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1. Introduction and main results

In SGA2, A.Grothendieck developed different kinds of Lefschetz
theorems, in particular for the Picard group.

Question: Let X be a closed subvariety of some projective
space, H a hyperplane. Under which hypothesis do we get
Pic X ' Pic X ∩H ?

Grothendieck: algebraic methods, so he admitted any field as
ground field.

His strategy: use intermediate steps:

Pic X ' lim
→

Pic U ' Pic X̂ ' Pic X ∩H

Here, U runs through the open neighbourhoods of X ∩H in X,
X̂ := formal completion of X along X ∩H.

Note: X̂ algebraic substitute for a tubular neighbourhood of
X ∩H in X.

It turned out that the middle isomorphism holds under rea-
sonable assumptions, even with vector bundles instead of line
bundles,
whereas we have the first and third isomorphism only under
severe hypotheses.

Note that in the case of the first and third isomorphism it is
hopeless to work with vector bundles.

As a result, Grothendieck obtained the desired Lefschetz theo-
rem just for complete intersections.

Project with Lê Dũng Tráng: replace X by a quasi-projective
variety X \ Y ,
restrict to complex case and use transcendental methods, too.
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In this talk, however, we will look at (complex) vector bundles:
V ectX \ Y instead of Pic X \ Y .

As said before: hopeless to get even the first isomorphism:

V ectX \ Y ' lim
→

V ect U

where U runs through the Zariski-open neighbourhoods of
X ∩H \ Y in X \ Y .

So look at vector bundles with additional structure: connec-
tion. Then write V ectc instead of V ect. Note that we should
have a vector bundle on a smooth variety.

Furthermore we can work in the algebraic and analytic category.

Theorem 1: Suppose that X \ Y is smooth of dimension ≥ 3,
H intersects X \ Y transversally, codimXY ∩H ≥ 4. Then one
has a commutative diagram:

V ectc(X \ Y ) ' V ectc(X̂ \ Ŷ )
↓' ↓'

V ectc(X
an \ Y an) ' lim

→
V ectc(V − Y an) ' V ectc(X̂

an \ Ŷ an)

where V runs through the (ordinary) open neighbourhoods of
Xan ∩Han \ Y an in Xan \ Y an.

As for the third third isomorphism, it is not clear how to pass
from V ect X̂ \ Ŷ to V ectX ∩H \ Y .

Better: look at integrable connections. Then one can prove a
Lefschetz theorem in the original sense:
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Theorem 2: Let X ⊂ PN(C) be a Zariski-closed subspace, Y a
Zariski-closed subset of X, X \Y smooth, everywhere of dimen-
sion ≥ 3, H a hyperplane. Let us fix a Whitney stratification of
(X, Y ). Suppose that there is a Zariski-closed subset Σ of Y ∩H
such that codimXΣ ≥ 3 and that H intersects all strata of X
transversally outside Σ. Then one has a commutative diagram
of isomorphisms:

V ectcir(X \ Y ) ' V ectcir(X ∩H \ Y )
↓' ↓'

V ectci(X
an \ Y an) ' V ectci(X

an ∩Han \ Y an)

Here cir means that we impose the condition that the integrable
condition is regular.

Note that we may apply Theorem 2 in particular under the
hypothesis of Theorem 1.

It is relatively easy to prove this theorem - but by transcendental
methods, not the one of Grothendieck. On the other hand,
one cannot treat in the same way connections which are not
integrable.

The situation is easier for the Picard group:

Theorem 3: Suppose that X \ Y is smooth of dimension ≥ 4,
H intersects X \ Y transversally, codimXY ≥ 4. Then one has
a commutative diagram:

Picc(X \ Y ) ' Picc(X ∩H \ Y )
↓' ↓'

Picc(X
an \ Y an) ' Picc(X

an ∩Han \ Y an)
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2. Definitions

Completion of X along X ∩H: formal scheme.

Underlying topological space: same as for the scheme X ∩H.
Structure sheaf: OX̂ := lim

←
(OX/In)|X ∩ H, where I := ideal

sheaf of X ∩H in X.

Now let X be a complex analytic manifold, E a holomorphic
vector bundle on X (i.e. locally free analytic sheaf on X).

Connection on E : defined by CX-linear map ∇ : E → E ⊗ Ω1
X

such that ∇(fs) = f∇s + s⊗ df .

∇ induces ∇p : E ⊗ Ωp
X → E ⊗ Ωp+1

X .

∇ integrable iff ∇1 ◦ ∇0 = 0.

In this case, L := ker∇ is a locally constant sheaf such that
E ' L ⊗CX

OX .

It is a technical disadvantage that ∇ fails to be OX-linear. But
there is an equivalent description: Let P 1(E) be the sheaf of
1-jets in E . Then one has an exact sequence

0→ E ⊗ Ω1
X → P 1(E)→ E → 0

and a connection on E corresponds to a splitting of this sequence,
given e.g. by some map E → P 1(E).
Similarly in the algebraic context (without L). Here it makes
sense to ask if an integrable connection is regular:

For curves it corresponds to the classical notion of regular singu-
lar points, in general it means that the pull-back to each curve
is regular.

