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Jean-Paul Brasselet (CNRS - Marseille) () Euler-Poincaré,Todd and signature Jaca, 22 June 2009 2 / 33



Preamble : 1. Euler - Poincaré Characteristic

Definition (Poincaré)

Let X be a triangulated compact (smooth or singular) variety,
the Euler - Poincaré characteristic of X is defined as

e(X ) =
m∑

i=0

(−1)iki

where m = dimR X and ki is the number of i -dimensional simplexes.
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Preamble : 1. Euler - Poincaré Characteristic

Example 1 (Lhuilier)

Let X be a complex algebraic curve, i.e. a compact Riemann surface.
X is homeomorphic to a sphere with g handles.
The Euler - Poincaré characteristic of X is

e(X ) = 2− 2g .

2-dimensional sphere: e(S2) = 2,

2-dimensional torus: e(T ) = 0,

Example 2

The Euler - Poincaré characteristic of the pinched torus

is e(P) = 1
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Preamble : 1. Euler - Poincaré Characteristic

Theorem (Poincaré-Hopf)

Let X be a compact manifold and let v be a (continuous) vector field with
(finitely many) isolated singularities (aj)j∈J of index I (v , aj), then

e(X ) =
∑
j∈J

I (v , aj).
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Preamble : 2. The arithmetic genus

Let X be a complex algebraic manifold, n = dimC X .
Let gi be the number of C-linearly independent holomorphic differential
i-forms on X .

g0 is the number of linearly independent holomorphic functions, i.e.
the number of connected components of X ,

gn is called geometric genus of X ,

g1 is called irregularity of X ,

Definition (Arithmetic Genus)

The arithmetic genus of X is defined as :

χ(X ) :=
n∑

i=0

(−1)igi
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Preamble : 3. The arithmetic genus (an example)

Example

Let X be a complex algebraic curve, i.e. a compact Riemann surface.
X is homeomorphic to a sphere with g handles. Then g0 = 1 and
g1 = gn = g .
The arithmetic genus of X is:

χ(X ) = 1− g
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Preamble : 4. The Todd genus

The Todd genus T (X ) has been defined (by Todd) in terms of Eger-Todd
fundamental classes (polar varieties), using Severi results. The Eger-Todd
classes are homological Chern classes of X .

Todd “proved”that
T (X ) = χ(X ).

In fact, the Todd proof uses a Severi Lemma which has never been
completely proved. The Todd result has been proved by Hirzebruch.
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Preamble : 5. The signature

Definition (Thom-Hirzebruch)

Let M be a (real) compact oriented 4k-dimensional manifold. Let x and y
two elements of H2k(M; R), then

〈x ∪ y , [M]〉 ∈ R

defines a bilinear form on the vector space H2k(M; R).
The index (or signature) of M, denoted by sign(M), is defined as the
index of this form, i.e. the number of positive eigenvalues minus the
number of negative eigenvalues.
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What shall we do ?

X manifold

number

e(X )
— — —
χ(X )
— — —
sign(X )
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What shall we do ?

X manifold X manifold

number cohomology classes

e(X ) Chern
— — —
χ(X ) Todd
— — —
sign(X ) Thom-Hirzebruch

Hirzebruch Theory
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What shall we do ?

X manifold X manifold X singular variety

number cohomology classes homology classes

e(X ) Chern Schwartz-MacPherson
— — —
χ(X ) Todd Baum-Fulton-MacPherson
— — —
sign(X ) Thom-Hirzebruch Cappell-Shaneson

Hirzebruch Theory Motivic Theory (BSY)
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Hirzebruch Series

Qy (α) :=
α(1 + y)

1− e−α(1+y)
− αy ∈ Q[y ][[α]]

Q−1(α) = 1 + α y = −1

Q0(α) = α

1− e−α
y = 0

Q1(α) = α
tanhα y = 1
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Characteristic Classes of Manifolds.

