Morse theory for plane algebraic curves Jaca, 2009

Maciej Borodzik

Institute of Mathematics, University of Warsaw
Jaca, June 2009

Setup

Our setup is the following

- $C \subset \mathbb{C}^{2}$ algebraic curve

 - Intersect C with a sphere S_{r} of radius r.
Setup

Our setup is the following

- $C \subset \mathbb{C}^{2}$ algebraic curve
- Intersect C with a sphere S_{r} of radius r. - Links for small r are understood.

Setup

Our setup is the following

- $C \subset \mathbb{C}^{2}$ algebraic curve
- Intersect C with a sphere S_{r} of radius r.
- Links for small r are understood.

Setup

Our setup is the following

- $C \subset \mathbb{C}^{2}$ algebraic curve
- Intersect C with a sphere S_{r} of radius r.
- Links for small r are understood.
- Links at infinity are understood.
- Study properties of C by these links.

Setup

Our setup is the following

- $C \subset \mathbb{C}^{2}$ algebraic curve
- Intersect C with a sphere S_{r} of radius r.
- Links for small r are understood.
- Links at infinity are understood.
- Study properties of C by these links.

What happens with L_{r} if we change r ?

Setup

Our setup is the following

- $C \subset \mathbb{C}^{2}$ algebraic curve
- Intersect C with a sphere S_{r} of radius r.
- Links for small r are understood.
- Links at infinity are understood.
- Study properties of C by these links. What happens with L_{r} if we change r ? Motto
C introduces a "cobordism" between links of singular points and the

Setup

Our setup is the following

- $C \subset \mathbb{C}^{2}$ algebraic curve
- Intersect C with a sphere S_{r} of radius r.
- Links for small r are understood.
- Links at infinity are understood.
- Study properties of C by these links.

What happens with L_{r} if we change r ?

Motto
 C introduces a "cobordism" between links of singular points and the link at infinity.

Setup

Our setup is the following

- $C \subset \mathbb{C}^{2}$ algebraic curve
- Intersect C with a sphere S_{r} of radius r.
- Links for small r are understood.
- Links at infinity are understood.
- Study properties of C by these links.

What happens with L_{r} if we change r ?

Motto

C introduces a "cobordism" between links of singular points and the link at infinity.

Classical Morse theory

Classical arguments from Morse theory
Lemma
If for all $r \in\left[r_{1}, r_{2}\right], C$ is transverse to S_{r}, then $L_{r_{1}}$ is isotopic to $L_{r_{2}}$.
Lemma addition to the link.

Classical Morse theory

Classical arguments from Morse theory
Lemma
If for all $r \in\left[r_{1}, r_{2}\right]$, C is transverse to S_{r}, then $L_{r_{1}}$ is isotopic to $L_{r_{2}}$.

Lemma

Crossing a non transversality point is either 0 , or 1 or 2 - handle addition to the link.

Classical Morse theory

Classical arguments from Morse theory
Lemma
If for all $r \in\left[r_{1}, r_{2}\right]$, C is transverse to S_{r}, then $L_{r_{1}}$ is isotopic to $L_{r_{2}}$.

Lemma

Crossing a non transversality point is either 0 , or 1 or 2 - handle addition to the link.

Handles

Adding handles mean

- 0-handles: adding an unknot to L_{r}. - 2-handles: deleting an unknot to L_{r}.

Handles

Adding handles mean

- O-handles: adding an unknot to L_{r}.

- 2-handles: deleting an unknot to L_{r}

 - 1-handles: adding a band.
Handles

Adding handles mean

- 0-handles: adding an unknot to L_{r}.
- 2-handles: deleting an unknot to L_{r}.
- 1-handles: adding a band.

Lemma
If C is a complex curve, there are no 2-handles.

Handles

Adding handles mean

- 0-handles: adding an unknot to L_{r}.
- 2-handles: deleting an unknot to L_{r}.
- 1-handles: adding a band.

Lemma

If C is a complex curve, there are no 2-handles.

Handles

Adding handles mean

- 0-handles: adding an unknot to L_{r}.
- 2-handles: deleting an unknot to L_{r}.
- 1-handles: adding a band.

Lemma

If C is a complex curve, there are no 2 -handles.

What about singularities

Crossing a singular point of multiplicity m can be viewed as follows

- Take a disconnected sum of L_{r} with a link of singularity...

What about singularities

Crossing a singular point of multiplicity m can be viewed as follows

- Take a disconnected sum of L_{r} with a link of singularity...
- And then join them with precisely m one handles.

What about singularities

Crossing a singular point of multiplicity m can be viewed as follows

- Take a disconnected sum of L_{r} with a link of singularity...
- And then join them with precisely m one handles.

What about singularities

Crossing a singular point of multiplicity m can be viewed as follows

- Take a disconnected sum of L_{r} with a link of singularity...
- And then join them with precisely m one handles.

Example

Passing through a double point corresponds to changing an undercrossing to an overcrossing on some planar diagram of the link.

Examples

Now, please, hold Your breath, I will try to show some real pictures.

Knot invariants

Take your favourite link invariant such that

- It is computable for many algebraic knots
- You can control its changes when adding a handle

Knot invariants

Take your favourite link invariant such that

- It is computable for many algebraic knots
- You can control its changes when adding a handle

Knot invariants

Take your favourite link invariant such that

- It is computable for many algebraic knots
- You can control its changes when adding a handle
- It is not too good. It is not equal to genus for positive links. And this invariant yields obstruction for the existence of a plane curve with given singularities.