See P.Deligne:
Equations différentielles à points singuliers réguliers.

Regularity may be expected for connections which arise in a ge-
ometric situation (Gauß-Manin connection).

Note that the theory of connections has been largely superseded
by the theory of D-modules. However D-modules correspond to
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connections which are automatically integrable!

3. Proofs

Start with Theorem 2 since it is easier.

Bijectivity of the lower horizontal: Recall that vector bundles
with an integrable connection correspond to locally constant
sheaves, so on each connected component of X it is given by
a linear representation of its fundamental group.

So it is sufficient to quote a Lefschetz theorem for homotopy
groups:

Under the hypothesis of Theorem 2,

πj(X
an∩Han\Y an, x) ' πj(X

an\Y an, x), x ∈ Xan∩Han, j = 0, 1.

Vertical arrows: use existence theorem of P.Deligne.

Before proving Theorem 1, ignore the connections and prove the
following, where Sk(X) := {x ∈ X closed | depth OX,x ≤ k}:

Theorem 4: Let X ⊂ PN(C) be a Zariski-closed subspace, Y
a Zariski-closed subset of X, H a hyperplane which is defined
by an ideal sheaf I such that I ⊗ OX ' IOX. Suppose that
dim Sl+2(X ∩ H \ Y ) ≤ l for l ≤ dim Y ∩ H. Then one has a
commutative diagram:

lim
→

V ect U ' V ect(X̂ \ Ŷ )

↓' ↓'
lim
→

V ect Uan ' lim
→

V ectc(V − Y an) ' V ect(X̂an \ Ŷ an)

where U runs through the Zariski open neighbourhoods of
X ∩ H \ Y in X \ H ∩ Y and V through the (ordinary) open
neighbourhoods of Xan ∩Han \ Y an in Xan \ Y an.

In particular, Theorem 4 can be applied under the hypothesis
of Theorem 1.
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Proof: We ignore the middle term in the lower horizontal, as
we will do in the proof of Theorem 1, too.

Surjectivity of the left vertical: Let U be a Zariski open neigh-
bourhood of X∩H \Y in X \Y and j : U → X be the inclusion.
We can achieve that dim Sl+2(U) ≤ l, l ≤ dim X \ U . Let E be
an (analytic) vector bundle on Uan. Under our hypothesis, one
knows that jan

∗ E is coherent. By GAGA it comes from an (alge-
braic) coherent sheaf on X. Its restriction to U must be locally
free and represents an inverse image of E .
Injectivity: Let E1 and E2 be locally free on U such that Ean

1 '
Ean

2 . Then (j∗E1)an ' jan
∗ Ean

1 ' jan
∗ Ean

2 ' (j∗E1)an, so j∗E1 '
j∗E2, therefore E1 ' E2.
Right vertical: first show that

V ect (X̂ \ Ŷ ) ' lim
←

V ect (Xn \ Yn)

where Xn is the n-th infinitesimal neighbourhood of X ∩ H in
X.

Similarly in the analytic context. So it suffices to show:

V ect (Xn \ Yn) ' V ect (Xan
n \ Y an

n )

This is shown as in the case of the left vertical, i.e. Xn, Yn

instead of X, Y .

Upper horizontal: The main difficulty is to prove surjectivity.

Here one shows that every vector bundle on X̂ \ Ŷ admits a
coherent extension to X, in particular to X \ Y . Now it follows
that the latter is locally free on some neighbourhood of X∩H\Y
in X \ Y .

Injectivity: In fact, V ect U → lim
←

V ect Un is injective. Let

E1, E2 be vector bundles on U , S := Hom(E1, E2), then Sn =
Hom(E1|Un, E2|Un). An isomorphism between E1|Un and E2|Un

gives an element of H0(Un,Sn), but H0(U,S) ' H0(Un,Sn) for
n� 0, so it comes from an isomorphism between E1 and E2.

Now pass to the proof of Theorem 1.

As before with U = X \ Y , one has V ect (X \ Y ) ' V ect (Xan \
Y an).
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In order to prove surjectivity of the left vertical, show that ev-
ery analytic connection on an algebraic vector bundle is already
algebraic. This follows by a GAGA argument. Notice that a
connection is only CX\Y -linear but it can be also expressed by
a mapping which is OX\Y -linear, see above.
More precisely: Let E be an analytic vector bundle on X \ Y
together with a connection given by D : E → P 1(E), i.e. a
global section of S := Hom(E , P 1(E)). Let j : X \ Y → Y be
the inclusion. Then jan

∗ S is coherent, and we have an extension
of the section of S. By GAGA we can conclude that the vector
bundle and the connection must both be algebraic.

The injectivity is easier.

As for bijectivity of the upper horizontal the delicate point is
again to show surjectivity. Let E be a vector bundle on X̂ \ Ŷ
with a connection. It comes from a vector bundle F on some
U , the connection can be extended. If j is as above, j∗F is
coherent, and the connection extends to j∗F .