Let X be a complex manifold with dimension dimC X = n, let us denote by

c∗(TX ) =
n∑

j=0

c j(TX ), c j(TX ) ∈ H2j(X ; Z)

the total Chern class of the (complex) tangent bundle TX .

Definition

The Chern roots αi of TX are defined by:

n∑
j=0

c j(TX ) t j =
n∏

i=1

(1 + αi t)

αi ∈ H2(X ; Z).
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One defines the Todd-Hirzebruch class: t̃d(y)(TX) :=
n∏

i=1

Qy(αi)

t̃d(y)(TX ) =



c∗(TX ) =
n∏

i=1

(1 + αi ) y = −1

Chern class,

td∗(TX ) =
n∏

i=1

( αi

1−e−αi
) y = 0

Todd class,

L∗(TX ) =
n∏

i=1

( αi
tanhαi

) y = 1

Thom-Hirzebruch L-class.
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The χy -characteristic

Let X be a complex projective manifold.

Definition

One defines the χy -characteristic of X by

χy (X ) :=
<∞∑
p=0

(
<∞∑
i=0

(−1)i dimC H i (X ,∧pT ∗X )

)
· yp

y = −1 χ−1(X ) = e(X ), Euler - Poincaré characteristic of X
(Hodge)

y = 0 χ0(X ) = χ(X ), arithmetic genus of X (definition)

y = 1 χ1(X ) = sign(X ), signature of X (Hodge)
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(Hodge)

y = 0 χ0(X ) = χ(X ), arithmetic genus of X (definition)

y = 1 χ1(X ) = sign(X ), signature of X (Hodge)

Jean-Paul Brasselet (CNRS - Marseille) () Euler-Poincaré,Todd and signature Jaca, 22 June 2009 16 / 33
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χy (X ) :=
<∞X
p=0

 
<∞X
i=0

(−1)i dimC H i (X ,∧pT∗X )

!
· yp

gtd(y)(TX ) :=
nY

i=1

Qy (αi )

y = −1 e(X ) c∗(TX )

y = 0 χ(X ) td∗(TX )

y = 1 sign(X ) L∗(TX )

Hirzebruch Riemann-Roch Theorem

One has:

χy (X ) =

∫
X

t̃d(y)(TX ) ∩ [X ] ∈ Q[y ].
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χy (X ) :=
<∞X
p=0

 
<∞X
i=0

(−1)i dimC H i (X ,∧pT∗X )

!
· yp gtd(y)(TX ) :=

nY
i=1

Qy (αi )

y = −1 e(X ) c∗(TX )

y = 0 χ(X ) td∗(TX )

y = 1 sign(X ) L∗(TX )

Hirzebruch Riemann-Roch Theorem

One has:

χy (X ) =

∫
X

t̃d(y)(TX ) ∩ [X ] ∈ Q[y ].

Jean-Paul Brasselet (CNRS - Marseille) () Euler-Poincaré,Todd and signature Jaca, 22 June 2009 17 / 33



The three particular cases

e(X ) =
∫
X c∗(TX ) ∩ [X ] y = −1

Euler - Poincaré characteristic of X
Poincaré-Hopf Theorem

χ(X ) =
∫
X td∗(TX ) ∩ [X ] y = 0

arithmetic genus of X
Hirzebruch-Riemann-Roch Theorem

sign(X ) =
∫
X L∗(TX ) ∩ [X ] y = 1

signature of X
Hirzebruch signature Theorem
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Question

What can we do for singular varieties?
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Three generalisations in the case of singular varieties.

Chern Transformation (MacPherson)

F(X ) : Group of constructible functions (ex. 1X )

c∗ : F(X )→ H∗(X )

One defines c∗(X ) := c∗(1X ) : Schwartz-MacPherson class of X .

