Order 1 local invariants of maps between 3-manifolds

Victor Goryunov

Lib60ber, Jaca, 22 June 2009

History

Vassiliev
finite order invariants of knots

Arnold
semi-local invariants of order 1 of plane curves and fronts

VG, Houston local order 1 invariants Nowik of maps of surfaces into \mathbb{R}^{3}
$\begin{array}{ll}\text { Ohmoto } & \text { local order } 1 \text { invariants } \\ \text { Aicardi } & \text { of maps of surfaces into } \mathbb{R}^{2}\end{array}$

Oset Sinha local order 1 invariants Romero Fuster of maps of 3-manifolds into \mathbb{R}^{3}, non-oriented

Example: maps of oriented surfaces into \mathbb{R}^{3}

3 integer invariants:
numbers of triple and pinch points, and a self-linking number of a lifting of the image to $S T^{*} \mathbb{R}^{3}$

The latter counts a generalised number of inverse self-tangencies of the image in generic homotopies between maps

mod2:

4th invariant, counting similar number of direct self-tangencies
Non-coorientable direct self-tangency stratum:

Today

Local order 1 invariants of maps between oriented 3-manifolds, of any rank

Main result

There are 8 linearly independent invariants over \mathbb{Z} and 12 over \mathbb{Z}_{2}

Generic critical value sets

$f: M^{3} \rightarrow N^{3} \quad$ Critical values: $\mathcal{C} \subset N$

Smooth sheets of \mathcal{C} and their transversal intersections

A_{1}

A_{1}^{2}

A_{1}^{3}

Co-orientation of the regular part of \mathcal{C} : towards its side with more local preimages

A_{2}

$A_{2} A_{1}$

Cuspidal edges: positive and negative according to the local degree of the map being ± 1 Hence signs for swallowtails:

A_{3}^{+}

A_{3}^{-}

Classification of integer-valued invariants

Theorem

The space of all integer-valued order 1 local invariants of maps of a compact 3 -manifold to \mathbb{R}^{3} is 8 -dimensional. It is generated by: I_{s}, half the number of all swallowtails;
I_{s}^{-}, half the difference between the numbers of positive and negative swallowtails;
I_{t}, the number of triple points A_{1}^{3};
$I_{A_{2} A_{1}}$, half the number of intersection points of the cuspidal edge with the regular part of \mathcal{C};
$I_{A_{2} A_{1}}^{-}$, half the difference between the numbers of intersections of the regular part of \mathcal{C} with positive and negative cuspidal edges;
I_{χ}, the Euler characteristic of \mathcal{C};
I_{ℓ}, the linking invariant (Oset Sinha, Romero Fuster);
$I_{D_{4}}$, the linking number of the image of the 1-jet extension of a map with $\Sigma^{2} \subset J^{1}\left(M, \mathbb{R}^{3}\right)$.

Definition of $I_{D_{4}}$

In $J^{1}\left(M, \mathbb{R}^{3}\right)$, take the set Σ^{2} of all jets with corank 2 linear parts.
Fix a generic map $f_{0}: M \rightarrow \mathbb{R}^{3}$.
For any other generic f_{1}, consider its generic homotopy $\left\{f_{t}\right\}_{0 \leq t \leq 1}$. The images of the extensions $j^{1} f_{t}$ define a 4-dimensional film $\varphi \subset J^{1}(M, N)$ which meets Σ^{2} at isolated points.
We have the intersection index which may be interpreted as a result of integration:

$$
\left\langle\varphi, \Sigma^{2}\right\rangle=I_{D_{4}}\left(f_{1}\right)-I_{D_{4}}\left(f_{0}\right),
$$

where the last term is an arbitrary fixed number.

Corank 2 bifurcations in 1-parameter families

$$
D_{4}^{- \pm}:\left(\pm\left(x^{2}-y^{2}\right)+z x-\lambda y, x y, z\right), \text { of local degree } \pm 2
$$

By this transition we co-orient the D_{4}^{-+}stratum.
The co-orientation of D_{4}^{--}is in the opposite direction.
Both co-orientations correspond to the increase of the deformation parameter λ.
$D_{4}^{+ \pm}:\left(x^{2}+y^{2}+z y+\lambda x, \pm x y, z\right)$, where \pm is the edge sign for $\lambda=0$:

Deformation:

Half of the right surface:

Co-orientation:

by the sign of the swallowtails, equivalently by the increase of λ

Classification of mod2 invariants

Theorem

The space of all mod2 order 1 local invariants of maps of a compact 3 -manifold to \mathbb{R}^{3} has rank 12. It is generated by: I_{s}, the number of positive swallowtails (same as negative)

I_{s}^{-}, half the difference between the numbers of negative and positive swallowtails

I_{t}, the number of triple points

$I_{A_{2} A_{1}}^{-}$, half the difference between the numbers of intersections of the regular part of \mathcal{C} with positive and negative cuspidal edges

$I_{D_{4}}$, the linking number as earlier (dual to D_{4})
I_{e}, the number of connected components of the edge

I_{i}, counts the number of inverse self-tangencies of the regular part of \mathcal{C} in homotopies
I_{d}, similar generalised count of direct self-tangencies
I_{q}, generalised count of quadruple points in homotopies
I_{10}, dual to

I_{11}, dual to

l_{12}, dual to

We have mod2

$$
\begin{aligned}
& I_{A_{2} A_{1}}=I_{A_{2} A_{1}}^{-}+I_{t} \\
& I_{\chi}=I_{s}+I_{s}^{-}+I_{t} \\
& I_{\ell}=I_{e}+I_{A_{2} A_{1}}+I_{s}^{-}
\end{aligned}
$$

Relations coming from codimension 2 singularities

Degenerate tangency of two smooth sheets:

Degenerate D_{4}^{+}:
$(x, y, z) \mapsto\left(x^{2}+z y, y^{2}+x\left(\pm x^{2} \pm z^{2}+\lambda_{1} z+\lambda_{2}\right), z\right)$

$$
D_{5}^{ \pm}:(x, y, z) \mapsto\left(\pm x^{2}+y^{3}+y^{2}\left(\pm z+\alpha x y+\lambda_{1}\right)+\lambda_{2} x+z y, x y, z\right)
$$

