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NEWTON TREES: 1) Newton trees for C[x−1][[x, y]],

2) Newton trees for C[x, y].

CLASSIFICATION OF RATIONAL POLY-

NOMIALS 1) Results of Miyanishi, Sugie and

Neuman, Norbury, 2) Results of Sasao.

STUDY OF C[y, xy, x2y + a1x, · · · , xk−1y +

· · ·+ ak−2x, xφ(xk−1y + · · ·+ ak−2x)]



NEWTON TREES FOR C[x−1][[x, y]]

Newton algorithm

Let

f(x, y) =
∑

(α,β)∈Z×N
cα,βxαyβ ∈ C[x−1][[x, y]]

We define

Suppf = {(α, β) ∈ Z× N|cα,β 6= 0}.

Let ∆(f) = ∆(Suppf) and N (f) = N (∆(f)).





For all S ∈ N (f) let in(f, S) =
∑

(α,β)∈S cα,βxαyβ,

be the face polynomial.

If lS has equation pα+qβ = N , with gcd(p, q) =

1, then in(f, S) = xaSybSFS(xq, yp) where FS(x, y) =∏
i(x− µiy)

νi.



We say that f ∈ C[x−1][[x, y]] is in good co-
ordinates if

1. N (f) doesn’t hit the x-axis or

2. if N (f) hits the x-axis and if Sm is the
corresponding face

(a) either lSm has equation pα + qβ = N
with p 6= 1 or

(b) if p = 1,then FSm has at least two
factors.



Lemma 1 If f ∈ C[x−1][[x, y]] is not in good

coordinates, there exist changes of variables

in C[[x, y]] in which it is in good coordinates.

Idea: If in(f, Sm) = xaSm(xq − µy)ν the face

disappears by a change of coordinates.



Let (p, q) ∈ N2, gcd(p, q) = 1. Let (p′, q′) ∈
N2 such that qq′ − pp′ = 1. Let µ ∈ C∗. We

define

σ(p,q,µ) : C[[x, y]] −→ C[[x1, y1]]

f(x, y) 7→ f(µq′x
p
1, x

q
1(y1 + µp′))

We say that σ(p,q,µ) is a Newton map.

The ”interesting” Newton maps correspond

to (p, q) such that px+qy = N is the equation

of a face S of N (f) and µ a root of FS.



Let f ∈ C[x−1][[x, y]] in good coordinates.

Let σ = σ(p,q,µ) be a Newton map. We de-

note by fσ the result of σ(f) after a change

of variables so that fσ is in good coordinates.

Let Σn = (σ1, · · · , σn) where σi is a Newton

map for all i, we define fΣn by induction:

fΣ1
= fσ1, fΣi

= (fΣi−1
)σi.

Theorem 2 For all f(x, y) ∈ C[x−1][[x, y]]

the set of n ∈ N such that there exists Σn =

(σ1, · · · , σn) where σi is a Newton map for

all i, and fΣn is a monomial up to a unit in

C[x−1][[x, y]] is bounded in N.



If f is in good coordinates, we define the

depth of f , d(f) by induction. If f is a mono-

mial up to a unit, then d(f) = 0. Otherwise

d(f) = max d(fσ)+1 where the maximum is

taken over all faces S of the Newton polygon

and all roots of FS. Note that the definition

of the depth depends on the choice of good

coordinates at each step of the Newton al-

gorithm.



Newton trees

Given f ∈ C[x−1][[x, y]] in good coordinates,

the Newton process consists in applying suc-

cessive Newton maps attached to successive

Newton polygons until the result is a mono-

mial times a unit.

Newton trees are trees that encode the New-

ton process. They are build by induction.

First of all, we need to build a graph associ-

ated to a Newton diagram.



ppx+qy=N

x=i

(i)

(0)

q
(N)

We can recover the whole Newton polygon
from the graph since we can read the equa-
tions of the supporting lines of the faces on
the graph.



