Morse theory for plane algebraic curves Jaca, 2009

Maciej Borodzik

Institute of Mathematics, University of Warsaw

Jaca, June 2009

Maciej Borodzik (Institute of Mathematics, Un Morse theory for plane algebraic curves

Our setup is the following

- $C \subset \mathbb{C}^2$ algebraic curve
- Intersect *C* with a sphere *S_r* of radius *r*.
- Links for small r are understood.
- Links at infinity are understood.
- Study properties of C by these links.

What happens with L_r if we change r?

Motto

C introduces a "cobordism" between links of singular points and the link at infinity.

・ 同 ト ・ ヨ ト ・ ヨ

Our setup is the following

- $C \subset \mathbb{C}^2$ algebraic curve
- Intersect *C* with a sphere *S_r* of radius *r*.
- Links for small *r* are understood.
- Links at infinity are understood.
- Study properties of C by these links.

What happens with L_r if we change r?

Motto

C introduces a "cobordism" between links of singular points and the link at infinity.

Our setup is the following

- $C \subset \mathbb{C}^2$ algebraic curve
- Intersect *C* with a sphere *S_r* of radius *r*.
- Links for small r are understood.
- Links at infinity are understood.
- Study properties of *C* by these links.

What happens with L_r if we change r?

Motto

Our setup is the following

- $C \subset \mathbb{C}^2$ algebraic curve
- Intersect *C* with a sphere *S_r* of radius *r*.
- Links for small *r* are understood.
- Links at infinity are understood.
- Study properties of *C* by these links.

What happens with L_r if we change r?

Motto

Our setup is the following

- $C \subset \mathbb{C}^2$ algebraic curve
- Intersect C with a sphere S_r of radius r.
- Links for small *r* are understood.
- Links at infinity are understood.
- Study properties of *C* by these links.

What happens with L_r if we change r?

Motto

Our setup is the following

- $C \subset \mathbb{C}^2$ algebraic curve
- Intersect *C* with a sphere *S_r* of radius *r*.
- Links for small *r* are understood.
- Links at infinity are understood.
- Study properties of C by these links.

What happens with L_r if we change r?

Motto

Our setup is the following

- $C \subset \mathbb{C}^2$ algebraic curve
- Intersect *C* with a sphere *S_r* of radius *r*.
- Links for small *r* are understood.
- Links at infinity are understood.
- Study properties of C by these links.

What happens with L_r if we change r?

Motto

Our setup is the following

- $C \subset \mathbb{C}^2$ algebraic curve
- Intersect C with a sphere S_r of radius r.
- Links for small *r* are understood.
- Links at infinity are understood.
- Study properties of C by these links.

What happens with L_r if we change r?

Motto

Classical arguments from Morse theory

Lemma

If for all $r \in [r_1, r_2]$, C is transverse to S_r , then L_{r_1} is isotopic to L_{r_2} .

Lemma

Crossing a non transversality point is either 0, or 1 or 2 – handle addition to the link.

・ 同 ト ・ ヨ ト ・ ヨ

Classical arguments from Morse theory

Lemma

If for all $r \in [r_1, r_2]$, C is transverse to S_r , then L_{r_1} is isotopic to L_{r_2} .

Lemma

Crossing a non transversality point is either 0, or 1 or 2 – handle addition to the link.

Classical arguments from Morse theory

Lemma

If for all $r \in [r_1, r_2]$, C is transverse to S_r , then L_{r_1} is isotopic to L_{r_2} .

Lemma

Crossing a non transversality point is either 0, or 1 or 2 - handle addition to the link.

< 回 > < 三 > < 三 >

- 0-handles: adding an unknot to L_r .
- 2-handles: deleting an unknot to L_r.
- 1-handles: adding a band.

Lemma

If C is a complex curve, there are no 2-handles.

- 0-handles: adding an unknot to L_r.
- 2-handles: deleting an unknot to L_r.
- 1-handles: adding a band.

