ X, the divisor ρ∗(p) is an n-multiple.
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Orbifold groups II

Example

If C is a reduced curve with equation f 3
2 − f 2

3 = 0, fj homogeneous of degree j, then the mapping

P2 \C→ P1 \{1}, given by x 7→ f 3
2 (x)
f 2
3

, defines an orbifold morphism for ϕ(0) = 3 and

ϕ(∞) = 2.

Example

G := πorb
1 (C2,3) = Z/2Z∗Z/3Z, H = Z/6Z, TH = {ζ ∈ C∗ | ζ 6 = 1} and V1(G) consists of

{exp(± 2iπ
6 )}.
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G := πorb
1 ((C\{1, . . . ,r})n) = Fr ∗Z/nZ, r > 1, TH = V1(G) = (C∗)k×Z/nZ.

Example

G := πorb
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Quasiprojective groups

Let G be the fundamental group of a quasiprojective manifold X.

Theorem (Arapura)

Let Σ be an irreducible component of V1(G). Then,

If dimΣ > 0 then there exists a surjective morphism ρ : X→ C, C algebraic curve, and a
torsion element σ such that Σ = σρ∗(H1(C;C∗)).
If dimΣ = 0 then Σ is unitary.

Remark
Finite cyclic coverings determine V1(G)

Example

Let C1 be a quintic curve having three A4 singular points. Degtyarev proved that its
fundamental group is finite and non abelian of order 320. Let C be the union of C1 and a
tangent line to a singular point. Then, the Alexander polynomial of C is t4− t3 + t2− t +1 but
the points in the characteristic variety cannot come from a morphism onto an orbifold.
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Corollaries

Let G be a quasiprojective group.

Corollary

The irreducible components of V1(G) are subtori translated by torsion elements.

Corollary

Σ1,Σ2 irreducible components of V1(G), dim(Σ1 ∩Σ2) > 0⇒ Σ1 = Σ2.

Corollary

Σ1,Σ2 irreducible components of V1(G) of positive dimension⇒ Σ1 ∩Σ2 ⊂ V2(G) and consists
of torsion points.

Corollary

Σ irreducible component of V1(G), dimΣ > 2⇒ the subgroup parallel to Σ is also contained in
V1(G). Also true if dimΣ = 2 and G rational.

Corollary

Σ irreducible component of V1(G), dimΣ = 1⇒ 1 /∈ Σ.
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Applications

Γ finite graph with edges weighted by elements of N>1 (no loops or multiple edges). The Artin
group GΓ has the following presentation:

A generator gv for each vertex v of Γ

For each edge e with weight n and extremities v,w a relation

gvgwgv . . .︸ ︷︷ ︸
n times

= gwgvgw . . .︸ ︷︷ ︸
n times

Theorem
Let Gp,q,r the Artin group associated to a triangle with sides p,q,r

If 1
p + 1

q + 1
r ≥ 1 then there exists an affine curve Cp,q,r such that Gp,q,r = π1(C2 \Cp,q,r)

The groups G2,2n,2m, 2≤ n≤ m, m > 2, are not quasiprojective.
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Happy Birthday, Anatoly
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