Todd Transformation (Baum-Fulton-MacPherson)

G0(X ) : Grothendieck Group of coherent sheaves (ex. OX )

td∗ : G0(X )→ H∗(X )⊗Q
One defines td∗(X ) := td∗([OX ])

L-Transformation (Cappell-Shaneson)

Ω(X ) : Group of constructible self-dual sheaves (ex. ICX )

L∗ : Ω(X )→ H2∗(X ; Q)

One defines L∗(X ) := L∗([ICX ])
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G0(X ) : Grothendieck Group of coherent sheaves (ex. OX )

td∗ : G0(X )→ H∗(X )⊗Q
One defines td∗(X ) := td∗([OX ])

L-Transformation (Cappell-Shaneson)

Ω(X ) : Group of constructible self-dual sheaves (ex. ICX )

L∗ : Ω(X )→ H2∗(X ; Q)

One defines L∗(X ) := L∗([ICX ])
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Problem:

The three transformations are defined on different spaces:

F(X ), G0(X ) and Ω(X )
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Where the “motivic”arrives...

Definition

The Grothendieck relative group of algebraic varieties over X

K0(var/X )

is the quotient of the free abelian group of isomorphy classes of algebraic
maps Y −→ X , modulo the “additivity relation”:

[Y −→ X ] = [Z −→ Y −→ X ] + [Y \ Z −→ Y −→ X ]

for closed algebraic sub-spaces Z in Y .

Jean-Paul Brasselet (CNRS - Marseille) () Euler-Poincaré,Todd and signature Jaca, 22 June 2009 22 / 33
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Three results...
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Theorem

The map e : K0(var/X ) −→ F(X ) defined by e([f : Y → X ]) := f!1Y is
the unique group morphism which commutes with direct images for proper
maps and such that e([idX ]) = 1X for X smooth and pure dimensional.

Theorem

There is an unique group morphism mC : K0(var/X ) −→ G0(X ) which
commutes with direct images for proper maps and such that
mC ([idX ]) = [OX ] for X smooth and pure dimensional.

Theorem

The morphism sd : K0(var/X ) −→ Ω(X ) defined by

sd([f : Y → X ]) := [Rf∗QY [dimC(Y ) + dimC(X )]]

is the unique group morphism which commutes with direct images for
proper maps and such that sd([idX ]) = [QX [2 dimC(X )]] = [ICX ] for X
smooth and pure dimensional.
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...plus one...

Theorem

There is an unique group morphism

Ty : K0(var/X ) −→ H∗(X )⊗Q[y ]

which commutes with direct images for proper maps and such that
Ty ([idX ]) = t̃d(y)(TX ) ∩ [X ] for X smooth and pure dimensional.

In particular, one has: T−1([idX ]) = c∗(X )

Remark

If a complex algebraic variety X has only rational singularities (for example
if X is a toric variety), then:

mC ([idX ]) = [OX ] ∈ G0(X ) and in this case T0([idX ]) = td∗(X ).

That is not true in general !

Jean-Paul Brasselet (CNRS - Marseille) () Euler-Poincaré,Todd and signature Jaca, 22 June 2009 25 / 33
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Only for specialists...

Verdier Riemann-Roch Formula

Let f : X ′ → X be a smooth map (or a map with constant relative
dimension), then one has

t̃d(y)(Tf ) ∩ f ∗Ty ([Z −→ X ]) = Ty f ∗([Z −→ X ]).

Here Tf is the bundle over X ′ of tangent spaces to fibres of f .
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Still for specialists...

Let us define td(1+y)([F ]) :=
∑<∞

i=0 t̃di ([F ]) · (1 + y)−i .

Then one has:

Factorisation of Ty

Ty = td(1+y) ◦mC : K0(var/X ) −→ H∗(X )⊗Q[y ].
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The main result

The following diagrams commute:

F(X )
e←− K0(var/X )

mC−→ G0(X )

sd ↘
c∗ ↓ Ty ↓ Ω(X ) ↓ td∗

H∗(X )⊗Q y=−1←− H∗(X )⊗Q[y ] L∗ ↓
y=0−→ H∗(X )⊗Q

y=1 ↘
H∗(X )⊗Q
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Thanks for your attention
Happy birthday Anatoly
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