Newton tree of f ∈ C[x−1][[x, y]]

We assume that f is in good coordinates.

We build the Newton tree of f by induction

on the depth.

Assume that f has depth 0, i.e. f = xaybu.

Its Newton tree is the graph of its Newton

polygon, i.e. an edge with two arrows deco-

rated with (a) and (b).



Assume that we have constructed the New-

ton tree for all f of depth less or equal to

n− 1.

Let f ∈ C[x−1][[x, y]] in good coordinates of

depth n. On one hand we can construct the

graph associated to its Newton polygon. On

the other hand, for each face of the Newton

polygon and each root of the face polyno-

mials the resulting functions are of depth at

most n− 1. Then by the hypothesis, we can

construct their Newton trees.



To obtain the Newton tree of f , we will glue

the Newton trees of fσ to the graph of the

Newton polygon of f , removing the top ar-

row and gluing the edge to the corresponding

vertex. The decorations on the edges change

during the glueing, but not the decorations

of vertices.



In the process, the edges that are glued be-
come horizontal edges. All others are verti-
cal edges. The vertices on a vertical line cor-
respond to faces on a Newton polygon, the
edges on an horizontal line are produced with
successive Newton maps. To each vertex
corresponds a face polynomial. The num-
ber of roots of this face polynomial is the
number of horizontal edges arising from the
vertex.

If we forget about horizontal and vertical
edges, the Newton trees are the same as
Eisenbud and Neumann diagrams.



As an example the following is the Newton

tree of f(x, y) = (x2−y3)2(x3−y2)2+x6y3+

x5y5 + x4y7
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We have the following interpretation of New-

ton trees:



Theorem 3 (C.-N., Libgober) There exist
a normal variety X with at most quotient
singularities and a proper morphism π : X →
C2 such that

π∗f =
∑

C̃n +
∑

NmEm

such that the strict transforms of f are smooth,
this divisor has normal crossing and the New-
ton tree of f is the dual graph of this divisor
and the Nm are the decorations of the cor-
responding vertices. The singularities of X

are on the intersections of the divisors Em

and they can be computed from the Newton
tree.
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NEWTON TREES FOR C[x, y]

Let

f(x, y) =
∑

(α,β)∈N2

cα,βxαyβ ∈ C[x, y]

We consider the convex hull of Suppf . The

Newton polygon at infinity is the bolded part.





We write equations of faces:

1. For S ∈ N0,∞ : px + qy = N, p ≤ 0, q > 0

2. For S ∈ N∞,∞ : px + qy = N, p > 0, q > 0

3. For S ∈ N∞,0 : px + qy = N, p > 0, q ≤ 0



Let (p, q) ∈ N2, gcd(p, q) = 1. Let (p′, q′) ∈
N2 such that qq′ − pp′ = 1. Let µ ∈ C∗. We

define

σ(p,q,µ) : C[x, y] −→ C[x−1
1 ][x1, y1]

f(x, y) 7→ f(µq′x
−p
1 , x

−q
1 (y1 + µp′))

Again, the ”interesting” Newton maps come

from faces of the Newton polygon at infinity

and roots of the face polynomials.



The Newton tree at infinity of the curve

f = t is obtained by glueing to the graph

of the Newton polygon at infinity of f− t the

Newton tree of all (f − t)σ ∈ C[x−1
1 ][x1, y1].

The decorations of the edges are changed

and the decorations of the vertices change

sign. The Newton tree depends on t. As an

example, we consider

f(x, y) = x6y4+(4x5+3x4)y3+(6x2+11x3+2x2)y2+

(4x3 + 13x2 + 8x + 1)y + x2 + 5x + 5



The Newton tree of f − t for t generic is
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The Newton tree of f + 1 is
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The Newton tree of f is
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The vertices decorated with (0) are called

dicritical vertices. The corresponding face

polynomials are what Abhyankar calls the

”univariate polynomials strategically located

in the belly of a bivariate polynomial” The

number of roots of the face polynomial at-

tached to a dicritical vertex is called the de-

gree of the dicritical. If the degree is one

the dicritical is also called a section. If all

the dicriticals of a polynomial are sections,

the polynomial is said simple.