Lemma

If C is a complex curve, there are no 2-handles.

- 0-handles: adding an unknot to L_r.
- 2-handles: deleting an unknot to L_r.
- 1-handles: adding a band.

Lemma

If C is a complex curve, there are no 2-handles.

-

- 0-handles: adding an unknot to L_r.
- 2-handles: deleting an unknot to L_r.
- I-handles: adding a band.

Lemma

If C is a complex curve, there are no 2-handles.

-

- 0-handles: adding an unknot to L_r.
- 2-handles: deleting an unknot to L_r.
- I-handles: adding a band.

Lemma

If C is a complex curve, there are no 2-handles.

- Take a disconnected sum of L_r with a link of singularity...
- And then join them with precisely *m* one handles.

Example

Passing through a double point corresponds to changing an undercrossing to an overcrossing on some planar diagram of the link.

- Take a disconnected sum of L_r with a link of singularity...
- And then join them with precisely m one handles.

Example

Passing through a double point corresponds to changing an undercrossing to an overcrossing on some planar diagram of the link.

< 回 > < 回 > < 回 >

- Take a disconnected sum of L_r with a link of singularity...
- And then join them with precisely *m* one handles.

Example

Passing through a double point corresponds to changing an undercrossing to an overcrossing on some planar diagram of the link.

A (10) A (10)

- Take a disconnected sum of L_r with a link of singularity...
- And then join them with precisely *m* one handles.

Example

Passing through a double point corresponds to changing an undercrossing to an overcrossing on some planar diagram of the link.

Now, please, hold Your breath, I will try to show some real pictures.

- It is computable for many algebraic knots
- You can control its changes when adding a handle
- It is not too good. It is not equal to genus for positive links.

- It is computable for many algebraic knots
- You can control its changes when adding a handle
- It is not too good. It is not equal to genus for positive links.
- And this invariant yields obstruction for the existence of a plane curve with given singularities.

- It is computable for many algebraic knots
- You can control its changes when adding a handle
- It is not too good. It is not equal to genus for positive links.

- It is computable for many algebraic knots
- You can control its changes when adding a handle
- It is not too good. It is not equal to genus for positive links.

- It is computable for many algebraic knots
- You can control its changes when adding a handle
- It is not too good. It is not equal to genus for positive links.

Tristram–Levine signature

Definition

If S is Seifert matrix of the link L and $|\zeta| = 1$, then $\sigma_L(\zeta)$ is the signature of the form

 $(1-\zeta)\mathbf{S}+(1-\overline{\zeta})\mathbf{S}^T.$

< 同 ト < 三 ト < 三

Tristram–Levine signature

Definition

If S is Seifert matrix of the link *L* and $|\zeta| = 1$, then $\sigma_L(\zeta)$ is the signature of the form

 $(1-\zeta)\mathbf{S}+(1-\overline{\zeta})\mathbf{S}^T.$

- A 🖻 🕨

Tristram-Levine signature

Definition

If S is Seifert matrix of the link *L* and $|\zeta| = 1$, then $\sigma_L(\zeta)$ is the signature of the form

 $(1-\zeta)\mathbf{S}+(1-\overline{\zeta})\mathbf{S}^{\mathsf{T}}.$

- E 🕨

Tristram-Levine signature

Definition

If *S* is Seifert matrix of the link *L* and $|\zeta| = 1$, then $\sigma_L(\zeta)$ is the signature of the form

$$(1-\zeta)\mathbf{S}+(1-\overline{\zeta})\mathbf{S}^{\mathsf{T}}.$$

Theorem

If L_1, \ldots, L_n are links of singular points of C, L_∞ is a link at infinity, then for almost all ζ

$$|\sigma_{L_{\infty}}(\zeta)-\sum_{k=1}^{n}\sigma_{L_{k}}(\zeta)|\leq b_{1}(C).$$

In the proof we use the absence of 2–handles, but this can be done in general, i.e. non-complex case, too.

