Order 1 local invariants of maps between 3-manifolds

Victor Goryunov

 ${\rm Lib}60{\rm BER},~Jaca,~22~June~2009$

History

Vassiliev	finite order invariants of knots
Arnold	semi-local invariants of order 1 of plane curves and fronts
VG, Houston Nowik	local order 1 invariants of maps of surfaces into \mathbb{R}^3
Ohmoto Aicardi	local order 1 invariants of maps of surfaces into \mathbb{R}^2
Oset Sinha Romero Fuster	local order 1 invariants of maps of 3-manifolds into \mathbb{R}^3 , non-oriented

Example: maps of oriented surfaces into \mathbb{R}^3

3 **integer** invariants: numbers of triple and pinch points, and a self-linking number of a lifting of the image to $ST^*\mathbb{R}^3$

The latter counts a generalised number of inverse self-tangencies of the image in generic homotopies between maps

mod2:

4th invariant, counting similar number of direct self-tangencies

Non-coorientable direct self-tangency stratum:

Today

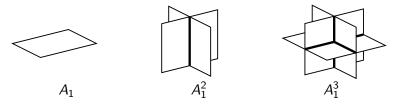
Local order 1 invariants of maps between oriented 3-manifolds, of any rank

Main result There are 8 linearly independent invariants over \mathbb{Z} and 12 over \mathbb{Z}_2

Generic critical value sets

 $f: M^3 \to N^3$ Critical values: $\mathcal{C} \subset N$

Smooth sheets of $\ensuremath{\mathcal{C}}$ and their transversal intersections



Co-orientation of the regular part of C: towards its side with more local preimages



Cuspidal edges: positive and negative according to the local degree of the map being ± 1 Hence signs for swallowtails:

 $A_3^+ \qquad A_3^-$

Classification Definition of I_{D_4} Corank 2 bifurcations in codimension 1

Classification of integer-valued invariants

Theorem

The space of all integer-valued order 1 local invariants of maps of a compact 3-manifold to \mathbb{R}^3 is 8-dimensional. It is generated by:

- *I_s*, half the number of all swallowtails;
- I_s^- , half the difference between the numbers of positive and negative swallowtails;
 - I_t , the number of triple points A_1^3 ;

- $I_{A_2A_1}$, half the number of intersection points of the cuspidal edge with the regular part of C;
- $I_{A_2A_1}^-$, half the difference between the numbers of intersections of the regular part of C with positive and negative cuspidal edges;
 - I_{χ} , the Euler characteristic of C;
 - I_{ℓ} , the linking invariant (Oset Sinha, Romero Fuster);
 - I_{D_4} , the linking number of the image of the 1-jet extension of a map with $\Sigma^2 \subset J^1(M, \mathbb{R}^3)$.

Definition of I_{D_4}

In $J^1(M, \mathbb{R}^3)$, take the set Σ^2 of all jets with corank 2 linear parts. Fix a generic map $f_0 : M \to \mathbb{R}^3$. For any other generic f_1 , consider its generic homotopy $\{f_t\}_{0 \le t \le 1}$. The images of the extensions $j^1 f_t$ define a 4-dimensional film $\varphi \subset J^1(M, N)$ which meets Σ^2 at isolated points. We have the intersection index which may be interpreted as a result of integration:

$$\langle \varphi, \Sigma^2 \rangle = I_{D_4}(f_1) - I_{D_4}(f_0),$$

where the last term is an arbitrary fixed number.

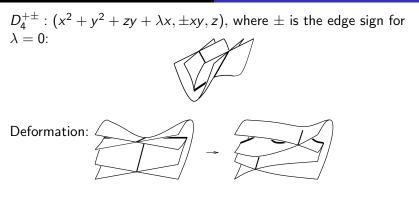
Classification Definition of I_{D_4} Corank 2 bifurcations in codimension 1

Corank 2 bifurcations in 1-parameter families

 $D_4^{-\pm}$: $(\pm(x^2-y^2)+zx-\lambda y,xy,z)$, of local degree ± 2

By this transition we co-orient the D_4^{-+} stratum. The co-orientation of D_4^{--} is in the opposite direction. Both co-orientations correspond to the increase of the deformation parameter λ .

Classification Definition of I_{D_4} Corank 2 bifurcations in codimension 1



Half of the right surface:

Co-orientation:

by the sign of the swallowtails, equivalently by the increase of $\boldsymbol{\lambda}$

Classification of mod2 invariants

Theorem

The space of all mod2 order 1 local invariants of maps of a compact 3-manifold to \mathbb{R}^3 has rank 12. It is generated by:

 I_s , the number of positive swallowtails (same as negative)

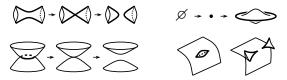
 I_s^- , half the difference between the numbers of negative and positive swallowtails

 I_t , the number of triple points

 $I^-_{A_2A_1}$, half the difference between the numbers of intersections of the regular part of C with positive and negative cuspidal edges

 I_{D_4} , the linking number as earlier (dual to D_4)

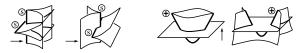
 I_e , the number of connected components of the edge



- I_i , counts the number of inverse self-tangencies of the regular part of C in homotopies
- I_d , similar generalised count of direct self-tangencies
- I_q , generalised count of quadruple points in homotopies

 I_{10} , dual to

I_{11} , dual to



 I_{12} , dual to

We have mod2

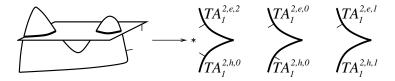
$$I_{A_2A_1} = I_{A_2A_1}^- + I_t$$

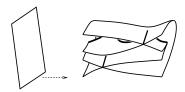
$$I_{\chi} = I_s + I_s^- + I_t$$

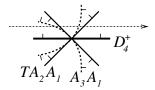
$$I_{\ell} = I_{e} + I_{A_{2}A_{1}} + I_{s}^{-}$$

Relations coming from codimension 2 singularities

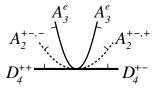
Degenerate tangency of two smooth sheets:







$$\begin{array}{l} \text{Degenerate } D_4^+:\\ (x,y,z)\mapsto (x^2+zy,y^2+x(\pm x^2\pm z^2+\lambda_1z+\lambda_2),z) \end{array}$$



$D_5^{\pm}: (x, y, z) \mapsto (\pm x^2 + y^3 + y^2(\pm z + \alpha xy + \lambda_1) + \lambda_2 x + zy, xy, z)$

