Euler-Poincaré Characteristic, Todd genus and signature of singular varieties

Jean-Paul Brasselet (Marseille) joint work with Jörg Schürmann (Münster)
and Shoji Yokura (Kagoshima)

LIB60BER
Topology of Algebraic Varieties, Jaca
22 June 2009

Preamble: 1. Euler - Poincaré Characteristic

Definition (Poincaré)

Let X be a triangulated compact (smooth or singular) variety, the Euler - Poincaré characteristic of X is defined as

$$
e(X)=\sum_{i=0}^{m}(-1)^{i} k_{i}
$$

where $m=\operatorname{dim}_{\mathbb{R}} X$ and k_{i} is the number of i-dimensional simplexes.

Preamble: 1. Euler - Poincaré Characteristic

Example 1 (Lhuilier)

Let X be a complex algebraic curve, i.e. a compact Riemann surface. X is homeomorphic to a sphere with g handles.
The Euler - Poincaré characteristic of X is

$$
e(X)=2-2 g
$$

Preamble: 1. Euler - Poincaré Characteristic

Example 1 (Lhuilier)

Let X be a complex algebraic curve, i.e. a compact Riemann surface. X is homeomorphic to a sphere with g handles.
The Euler - Poincaré characteristic of X is

$$
e(X)=2-2 g
$$

- 2-dimensional sphere: $e\left(S^{2}\right)=2$,

Preamble: 1. Euler - Poincaré Characteristic

Example 1 (Lhuilier)

Let X be a complex algebraic curve, i.e. a compact Riemann surface. X is homeomorphic to a sphere with g handles.
The Euler - Poincaré characteristic of X is

$$
e(X)=2-2 g
$$

- 2-dimensional sphere: $e\left(S^{2}\right)=2$,
- 2-dimensional torus: $e(T)=0$,

Preamble: 1. Euler - Poincaré Characteristic

Example 1 (Lhuilier)

Let X be a complex algebraic curve, i.e. a compact Riemann surface. X is homeomorphic to a sphere with g handles.
The Euler - Poincaré characteristic of X is

$$
e(X)=2-2 g
$$

- 2-dimensional sphere: $e\left(S^{2}\right)=2$,
- 2-dimensional torus: $e(T)=0$,

Example 2

The Euler - Poincaré characteristic of the pinched torus

$$
\text { is } e(P)=1
$$

Preamble : 1. Euler - Poincaré Characteristic

Theorem (Poincaré-Hopf)
Let X be a compact manifold and let v be a (continuous) vector field with (finitely many) isolated singularities $\left(a_{j}\right)_{j \in J}$ of index $I\left(v, a_{j}\right)$, then

$$
e(X)=\sum_{j \in J} I\left(v, a_{j}\right)
$$

Preamble: 2. The arithmetic genus

Let X be a complex algebraic manifold, $n=\operatorname{dim}_{\mathbb{C}} X$.
Let g_{i} be the number of \mathbb{C}-linearly independent holomorphic differential i-forms on X.

Definition (Arithmetic Genus)

The arithmetic genus of X is defined as :

$$
\chi(X):=\sum_{i=0}^{n}(-1)^{i} g_{i}
$$

Preamble: 2. The arithmetic genus

Let X be a complex algebraic manifold, $n=\operatorname{dim}_{\mathbb{C}} X$.
Let g_{i} be the number of \mathbb{C}-linearly independent holomorphic differential i-forms on X.

- g_{0} is the number of linearly independent holomorphic functions, i.e. the number of connected components of X,

Definition (Arithmetic Genus)

The arithmetic genus of X is defined as :

$$
\chi(X):=\sum_{i=0}^{n}(-1)^{i} g_{i}
$$

Preamble : 2. The arithmetic genus

Let X be a complex algebraic manifold, $n=\operatorname{dim}_{\mathbb{C}} X$.
Let g_{i} be the number of \mathbb{C}-linearly independent holomorphic differential i-forms on X.