< A > < A > >

Theorem

If L_1, \ldots, L_n are links of singular points of C, L_∞ is a link at infinity, then for almost all ζ

$$|\sigma_{L_{\infty}}(\zeta)-\sum_{k=1}^{n}\sigma_{L_{k}}(\zeta)|\leq b_{1}(C).$$

In the proof we use the absence of 2–handles, but this can be done in general, i.e. non-complex case, too.

< A > < > >

- A polynomial curve of bidegree (*m*, *n*), having an A_{2k} singularity at the origin, has k ≤∼ ¹/₄mn.
- BMY-like inequality for polynomial curves.
- Possible proof of Zajdenberg–Lin theorem using the fact that $b_1(C) = 0$ and relations among signatures of torus knots.
- Studying deformations of singular points: we get new relations.
- Find maximal number of cusps on a curve in CP² of degree d.

Possible ways to improve everything if we apply better invariants.

- A polynomial curve of bidegree (*m*, *n*), having an A_{2k} singularity at the origin, has k ≤∼ ¹/₄mn.
- BMY-like inequality for polynomial curves.
- Possible proof of Zajdenberg–Lin theorem using the fact that $b_1(C) = 0$ and relations among signatures of torus knots.
- Studying deformations of singular points: we get new relations.
- Find maximal number of cusps on a curve in CP² of degree d.

Possible ways to improve everything if we apply better invariants.

- A polynomial curve of bidegree (*m*, *n*), having an A_{2k} singularity at the origin, has k ≤∼ ¹/₄mn.
- BMY-like inequality for polynomial curves.
- Possible proof of Zajdenberg–Lin theorem using the fact that $b_1(C) = 0$ and relations among signatures of torus knots.
- Studying deformations of singular points: we get new relations.
- Find maximal number of cusps on a curve in CP² of degree d.
- Possible ways to improve everything if we apply better invariants.

- A polynomial curve of bidegree (*m*, *n*), having an A_{2k} singularity at the origin, has k ≤∼ ¹/₄mn.
- BMY-like inequality for polynomial curves.
- Possible proof of Zajdenberg–Lin theorem using the fact that $b_1(C) = 0$ and relations among signatures of torus knots.
- Studying deformations of singular points: we get new relations.
- Find maximal number of cusps on a curve in CP² of degree d. We reprove Varchenko's result s(d) ≤~ ²²/₂d², which is very close to the best known ^{125+√73}/₄₃₂d².
- Possible ways to improve everything if we apply better invariants.

- A polynomial curve of bidegree (*m*, *n*), having an A_{2k} singularity at the origin, has k ≤∼ ¹/₄mn.
- BMY-like inequality for polynomial curves.
- Possible proof of Zajdenberg–Lin theorem using the fact that $b_1(C) = 0$ and relations among signatures of torus knots.
- Studying deformations of singular points: we get new relations.
- Find maximal number of cusps on a curve in CP² of degree d. We reprove Varchenko's result s(d) ≤~ ²³/₇₂ d², which is very close to the best known ^{125±√73}/₄₃₂ d².

• Possible ways to improve everything if we apply better invariants.

- A polynomial curve of bidegree (*m*, *n*), having an A_{2k} singularity at the origin, has k ≤∼ ¹/₄mn.
- BMY-like inequality for polynomial curves.
- Possible proof of Zajdenberg–Lin theorem using the fact that $b_1(C) = 0$ and relations among signatures of torus knots.
- Studying deformations of singular points: we get new relations.
- Find maximal number of cusps on a curve in CP² of degree *d*. We reprove Varchenko's result s(d) ≤ ~ ²³/₇₂d², which is very close to the best known ^{125+√73}/₄₃₂d².
- Possible ways to improve everything if we apply better invariants.

4 3 > 4 3

Thank You!

æ

< 17 ▶