Now the crucial fact is that a coherent sheaf with a connection
is automatically locally free! So we get an inverse image.

Similarly for the lower horizontal.

Note that in Theorem 1 and 2 the most interesting case is the
one where Y = Sing X:

Theorem 5: Suppose that X \ Y is smooth, so Sing X ⊂ Y .
a) If Y is of codimension ≥ 2 we have a commutative diagram

V ectci(X \ Y ) ' V ectci(X \ Sing X)
↓' ↓'

V ectci(X \ Y ) ' V ectci(X \ Sing X)

b) If Y is of codimension ≥ 3 we have a commutative diagram

V ectc(X \ Y ) ' V ectc(X \ Sing X)
↓' ↓'

V ectc(X \ Y ) ' V ectc(X \ Sing X)
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Proof: a) The main point is to show that

πk(X
an \ Y an) ' πk(X

an \ Sing Xan), k = 0, 1

It would be conceptually simpler to prove the analogue for co-
homology:
Hk(Xan \ Sing Xan, Y an \ Y an; Z) = 0, k ≤ 2,
i.e. Hk

Y an\Sing Xan(Xan \ Sing Xan, ZXan) = 0, k ≤ 2.

It is sufficient to show that Hk
Y an\Sing Xan(ZXan) = 0, k ≤ 2.

So a local consideration is sufficient.
Similarly for homotopy. The easiest seems to take a filtration of
the total space which comes from a stratification. Then we are
reduced to showing that

πk(X
an \ Y ′an) ' πk(X

an \ Y ′′an), k = 0, 1,

if Y ′ \ Y ′′ is smooth of codimension ≥ 2.

b) Here we argue as in the case of the horizontal mappings in
Theorem 1.

For the proof of Theorem 3 we use (with dim ∅ := −1):

Theorem 6: a) Let L be an ample sheaf on X. Then

Hq(X \ Y, Ωp
X\Y ⊗ L

−1) = 0, p + q < dim X − dim Y − 1

b) Hq(X \ Y, Ωp
X\Y )→ Hq(X ∩H \ Y, Ωp

X∩H\Y )
is bijective for p + q < dim X − dim Y − 2
and injective for p + q = dim X − dim Y − 2.

Note that a) is a generalization of the theorem of Akizuki-
Nakano, where Y = ∅.

Proof: a) We may suppose L = OX(1). We use the exact se-
quences
0→ Ωp

X\Y (−1)→ Ωp
X\Y → i∗(Ω

p
X\Y |X ∩H \ Y )→ 0 and

0→ Ωp−1
X\Y (−1)|X ∩H \ Y → Ωp

X\Y |X ∩H \ Y → Ωp
X∩H\Y → 0.

Furthermore we need that Hq(X \ Y, Ωp
X\Y (−k)) = 0, k � 0,

and the classical Akizuki-Nakano theorem.
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b) follows from a).

Corollary: H0(X\Y, P 1(OX\Y )) ' H0(X∩H\Y, P 1(OX∩H\Y ))
for dim Y ≤ dim X − 4.

Proof of Theorem 3:
In order to get Pic(X \ Y ) ' Pic(X ∩H \ Y ) it is sufficient to
have Hk(Xan \ Y an; Z) ' Hk(Xan ∩Han \ Y an; Z), k = 1, 2.
Surjectivity of the upper horizontal: Let us start from a line
bundle on X ∩H \ Y with a connection. We saw that it comes
from a line bundle E on X \ Y . The connection on E|X ∩H \ Y
corresponds to an element of H0(X ∩H \ Y,S|X ∩H \ Y ) with
S := Hom(E , P 1(E)) ' P 1(OX\Y ). We conclude by the corol-
lary that the connection comes from a unique connection on E .
The rest is easy.

Corollary: Let X be a complete intersection in Pr, codimXY ≥
4, X \Y smooth. Then Picc(X \Y ) and Picci(X \Y ) are trivial.

Proof: Suppose that we have a line bundle E with a con-
nection. The curvature is an element of H0(X \ Y,S) with
S := Hom(E , Ω2(E)) ' Ω2

X\Y . But H0(X \ Y, Ω2
X\Y ) = 0.

So Picc(X \ Y ) ' Picci(X \ Y ).
But Picci(X \ Y ) = 0 because πk(X

an \ Y an, x) = 0, k = 0, 1,
x ∈ Xan ∩Han \ Y an.
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4. Remarks

It is easy to prove the analogue of Theorem 1 with V ectci instead
of V ectc.

In particular we get: V ectci(X \ Y ) ' V ectci(X
an \ Y an).

On the other hand, V ectcir(X \ Y ) ' V ectci(X
an \ Y an).

So we can conclude that every integral connection on a vector
bundle on X \ Y is automatically regular! This is a priori not
at all clear.

Similarly for X ∩H \ Y .

In particular, the corresponding question for regularity in the
non-integrable case is open. So we have the following questions:

a) Is every connection on a vector bundle on X \ Y (integrable
or not) regular?

b) If not: is V ectcr(X \ Y ) ' V ectcr(X̂ \ Ŷ )?
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