- g_{0} is the number of linearly independent holomorphic functions, i.e. the number of connected components of X,
- g_{n} is called geometric genus of X,

Definition (Arithmetic Genus)

The arithmetic genus of X is defined as :

$$
\chi(X):=\sum_{i=0}^{n}(-1)^{i} g_{i}
$$

Preamble : 2. The arithmetic genus

Let X be a complex algebraic manifold, $n=\operatorname{dim}_{\mathbb{C}} X$.
Let g_{i} be the number of \mathbb{C}-linearly independent holomorphic differential i-forms on X.

- g_{0} is the number of linearly independent holomorphic functions, i.e. the number of connected components of X,
- g_{n} is called geometric genus of X,
- g_{1} is called irregularity of X,

Definition (Arithmetic Genus)

The arithmetic genus of X is defined as :

$$
\chi(X):=\sum_{i=0}^{n}(-1)^{i} g_{i}
$$

Preamble: 3. The arithmetic genus (an example)

Example

Let X be a complex algebraic curve, i.e. a compact Riemann surface. X is homeomorphic to a sphere with g handles. Then $g_{0}=1$ and $g_{1}=g_{n}=g$.
The arithmetic genus of X is:

$$
\chi(X)=1-g
$$

Preamble: 4. The Todd genus

The Todd genus $T(X)$ has been defined (by Todd) in terms of Eger-Todd fundamental classes (polar varieties), using Severi results. The Eger-Todd classes are homological Chern classes of X.

Todd "proved" that

$$
T(X)=\chi(X)
$$

In fact, the Todd proof uses a Severi Lemma which has never been completely proved. The Todd result has been proved by Hirzebruch.

Preamble: 5. The signature

Definition (Thom-Hirzebruch)

Let M be a (real) compact oriented $4 k$-dimensional manifold. Let x and y two elements of $H^{2 k}(M ; \mathbb{R})$, then

$$
\langle x \cup y,[M]\rangle \in \mathbb{R}
$$

defines a bilinear form on the vector space $H^{2 k}(M ; \mathbb{R})$. The index (or signature) of M, denoted by $\operatorname{sign}(M)$, is defined as the index of this form, i.e. the number of positive eigenvalues minus the number of negative eigenvalues.

What shall we do ?

X manifold		
number		
$e(X)$	-	-
-	-	-
-		
$\operatorname{sign}(X)$		

What shall we do ?

X manifold	X manifold	
number	cohomology classes	
$e(X)$	Chern	
-	-	-
$\chi(X)$	Todd	-
$\operatorname{sign}(X)$	-	

Hirzebruch Theory

What shall we do ?

X manifold	X manifold	X singular variety
number	cohomology classes	homology classes
$e(X)$	Chern	Schwartz-MacPherson
-	-	-
$\chi(X)$	Todd	Baum-Fulton-MacPherson
-	-	-
$\operatorname{sign}(X)$	Thom-Hirzebruch	Cappell-Shaneson

Hirzebruch Theory
Motivic Theory (BSY)

Hirzebruch Series

$$
Q_{y}(\alpha):=\frac{\alpha(1+y)}{1-e^{-\alpha(1+y)}}-\alpha y \in \mathbb{Q}[y][[\alpha]]
$$

Hirzebruch Series

$$
\begin{gathered}
Q_{y}(\alpha):=\frac{\alpha(1+y)}{1-e^{-\alpha(1+y)}}-\alpha y \in \mathbb{Q}[y][[\alpha]] \\
Q_{-1}(\alpha)=1+\alpha \quad y=-1
\end{gathered}
$$

Hirzebruch Series

$$
\begin{aligned}
& \quad Q_{y}(\alpha):=\frac{\alpha(1+y)}{1-e^{-\alpha(1+y)}}-\alpha y \in \mathbb{Q}[y][[\alpha]] \\
& Q_{-1}(\alpha)=1+\alpha \quad y=-1 \\
& Q_{0}(\alpha)=\frac{\alpha}{1-e^{-\alpha}} \quad y=0
\end{aligned}
$$