CLASSIFICATION OF RATIONAL POLYNOMIALS

A rational polynomial f ∈ C[x, y] is a poly-

nomial whose generic (not singular, not spe-

cial) fiber {f = t} is a rational curve. It is

equivalent to say that f is a field generator,

which means that there exists g ∈ C(x, y)

such that C(f, g) = C(x, y). We say that

f is a good field generator if there exists

g ∈ C[x, y] such that C(f, g) = C(x, y), other-

wise we say that f is a bad field generator.



Russell proved that a rational polynomial is

a bad field generator if and only if it has no

sections.

The classification of rational polynomials is

a very difficult problem.

The classification of simple rational polyno-

mials was begun by Miyanishi and Sugie and

completed by Neumann and Norbury.



Up to the birational morphisms,

x = xa1ya2, y = xb1yb2, a1b2 − a2b1 = ±1

x = x, y = xky + p(x),deg p < k

one gets the following polynomials:

xy+x2y
∏

(βi−xy)ai, x2y
∏

(βi−xy)ai, y
∏

(βi−x)ai+h(x)



with the following Newton trees:
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−1 −1c1

cr

−c1−1

−cr−1

−c1−..−cr

c1+..+cr+1

c1
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Sasao has classified quasi-simple rational poly-

nomials, which means that the dicriticals have

at most degree 2. Part of the classification

is, up to the same birationnal maps than be-

fore:

(1)x
∏

(xy + βi)
cl + γ(xy + βi)(xy + βj)+

γ′(xy + βj) + t



(3)(xy+η)(x1+cyc(xy+γ)c′+β1)(x
1+cyc(xy+γ)c′+β2)+

γ′(x1+cyc(xy + γ)c′ + β1) + t

(3′)(xy + γ1)

(x(xy+γ1)
c(xy+γ2)

c′+β1)(x(xy+γ1)
c(xy+γ2)

c′+β2)+

γ′(x(xy + γ1)
c(xy + γ2)

c′ + β1) + t



(4)(x1+c+1yc+1(xy + γ)c′ + β1)

(x1+cyc(xy + γ)c′+1 + β2) + t

(4′)(x(xy + γ1)
c+1(xy + γ2)

c′ + β1)

(x(xy + γ1)
c+1(xy + γ2)

c′ + β2) + t



with the following Newton trees:
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c
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(4,4’)
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First remark: We notice that the two first

cases of Neumann Norbury as well as those

cases of Sasao all belong to a ring C[y, xy, xφ(xy)] ⊂
C[x, y] with φ ∈ C[X].

C2 → S = {XZ = φ(Y )} → C
(x, y) 7→ (y, xy, xφ(xy)) 7→ f(y, xy, xφ(xy))

Other cases in Sasao and up to the same

birational maps, give:



(2)x(xy2 + γ)c[(xy2 + γ)c+1 + γ′y] + t

(2′)x−1[(xy + 1)(x2y + x + γ)c + β]

[(x2y + x + γ)c+1 + γ′x] + t

(5)x[(xy2 + γ)c + β1y][(xy2 + γ)c + β2y] + t

(5′)x−1[(xy + 1){(x2y + x + γ)c + βx}+ γ′]

[(x2y + x + γ)c + βx] + t

(6)[(xy2+γ)+β1y][x(xy2+γ)+(β2+β3)xy+β2β3]+t



There are two more cases of the form p(x)y+

q(x) that we will not study here.