Knot invariants

Take your favourite link invariant such that

- It is computable for many algebraic knots
- You can control its changes when adding a handle
- It is not too good. It is not equal to genus for positive links.

And this invariant yields obstruction for the existence of a plane curve with given singularities.

Knot invariants

Take your favourite link invariant such that

- It is computable for many algebraic knots
- You can control its changes when adding a handle
- It is not too good. It is not equal to genus for positive links.

And this invariant yields obstruction for the existence of a plane curve with given singularities.

Knot invariants II

My favourite invariant up to now is

Tristram-Levine signature

Knot invariants II

My favourite invariant up to now is is

Tristram-Levine signature

Definition
 If S in Cnifnr matrix of the link L and $C=1$, then $\sigma(C)$ is the

 signature of the form
Knot invariants II

My favourite invariant up to now is is

Tristram-Levine signature

Definition

If S is Seifer matrix of the link L and $|\zeta|=1$, then $\sigma_{L}(\zeta)$ is the signature of the form

Knot invariants II

My favourite invariant up to now is is
Tristram-Levine signature

Definition

If S is Seifert matrix of the link L and $|\zeta|=1$, then $\sigma_{L}(\zeta)$ is the signature of the form

$$
(1-\zeta) S+(1-\bar{\zeta}) S^{T}
$$

Corollaries

Theorem

If L_{1}, \ldots, L_{n} are links of singular points of C, L_{∞} is a link at infinity, then for almost all ζ

$$
\left|\sigma_{L_{\infty}}(\zeta)-\sum_{k=1}^{n} \sigma_{L_{k}}(\zeta)\right| \leq b_{1}(C)
$$

In the proof we use the absence of 2-handles, but this can be done in general, i.e. non-complex case, too.

Corollaries

Theorem

If L_{1}, \ldots, L_{n} are links of singular points of C, L_{∞} is a link at infinity, then for almost all ζ

$$
\left|\sigma_{L_{\infty}}(\zeta)-\sum_{k=1}^{n} \sigma_{L_{k}}(\zeta)\right| \leq b_{1}(C)
$$

In the proof we use the absence of 2-handles, but this can be done in general, i.e. non-complex case, too.

Applications

- A polynomial curve of bidegree (m, n), having an $A_{2 k}$ singularity at the origin, has $k \leq \sim \frac{1}{4} m n$.
- BMY-like inequality for polynomial curves.

Possible proof of Zajdenberg-Lin theorem using the fact that $b_{1}(C)=0$ and relations among signatures of torus knots.

Applications

- A polynomial curve of bidegree (m, n), having an $A_{2 k}$ singularity at the origin, has $k \leq \sim \frac{1}{4} m n$.
- BMY-like inequality for polynomial curves.
- Possible proof of Zajdenberg-Lin theorem using the fact that $b_{1}(C)=0$ and relations among signatures of torus knots.
- Studying deformations of singular points: we get new relations

Applications

- A polynomial curve of bidegree (m, n), having an $A_{2 k}$ singularity at the origin, has $k \leq \sim \frac{1}{4} m n$.
- BMY-like inequality for polynomial curves.
- Possible proof of Zajdenberg-Lin theorem using the fact that $b_{1}(C)=0$ and relations among signatures of torus knots.
- Studying deformations of singular points: we get new relations. - Find maximal number of cusps on a curve in $\mathbb{C} P^{2}$ of degree d.

Applications

- A polynomial curve of bidegree (m, n), having an $A_{2 k}$ singularity at the origin, has $k \leq \sim \frac{1}{4} m n$.
- BMY-like inequality for polynomial curves.
- Possible proof of Zajdenberg-Lin theorem using the fact that $b_{1}(C)=0$ and relations among signatures of torus knots.
- Studying deformations of singular points: we get new relations.
- Find maximal number of cusps on a curve in $\mathbb{C} P^{2}$ of degree d.

Applications

- A polynomial curve of bidegree (m, n), having an $A_{2 k}$ singularity at the origin, has $k \leq \sim \frac{1}{4} m n$.
- BMY-like inequality for polynomial curves.
- Possible proof of Zajdenberg-Lin theorem using the fact that $b_{1}(C)=0$ and relations among signatures of torus knots.
- Studying deformations of singular points: we get new relations.
- Find maximal number of cusps on a curve in $\mathbb{C} P^{2}$ of degree d.
the best known $\frac{125+\sqrt{73}}{432} d^{2}$.
- Possible ways to improve everything if we apply better invariants.

Applications

- A polynomial curve of bidegree (m, n), having an $A_{2 k}$ singularity at the origin, has $k \leq \sim \frac{1}{4} m n$.
- BMY-like inequality for polynomial curves.
- Possible proof of Zajdenberg-Lin theorem using the fact that $b_{1}(C)=0$ and relations among signatures of torus knots.
- Studying deformations of singular points: we get new relations.
- Find maximal number of cusps on a curve in $\mathbb{C} P^{2}$ of degree d. We reprove Varchenko's result $s(d) \leq \sim \frac{23}{72} d^{2}$, which is very close to the best known $\frac{125+\sqrt{73}}{432} d^{2}$.
- Possible ways to improve everything if we apply better invariants.

Thank You!