Hirzebruch Series

$$
\begin{aligned}
& Q_{y}(\alpha):=\frac{\alpha(1+y)}{1-e^{-\alpha(1+y)}}-\alpha y \in \mathbb{Q}[y][[\alpha]] \\
& Q_{-1}(\alpha)=1+\alpha \quad y=-1 \\
& Q_{0}(\alpha)=\frac{\alpha}{1-e^{-\alpha}} \\
& y=0 \\
& Q_{1}(\alpha)=\frac{\alpha}{\tanh \alpha} \\
& y=1
\end{aligned}
$$

Characteristic Classes of Manifolds.

Let X be a complex manifold with $\operatorname{dimension} \operatorname{dim}_{\mathbb{C}} X=n$, let us denote by

$$
c^{*}(T X)=\sum_{j=0}^{n} c^{j}(T X), \quad c^{j}(T X) \in H^{2 j}(X ; \mathbb{Z})
$$

the total Chern class of the (complex) tangent bundle $T X$.

Definition

The Chern roots α_{i} of TX are defined by:

$$
\sum_{j=0}^{n} c^{j}(T X) t^{j}=\prod_{i=1}^{n}\left(1+\alpha_{i} t\right)
$$

$\alpha_{i} \in H^{2}(X ; \mathbb{Z})$.

One defines the Todd-Hirzebruch class: $\widetilde{\mathbf{t d}_{(\mathbf{y})}}(\mathbf{T X}):=\prod_{\mathbf{i}=1}^{\mathbf{n}} \mathbf{Q}_{\mathbf{y}}\left(\alpha_{\mathbf{i}}\right)$

One defines the Todd-Hirzebruch class: $\widetilde{\mathbf{t d}_{(\mathbf{y})}}(\mathbf{T X}):=\prod_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \mathbf{Q}_{\mathbf{y}}\left(\alpha_{\mathbf{i}}\right)$

One defines the Todd-Hirzebruch class: $\widetilde{\mathbf{t d}_{(\mathbf{y})}}(\mathbf{T X}):=\prod_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \mathbf{Q}_{\mathbf{y}}\left(\alpha_{\mathbf{i}}\right)$

One defines the Todd-Hirzebruch class: $\widetilde{\mathbf{t d}_{(\mathbf{y})}}(\mathbf{T X}):=\prod_{\mathbf{i}=1}^{\mathbf{n}} \mathbf{Q}_{\mathbf{y}}\left(\alpha_{\mathbf{i}}\right)$

$$
\underset{\operatorname{td}_{(y)}(T X)}{ }= \begin{cases}c^{*}(T X) & \prod_{i=1}^{n}\left(1+\alpha_{i}\right) \\ & \text { Chern class, } \\ t d^{*}(T X)=\prod_{i=1}^{n}\left(\frac{\alpha_{i}}{1-e^{-\alpha_{i}}}\right) & y=-1 \\ & \text { Todd class, }\end{cases}
$$

One defines the Todd-Hirzebruch class: $\widetilde{\mathbf{t d}_{(\mathbf{y})}}(\mathbf{T X}):=\prod_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \mathbf{Q}_{\mathbf{y}}\left(\alpha_{\mathbf{i}}\right)$

$$
\widetilde{t d_{(y)}}(T X)=\left\{\begin{array}{lll}
c^{*}(T X) & =\prod_{\substack{i=1 \\
\text { Chern class, } \\
\\
\\
\\
t d^{*}(T X) \\
\\
\\
\\
\\
\text { Todd class, } \\
\prod_{i=1}^{n}\left(\frac{\alpha_{i}}{1-e^{-\alpha_{i}}}\right)}} \begin{array}{ll}
& y=-1 \\
L^{*}(T X) & =\prod_{i=1}^{n}\left(\frac{\alpha_{i}}{\tanh \alpha_{i}}\right) \\
\text { Thom-Hirzebruch L-class. }
\end{array} & y=0
\end{array}\right.
$$