For (2) and (5) and (6) the polynomials be-

long to C[x, x2y, xy(x2y + γ)c, y(x2y + γ)2c],

for (2’) and (5’) they belong to

C[x, x2y + x + γ, (xy + 1)(x2y + x + γ)c,

x−1((xy+1)(x2+x+γ)c+β))(x2y+x+γ)c]

and the Newton trees are
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2
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2
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With Peter Russell we began the classifica-

tion of birational maps whose missing curves

are lines and one curve. We obtained ratio-

nal polynomials in

C[y, xy, x2y+a1x, · · · , xky+a1xk−1+· · ·+ak−1x]

a ring which was also studied by David Wright.



Concerning bad field generators, very little is

known.

The first field generator was given by Jan

and unpublished; it has degree 25:

J = y(x8y4−1)2+3x3y2(x8y4−1)+3x6y3+x

and belongs to

C[x, x2y, xy(x8y4 − 1), y(x8y4 − 1)2]



Then Peter Russell proved that there is no

bad field generators of degree less than 21,

and for degree 22,23,24, and gave an exam-

ple of bad field generator of degree 21:

R = (y2(xy + 1)4 + y(2xy + 1)(xy + 1) + 1)

(y(xy + 1)5 + 2xy(xy + 1)2 + x)

which is in C[x, xy, y(xy + 1)3].



All rational polynomial that I mentioned, good

or bad can be seen in the same frame.



STUDY OF

A = C[y, xy, x2y+a1x, · · · , xk−1y+a1xk−2+· · ·+ak−2x,

xφ(xk−1y + a1xk−2 + · · ·+ ak−2x)] ⊂ C[x, y]



If we summarize, we got field generators in

(a)C[y, xy, x2y+a1x, · · · , xky+a1xk−1+· · ·+ak−1x]

(b)C[y, xy, xφ(xy)]

(c)C[x, x2y, xy(x2y + γ)c, y(x2y + γ)2c]

(d)C[x, x2y + x + γ, (xy + 1)(x2y + x + γ)c,

x−1((xy+1)(x2+x+γ)c+β))(x2y+x+γ)c]

(e)C[x, x2y, xy(x8y4 − 1), y(x8y4 − 1)2].



Actually all of our polynomials come from

C[y, xy, x2y+a1x, · · · , xk−1y+a1xk−2+· · ·+ak−2x,

xφ(xk−1y + a1xk−2 + · · ·+ ak−2x)]

where φ ∈ C[X]. It is clear for case (a) and

(b).

In case (c) let x = Y (XY 2+γ)c, y = X/(XY 2+

γ)2c, then

C[x, x2y, xy(x2y + γ)c, y(x2y + γ)2c] =

C[Y (XY 2 + γ)c, XY 2, XY, X]



Case (e) is similar using x = X(X8Y 4−1), y =
Y/(X8Y 4 − 1)2, we have

C[x, x2y, xy(x8y4 − 1), y(x8y4 − 1)2] =

C[Y, XY, X2Y, X(X8Y 4 − 1)]

In case (d), if x = X(X2Y − βX + γ)c, y =
X−1((XY − β) − (X2Y − βX + γ)c)/(X2Y −
βX + γ)2c, one has

C[x, x2y + x + γ, (xy + 1)(x2y + x + γ)c,

x−1((xy+1)(x2+x+γ)c+β))(x2y+x+γ)c] =

C[Y, XY, X2Y − βX, X(X2Y − βX + γ)c]



Lemma 4 Let p(x, y) = xk−1y + a1xk−2 +

· · ·+ ak−2x and p̃(v, w) = vk−1w + b1vk−2 +

· · · + bk−2v There exist b1, b2, · · · , bk−2 such

that if x = v/φ(p̃(v, w)) and y satisfies p(x, y) =

p̃(v, w), then y = Q0(v, w) ∈ C[v, w].

