objects: real elliptic Lefschetz fibrations

aim: classification (up to equivariant diff.)
too $\frac{1}{3}$ necklace- diagrams

(A) Lefschetz fibrations

$$
\left(p: X^{4} \rightarrow B^{2}\right)
$$

"complex morse functions"
around critical points p looks like : $\mathbb{C}^{2} \rightarrow \mathbb{C}$

$$
\left(z_{1}, z_{2}\right) \rightarrow z_{1}^{2}+z_{2}^{2}
$$

(B) real structure

"smooth version of complex conjugation"
$c_{X}: X^{4} \rightarrow X^{4}$
.orientation preserving involution
.dimension of fixed point set (if not empty) $=2$
$c_{B}: B^{2} \rightarrow B^{2}$
.orientation reversing involution
(X, c): real manifold, Fix(c): real part

(C) real Lefschetz fibrations

(D) elliptic: regular fiber

(E) some properties

1)critical sets are invariant under the action of real structures.
2) over real points of B, fibers inherit real structure from the real structure of X.
3)monodromy decomposes into product of two real structures.

(F) main theorem

*RELFs over sphere
. have only real critical values
. admit a real section

1-1

*RELFs over sphere
have only real critical values
necklace diag. .monodromy=id

REFINED

 necklace diag.up to symmetry
.monodromy=id

(Moishezon \& Livné, 1977)

1-1
*ELFs over sphere<----> \# of critical values=12n

$$
\begin{aligned}
& E(1)=\mathbb{C} P^{2} \# 9 \mathbb{C} \bar{P}^{2} \\
& E(n)=E(n-1) \# E(1)
\end{aligned}
$$

(G) necklace diagrams "from 4 to 2"
look at the real locus:
(assume for the moment that there exists a real section)

(H)monodromy of necklace diagrams
idea: $f=c_{0}^{\prime} c \leadsto f_{x}=c_{x}^{\prime} \circ c_{*}=P^{-1}\left[\begin{array}{c}10 \\ 0-1\end{array}\right] P\left[\begin{array}{c}1 \\ 0 \\ 0-1\end{array}\right]$ mood differ
isomorphism in homdogy Monodromy
of necklace bass of of neck dial
teigospales

$$
\begin{aligned}
c: T^{2} & \rightarrow T^{2} \Rightarrow c_{*}: H_{1}\left(T^{2}, \mathbb{Z}\right) \rightarrow H_{1}\left(T^{2}, \mathbb{Z}\right) \\
& H_{ \pm}^{c}
\end{aligned}=\left\{a: c_{*}(a)= \pm a\right\}
$$

Around a critical valve:

$$
\begin{aligned}
& c \\
& \left.a_{b} b\right\rangle 0 \\
& \langle a\rangle=H_{+}^{c} \\
& \left\langle c^{\prime}\right. \\
& \left\langle b^{\prime}, b^{\prime}\right\rangle=H^{c} \\
& \left\langle a^{\prime}\right\rangle \\
& \left\langle b^{\prime}\right\rangle=H_{+}^{c}
\end{aligned}
$$

defined up to sian since $a \cdot b>0 \Leftrightarrow-a \cdot-b>0$
$\ell \therefore \in P S(2, Z)$
$P_{-x=}$ - base charge matrice from $\left(a^{\prime}, b^{\prime}\right)$ to (a, b)

$\operatorname{PSL}(2, \mathbb{Z})=\left\{x, y: x^{2}=y^{3}=i d\right\}$

$$
\begin{aligned}
& P_{-0<} P_{>0-}=x y x y x \\
& P_{-0<} P_{>\times-}=x y^{2} \\
& P_{-\times<} P_{>0-}=y^{2} x \\
& P_{-\times<} P_{>\times-}=y x y
\end{aligned}
$$

Necklace diagrams of real E(1) - having only cal crit. valves

- adiritting a real section