The χ_{y}-characteristic

Let X be a complex projective manifold.
Definition
One defines the χ_{y}-characteristic of X by

$$
\chi_{y}(X):=\sum_{p=0}^{<\infty}\left(\sum_{i=0}^{<\infty}(-1)^{i} \operatorname{dim}_{\mathbb{C}} H^{i}\left(X, \wedge^{p} T^{*} X\right)\right) \cdot y^{p}
$$

The χ_{y}-characteristic

Let X be a complex projective manifold.
Definition
One defines the χ_{y}-characteristic of X by

$$
\chi_{y}(X):=\sum_{p=0}^{<\infty}\left(\sum_{i=0}^{<\infty}(-1)^{i} \operatorname{dim}_{\mathbb{C}} H^{i}\left(X, \wedge^{p} T^{*} X\right)\right) \cdot y^{p}
$$

- $y=-1 \quad \chi_{-1}(X)=e(X)$, Euler - Poincaré characteristic of X
(Hodge)

The χ_{y}-characteristic

Let X be a complex projective manifold.
Definition
One defines the χ_{y}-characteristic of X by

$$
\chi_{y}(X):=\sum_{p=0}^{<\infty}\left(\sum_{i=0}^{<\infty}(-1)^{i} \operatorname{dim}_{\mathbb{C}} H^{i}\left(X, \wedge^{p} T^{*} X\right)\right) \cdot y^{p}
$$

- $y=-1 \quad \chi_{-1}(X)=e(X)$, Euler - Poincaré characteristic of X (Hodge)
- $y=0 \quad \chi_{0}(X)=\chi(X)$, arithmetic genus of X (definition)

The χ_{y}-characteristic

Let X be a complex projective manifold.
Definition
One defines the χ_{y}-characteristic of X by

$$
\chi_{y}(X):=\sum_{p=0}^{<\infty}\left(\sum_{i=0}^{<\infty}(-1)^{i} \operatorname{dim}_{\mathbb{C}} H^{i}\left(X, \wedge^{p} T^{*} X\right)\right) \cdot y^{p}
$$

- $y=-1 \quad \chi_{-1}(X)=e(X)$, Euler - Poincaré characteristic of X (Hodge)
- $y=0 \quad \chi_{0}(X)=\chi(X)$, arithmetic genus of X (definition)
- $y=1 \quad \chi_{1}(X)=\operatorname{sign}(X)$, signature of X (Hodge)

$$
\chi_{y}(X):=\sum_{p=0}^{<\infty}\left(\sum_{i=0}^{<\infty}(-1)^{i} \operatorname{dim}_{\mathbb{C}} H^{i}\left(X, \wedge^{p} T^{*} X\right)\right) \cdot y^{p}
$$

$$
\chi_{y}(X):=\sum_{p=0}^{<\infty}\left(\sum_{i=0}^{<\infty}(-1)^{i} \operatorname{dim}_{\mathbb{C}} H^{i}\left(X, \wedge^{p} T^{*} X\right)\right) \cdot y^{p}
$$

$$
\widetilde{t d_{(y)}}(T X):=\prod_{i=1}^{n} Q_{y}\left(\alpha_{i}\right)
$$

$$
\begin{array}{rlr}
\chi_{y}(X) & :=\sum_{p=0}^{<\infty}\left(\sum_{i=0}^{<\infty}(-1)^{i} \operatorname{dim}_{\mathbb{C}} H^{i}\left(X, \wedge^{p} T^{*} X\right)\right) \cdot y^{p} & \widetilde{t d_{(y)}}(T X):=\prod_{i=1}^{n} Q_{y}\left(\alpha_{i}\right) \\
-y & =-1 & e(X)
\end{array}
$$