Then we also have

xy = Q1(v, w) ∈ C[v, w]

· · ·

xk−2y+a1xk−3+· · · ak−3x = Qk−2(v, w) ∈ C[v, w]



If B = C[v, p̃(v, w), Qk−2(v, w), · · · , Q0(v, w)] ⊂
C[v, w], we say that B is the mirror of A.

One goes from A to B by the birational map

τ : x = v/φ(p̃(v, w)), y = Q0(v, w)



In particular,

if A = C[y, xy, xφ(xy)], then A coincides with

its mirror. The corresponding surface is XZ =

Y φ(Y ) and the birational map τ from A to

B = A is the exchange of X and Z.

if a1 = 0, · · · , ak−2 = 0, that means for A =

C[y, xy, x2y, · · · , xk−1y, xφ(xk−1y)], then B =

C[v, vk−1w, vk−2wφ(vk−1w),

· · · , vw(φ(vk−1w))k−2, w(φ(vk−1w))k−1].



The surface S := {XZ = φ(Y )} has been

studied by affine geometers. In particular

one knows the group of automorphisms of

S, given by Makar-Limanov. In terms of

the automorphisms of A = C[y, xy, xφ(xy)] ⊂
C[x, y], they are generated by τ and Jon-

quières automorphisms of C2, (this subgroup

is called the tame automorphism group), and

(x, y) → (cx, c−1y) (and some special auto-

morphisms depending of some special φ).



For the moment we don’t know in general

the group of automorphisms of A. It is in-

teresting for us because this group acts on

the set of rational polynomials belonging to

A.



One other interesting result for S := {XZ =

φ(Y )}, was given by Daigle. It says that the

tame automorphism group of S := {XZ =

φ(Y )}, acts transitively on the kernels of lo-

cally nilpotent derivations of S. One can

show that any generator of the kernel of a

locally nilpotent derivation of S is a rational

polynonial in A, and there exits g ∈ A such

that C(f, g) = C(x, y).



We will say that a rational polynomial in

A is A-good if there exits g ∈ A such that

C(f, g) = C(x, y).

Question 5 1. What is the automorphism

group of A?

2. What are the orbits of the kernels of the

locally nilpotent derivations in A?

3. What are the orbits of the A-good ratio-

nal polynomials in A?



Coming back to the classification of bad field

generators in A and B.

In A = B = C[y, xy, xφ(xy)], let φ(X) = X3+

c3X2 + c1X + c0.

f0(x, y) = y + xφ(xy) + 2x2y2 + c2xy ∈ A

We notice that f0 is invariant by τ . Let ρ :

x = x + 1, y = y, then τ(ρ(f0)) is a bad field

generator of degree 21. There are 3 types

depending on the number of roots of φ. Rus-

sell’s one corresponds to φ(X) = (X − c)3.
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In A = C[y, xy, x2y + ax, xφ(x2y + ax)], let

φ(X) = X4 + c3X3 + c2X2 + c1X + c0

f0(x, y) = y +3xy(x2y +ax)+3(x2y +ax)3+

xφ(x2y+ax)+A1xy+A2(x
2y+ax)2+A3(x

2y+ax)

with A1 = c3, A2 = 2c3, A3 = c2 + 2a. The

polynomial f0 is in A, it is A-simple. Its im-

age by τ in B is a bad field generator of

degree 25. Jan’s polynomial corresponds to

a = 0 and φ(X) = (x4 − 1). We get 5 types

of badfield generators of degree 25, depend-

ing on the multiplicities of the roots of φ.
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In the mirror of A = C[y, xy, x2y+a1, · · · , xk−1y+

a1xk−2+· · ·+ak−2x, xφ(xk−1y+a1xk−2+· · ·+
ak−2x)] ∈ C[x, y], with φ(X) = Xk+1+ckXk+

· · ·+ c0 we have bad field generators of de-

gree k3 − k + 1. Then we can ask:

Question 6 Do we get all bad field genera-

tors this way and composing by τ and Jon-

quières automorphismes of A and B?


