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Setup

Our setup is the following

C ⊂ C
2 algebraic curve

Intersect C with a sphere Sr of radius r .

Links for small r are understood.

Links at infinity are understood.

Study properties of C by these links.

What happens with Lr if we change r?

Motto
C introduces a ”cobordism” between links of singular points and the
link at infinity.
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Classical Morse theory

Classical arguments from Morse theory

Lemma
If for all r ∈ [r1, r2], C is transverse to Sr , then Lr1 is isotopic to Lr2 .

Lemma
Crossing a non transversality point is either 0, or 1 or 2 – handle
addition to the link.
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Handles

Adding handles mean

0-handles: adding an unknot to Lr .

2-handles: deleting an unknot to Lr .

1-handles: adding a band.

Lemma
If C is a complex curve, there are no 2-handles.
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What about singularities

Crossing a singular point of multiplicity m can be viewed as follows

Take a disconnected sum of Lr with a link of singularity...

And then join them with precisely m one handles.

Example
Passing through a double point corresponds to changing an
undercrossing to an overcrossing on some planar diagram of the link.
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Examples

Now, please, hold Your breath, I will try to show some real pictures.
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Knot invariants

Take your favourite link invariant such that

It is computable for many algebraic knots

You can control its changes when adding a handle

It is not too good. It is not equal to genus for positive links.

And this invariant yields obstruction for the existence of a plane curve
with given singularities.
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Knot invariants II

My favourite invariant up to now is is

Tristram–Levine signature

Definition
If S is Seifert matrix of the link L and |ζ| = 1, then σL(ζ) is the
signature of the form

(1 − ζ)S + (1 − ζ̄)ST .
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Corollaries

Theorem
If L1, . . . , Ln are links of singular points of C, L∞ is a link at infinity, then
for almost all ζ

|σL∞
(ζ) −

n∑

k=1

σLk (ζ)| ≤ b1(C).

In the proof we use the absence of 2–handles, but this can be done in
general, i.e. non-complex case, too.
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Applications

A polynomial curve of bidegree (m, n), having an A2k singularity at
the origin, has k ≤∼ 1

4mn.

BMY-like inequality for polynomial curves.

Possible proof of Zajdenberg–Lin theorem using the fact that
b1(C) = 0 and relations among signatures of torus knots.

Studying deformations of singular points: we get new relations.

Find maximal number of cusps on a curve in CP2 of degree d . We
reprove Varchenko’s result s(d) ≤∼ 23

72d2, which is very close to

the best known 125+
√

73
432 d2.

Possible ways to improve everything if we apply better invariants.
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Thank You!
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