$$
\begin{array}{rlr}
\chi_{y}(X):=\sum_{p=0}^{<\infty}\left(\sum_{i=0}^{<\infty}(-1)^{i} \operatorname{dim}_{\mathbb{C}} H^{i}\left(X, \wedge^{p} T^{*} X\right)\right) \cdot y^{p} & \widetilde{{t d_{(y)}}^{\prime}}(T X):=\prod_{i=1}^{n} Q_{y}\left(\alpha_{i}\right) \\
0 y & =-1 & e(X) \\
0 y=0 & \chi(X) & c^{*}(T X) \\
& t d^{*}(T X)
\end{array}
$$

$$
\begin{array}{rlr}
\chi_{y}(X):=\sum_{p=0}^{<\infty}\left(\sum_{i=0}^{<\infty}(-1)^{i} \operatorname{dim}_{\mathbb{C}} H^{i}\left(X, \wedge^{p} T^{*} X\right)\right) \cdot y^{p} & \widetilde{t d_{(y)}}(T X):=\prod_{i=1}^{n} Q_{y}\left(\alpha_{i}\right) \\
0 y & =-1 & e(X) \\
0 & \chi(X) & c^{*}(T X) \\
0 y & =1 & \operatorname{sign}(X)
\end{array} t d^{*}(T X)
$$

$$
\begin{array}{rlr}
\chi_{y}(X):=\sum_{p=0}^{<\infty}\left(\sum_{i=0}^{<\infty}(-1)^{i} \operatorname{dim}_{\mathbb{C}} H^{i}\left(X, \wedge^{p} T^{*} X\right)\right) \cdot y^{p} & \widetilde{t d_{(y)}}(T X):=\prod_{i=1}^{n} Q_{y}\left(\alpha_{i}\right) \\
0 y=-1 & e(X) & c^{*}(T X) \\
0 y=0 & \chi(X) & t d^{*}(T X) \\
0 y=1 & \operatorname{sign}(X) & L^{*}(T X)
\end{array}
$$

Hirzebruch Riemann-Roch Theorem

One has:

$$
\chi_{y}(X)=\int_{X} \widetilde{t d_{(y)}}(T X) \cap[X] \quad \in \mathbb{Q}[y]
$$

The three particular cases

The three particular cases

- $e(X)=\int_{X} c^{*}(T X) \cap[X]$

$$
y=-1
$$

Euler - Poincaré characteristic of X
Poincaré-Hopf Theorem

The three particular cases

- $e(X)=\int_{X} c^{*}(T X) \cap[X]$

$$
y=-1
$$

Euler - Poincaré characteristic of X
Poincaré-Hopf Theorem

- $\chi(X)=\int_{X} t d^{*}(T X) \cap[X]$

$$
y=0
$$

arithmetic genus of X
Hirzebruch-Riemann-Roch Theorem

The three particular cases

- $e(X)=\int_{X} c^{*}(T X) \cap[X]$

$$
y=-1
$$

Euler - Poincaré characteristic of X
Poincaré-Hopf Theorem

- $\chi(X)=\int_{X} t d^{*}(T X) \cap[X]$

$$
y=0
$$

arithmetic genus of X
Hirzebruch-Riemann-Roch Theorem

- $\operatorname{sign}(X)=\int_{X} L^{*}(T X) \cap[X]$
$y=1$
signature of X
Hirzebruch signature Theorem

Question

What can we do for singular varieties?

Three generalisations in the case of singular varieties.

Three generalisations in the case of singular varieties.

Chern Transformation (MacPherson)
$\mathbb{F}(X)$: Group of constructible functions (ex. $\mathbf{1}_{X}$)

$$
c_{*}: \mathbb{F}(X) \rightarrow H_{*}(X)
$$

One defines $c_{*}(X):=c_{*}\left(\mathbf{1}_{X}\right)$: Schwartz-MacPherson class of X.

Three generalisations in the case of singular varieties.
Chern Transformation (MacPherson)
$\mathbb{F}(X)$: Group of constructible functions (ex. $\mathbf{1}_{X}$)

$$
c_{*}: \mathbb{F}(X) \rightarrow H_{*}(X)
$$

One defines $c_{*}(X):=c_{*}\left(\mathbf{1}_{X}\right)$: Schwartz-MacPherson class of X.
Todd Transformation (Baum-Fulton-MacPherson)
$G_{0}(X)$: Grothendieck Group of coherent sheaves (ex. \mathcal{O}_{X})

$$
t d_{*}: G_{0}(X) \rightarrow H_{*}(X) \otimes \mathbb{Q}
$$

One defines $t d_{*}(X):=t d_{*}\left(\left[\mathcal{O}_{X}\right]\right)$

Three generalisations in the case of singular varieties.
Chern Transformation (MacPherson)
$\mathbb{F}(X)$: Group of constructible functions (ex. $\mathbf{1}_{X}$)

$$
c_{*}: \mathbb{F}(X) \rightarrow H_{*}(X)
$$

One defines $c_{*}(X):=c_{*}\left(\mathbf{1}_{X}\right)$: Schwartz-MacPherson class of X.
Todd Transformation (Baum-Fulton-MacPherson)
$G_{0}(X)$: Grothendieck Group of coherent sheaves (ex. \mathcal{O}_{X})

$$
t d_{*}: G_{0}(X) \rightarrow H_{*}(X) \otimes \mathbb{Q}
$$

One defines $t d_{*}(X):=t d_{*}\left(\left[\mathcal{O}_{X}\right]\right)$
L-Transformation (Cappell-Shaneson)
$\Omega(X)$: Group of constructible self-dual sheaves (ex. $\mathcal{I C} C_{X}$)

$$
L_{*}: \Omega(X) \rightarrow H_{2 *}(X ; \mathbb{Q})
$$

One defines $L_{*}(X):=L_{*}\left(\left[\mathcal{I C}_{X}\right]\right)$

Problem:

The three transformations are defined on different spaces:

$$
\mathbb{F}(X), \quad G_{0}(X) \quad \text { and } \quad \Omega(X)
$$

Where the "motivic" arrives...

Where the "motivic" arrives...

Definition

The Grothendieck relative group of algebraic varieties over X

$$
K_{0}(\operatorname{var} / X)
$$

is the quotient of the free abelian group of isomorphy classes of algebraic maps $Y \longrightarrow X$, modulo the "additivity relation":

$$
[Y \longrightarrow X]=[Z \longrightarrow Y \longrightarrow X]+[Y \backslash Z \longrightarrow Y \longrightarrow X]
$$

for closed algebraic sub-spaces Z in Y.

Three results...

Theorem

The map e : $K_{0}(v a r / X) \longrightarrow \mathbb{F}(X)$ defined by $e([f: Y \rightarrow X]):=f_{1} 1_{Y}$ is the unique group morphism which commutes with direct images for proper maps and such that $e\left(\left[i d_{X}\right]\right)=\mathbf{1}_{X}$ for X smooth and pure dimensional.

Theorem

The map e : $K_{0}(v a r / X) \longrightarrow \mathbb{F}(X)$ defined by $e([f: Y \rightarrow X]):=f_{1} \mathbf{1}_{Y}$ is the unique group morphism which commutes with direct images for proper maps and such that $e\left(\left[i d_{X}\right]\right)=\mathbf{1}_{X}$ for X smooth and pure dimensional.

Theorem

There is an unique group morphism $m C: K_{0}(\operatorname{var} / X) \longrightarrow G_{0}(X)$ which commutes with direct images for proper maps and such that $m C\left(\left[i d_{x}\right]\right)=\left[\mathcal{O}_{X}\right]$ for X smooth and pure dimensional.

Theorem

The map e $: K_{0}(v a r / X) \longrightarrow \mathbb{F}(X)$ defined by $e([f: Y \rightarrow X]):=f_{!} 1_{Y}$ is the unique group morphism which commutes with direct images for proper maps and such that $e\left(\left[i d_{X}\right]\right)=1_{X}$ for X smooth and pure dimensional.

Theorem

There is an unique group morphism $m C: K_{0}(v a r / X) \longrightarrow G_{0}(X)$ which commutes with direct images for proper maps and such that $m C\left(\left[i d_{x}\right]\right)=\left[\mathcal{O}_{X}\right]$ for X smooth and pure dimensional.

Theorem

The morphism sd : $K_{0}($ var $/ X) \longrightarrow \Omega(X)$ defined by

$$
\operatorname{sd}([f: Y \rightarrow X]):=\left[R f_{*} \mathbb{Q}_{Y}\left[\operatorname{dim}_{\mathbb{C}}(Y)+\operatorname{dim}_{\mathbb{C}}(X)\right]\right]
$$

is the unique group morphism which commutes with direct images for proper maps and such that $\operatorname{sd}\left(\left[i d_{X}\right]\right)=\left[\mathbb{Q}_{x}\left[2 \operatorname{dim}_{\mathbb{C}}(X)\right]\right]=\left[\mathcal{I} \mathcal{C}_{X}\right]$ for X smooth and pure dimensional.
...plus one...

Theorem

There is an unique group morphism

$$
T_{y}: K_{0}(\operatorname{var} / X) \longrightarrow H_{*}(X) \otimes \mathbb{Q}[y]
$$

which commutes with direct images for proper maps and such that $T_{y}\left(\left[i d_{X}\right]\right)=t d_{(y)}(T X) \cap[X]$ for X smooth and pure dimensional.
...plus one...

Theorem

There is an unique group morphism

$$
T_{y}: K_{0}(\operatorname{var} / X) \longrightarrow H_{*}(X) \otimes \mathbb{Q}[y]
$$

which commutes with direct images for proper maps and such that $T_{y}\left(\left[i d_{X}\right]\right)=t d_{(y)}(T X) \cap[X]$ for X smooth and pure dimensional.

In particular, one has: $T_{-1}\left(\left[i d_{X}\right]\right)=c_{*}(X)$
...plus one...

Theorem

There is an unique group morphism

$$
T_{y}: K_{0}(\operatorname{var} / X) \longrightarrow H_{*}(X) \otimes \mathbb{Q}[y]
$$

which commutes with direct images for proper maps and such that $T_{y}\left(\left[i d_{X}\right]\right)=t d_{(y)}(T X) \cap[X]$ for X smooth and pure dimensional.

In particular, one has: $T_{-1}\left(\left[i d_{X}\right]\right)=c_{*}(X)$

Remark

If a complex algebraic variety X has only rational singularities (for example if X is a toric variety), then:

$$
m C\left(\left[i d_{X}\right]\right)=\left[\mathcal{O}_{X}\right] \in G_{0}(X) \quad \text { and in this case } \quad T_{0}\left(\left[i d_{X}\right]\right)=t d_{*}(X)
$$

That is not true in general!

Only for specialists...

Verdier Riemann-Roch Formula

Let $f: X^{\prime} \rightarrow X$ be a smooth map (or a map with constant relative dimension), then one has

$$
\widetilde{t d_{(y)}}\left(T_{f}\right) \cap f^{*} T_{y}([Z \longrightarrow X])=T_{y} f^{*}([Z \longrightarrow X]) .
$$

Here T_{f} is the bundle over X^{\prime} of tangent spaces to fibres of f.

Still for specialists...

Let us define $\operatorname{td}_{(1+y)}([\mathcal{F}]):=\sum_{i=0}^{<\infty} \widetilde{\operatorname{td}_{i}}([\mathcal{F}]) \cdot(1+y)^{-i}$.

Still for specialists...

Let us define $\operatorname{td}_{(1+y)}([\mathcal{F}]):=\sum_{i=0}^{<\infty} \widetilde{t d}_{i}([\mathcal{F}]) \cdot(1+y)^{-i}$.
Then one has:
Factorisation of T_{y}

$$
T_{y}=t d_{(1+y)} \circ m C: K_{0}(\operatorname{var} / X) \longrightarrow H_{*}(X) \otimes \mathbb{Q}[y] .
$$

The main result

The following diagrams commute:

$$
\begin{aligned}
& \mathbb{F}(X) \quad{ }^{e} \quad K_{0}(v a r / X) \\
& \xrightarrow{m C} \quad G_{0}(X) \\
& s d \quad \searrow \\
& C_{*} \downarrow \\
& T_{y} \downarrow \\
& \Omega(X) \\
& \downarrow t d_{*} \\
& H_{*}(X) \otimes \mathbb{Q} \stackrel{y=-1}{\rightleftarrows} H_{*}(X) \otimes \mathbb{Q}[y] \quad L_{*} \downarrow \xrightarrow{y=0} H_{*}(X) \otimes \mathbb{Q} \\
& y=1 \\
& H_{*}(X) \otimes \mathbb{Q}
\end{aligned}
$$

The main result

Theorem

The following diagrams commute:

$$
\begin{aligned}
& \mathbb{F}(X) \quad{ }^{e} \quad K_{0}(\operatorname{var} / X) \quad \xrightarrow{m C} G_{0}(X) \\
& c_{*} \downarrow \\
& T_{y} \downarrow \\
& \Omega(X) \\
& \downarrow t d_{*} \\
& H_{*}(X) \otimes \mathbb{Q} \stackrel{y=-1}{\rightleftarrows} \\
& H_{*}(X) \otimes \mathbb{Q}[y] \\
& L_{*} \downarrow \xrightarrow{y=0} \quad H_{*}(X) \otimes \mathbb{Q} \\
& y=1\rangle \\
& H_{*}(X) \otimes \mathbb{Q}
\end{aligned}
$$

The main result

Theorem

The following diagrams commute:

$$
\begin{aligned}
& \mathbb{F}(X) \stackrel{e}{\longleftarrow} K_{0}(\operatorname{var} / X) \quad \xrightarrow{m C} G_{0}(X) \\
& \text { sd } \searrow \\
& c_{*} \downarrow \\
& T_{y} \downarrow \\
& \Omega(X) \\
& \downarrow t d_{*} \\
& H_{*}(X) \otimes \mathbb{Q} \stackrel{y=-1}{\rightleftarrows} H_{*}(X) \otimes \mathbb{Q}[y] \quad L_{*} \downarrow \xrightarrow{y=0} H_{*}(X) \otimes \mathbb{Q} \\
& y=1\rangle \\
& H_{*}(X) \otimes \mathbb{Q}
\end{aligned}
$$

The main result

Theorem

The following diagrams commute:

$$
\begin{array}{ccccc}
\mathbb{F}(X) & \stackrel{e}{\rightleftarrows} & K_{0}(v a r / X) & & \stackrel{m C}{\longrightarrow}
\end{array} G_{0}(X)
$$

The main result

$$
\begin{aligned}
& \mathbb{F}(X) \quad \stackrel{e}{\longleftarrow} K_{0}(\operatorname{var} / X) \quad \xrightarrow{m C} G_{0}(X) \\
& c_{*} \downarrow \\
& T_{y} \downarrow \\
& \Omega(X) \\
& \downarrow t d_{*} \\
& H_{*}(X) \otimes \mathbb{Q} \stackrel{y=-1}{\rightleftarrows} H_{*}(X) \otimes \mathbb{Q}[y] \quad L_{*} \downarrow \xrightarrow{y=0} H_{*}(X) \otimes \mathbb{Q} \\
& \stackrel{y=1}{H_{*}(X) \otimes \mathbb{Q}}
\end{aligned}
$$

Thanks for your attention

Happy birthday Anatoly

