Monodromy and spectrum of quasi-ordinary surface singularities

Mirel Caibar, Gary Kennedy, Lee McEwan

2009

- An irreducible germ of algebraic surface is quasi-ordinary if one can find a finite map to a nonsingular surface germ, whose discriminant locus is a normal crossings divisor.
- Thus we can find local coordinates so that the surface is the zero locus of

and so that the discriminant locus of projection is the pair of coordinate lines in the $x-y$ plane.
- An irreducible germ of algebraic surface is quasi-ordinary if one can find a finite map to a nonsingular surface germ, whose discriminant locus is a normal crossings divisor.
- Thus we can find local coordinates so that the surface is the zero locus of

$$
f(x, y, z)=z^{d}+g_{1}(x, y) z^{d-1}+\cdots+g_{d}(x, y)
$$

and so that the discriminant locus of projection is the pair of coordinate lines in the $x-y$ plane.

- $z=x^{1 / 2} y+x y^{3 / 2}$

- We want to calculate certain invariants of a quasi-ordinary surface, and to understand the relationships among them. The invariants include:

The monodromy of the Milnor fibration, as recorded in the graded characteristic function

(where m_{i} is monodromy on H_{i} of Milnor fiber). (2) The spectrum of the same fibration.

- We want to calculate certain invariants of a quasi-ordinary surface, and to understand the relationships among them. The invariants include:
(1) The monodromy of the Milnor fibration, as recorded in the graded characteristic function

$$
\frac{\operatorname{det}\left(t I-m_{0}\right) \operatorname{det}\left(t I-m_{2}\right)}{\operatorname{det}\left(t I-m_{1}\right)}
$$

(where m_{i} is monodromy on H_{i} of Milnor fiber).

- We want to calculate certain invariants of a quasi-ordinary surface, and to understand the relationships among them. The invariants include:
(1) The monodromy of the Milnor fibration, as recorded in the graded characteristic function

$$
\frac{\operatorname{det}\left(t I-m_{0}\right) \operatorname{det}\left(t I-m_{2}\right)}{\operatorname{det}\left(t I-m_{1}\right)}
$$

(where m_{i} is monodromy on H_{i} of Milnor fiber).
(2) The spectrum of the same fibration.

- Consider a transverse slice of the surface by $x=C$, where C is sufficiently small. This is a plane curve germ, with its own Milnor fibration, which we call the horizontal fibration.
- Continuing our list of invariants:
(3) The monodromy of the horizontal fibration:

(4) The spectrum of the same fibration.
(5.6) Same things for transverse slice $y=C$.
- Consider a transverse slice of the surface by $x=C$, where C is sufficiently small. This is a plane curve germ, with its own Milnor fibration, which we call the horizontal fibration.
- Continuing our list of invariants:
(3) The monodromy of the horizontal fibration:

$$
\mathbf{H}(t)=\frac{\operatorname{det}\left(t I-h_{0}\right)}{\operatorname{det}\left(t I-h_{1}\right)} .
$$

(4) The spectrum of the same fibration.
$(5,6)$ Same things for transverse slice $y=C$.

- Consider a transverse slice of the surface by $x=C$, where C is sufficiently small. This is a plane curve germ, with its own Milnor fibration, which we call the horizontal fibration.
- Continuing our list of invariants:
(3) The monodromy of the horizontal fibration:

$$
\mathbf{H}(t)=\frac{\operatorname{det}\left(t I-h_{0}\right)}{\operatorname{det}\left(t I-h_{1}\right)}
$$

(4) The spectrum of the same fibration.

- Consider a transverse slice of the surface by $x=C$, where C is sufficiently small. This is a plane curve germ, with its own Milnor fibration, which we call the horizontal fibration.
- Continuing our list of invariants:
(3) The monodromy of the horizontal fibration:

$$
\mathbf{H}(t)=\frac{\operatorname{det}\left(t I-h_{0}\right)}{\operatorname{det}\left(t I-h_{1}\right)} .
$$

(4) The spectrum of the same fibration.
$(5,6)$ Same things for transverse slice $y=C$.

- For the horizontal fibration we fix the value of x while varying the parameter in $f(x, y, z)=\epsilon$. Alternatively we can fix ϵ and let x move around a small circle, obtaining the vertical fibration.
(7) The monodromy of the vertical fibration:

(8) Is there a natural way to define a vertical spectrum?
(9.10) Same things for transverse slice $y=C$.
- For the horizontal fibration we fix the value of x while varying the parameter in $f(x, y, z)=\epsilon$. Alternatively we can fix ϵ and let x move around a small circle, obtaining the vertical fibration.
- We consider:
(7) The monodromy of the vertical fibration:

$$
\mathbf{V}(t)=\frac{\operatorname{det}\left(t I-v_{0}\right)}{\operatorname{det}\left(t I-v_{1}\right)}
$$

(8) Is there a natural way to define a vertical spectrum?
 $(9,10)$ Same things for transverse slice $y=C$.

- For the horizontal fibration we fix the value of x while varying the parameter in $f(x, y, z)=\epsilon$. Alternatively we can fix ϵ and let x move around a small circle, obtaining the vertical fibration.
- We consider:
(7) The monodromy of the vertical fibration:

$$
\mathbf{V}(t)=\frac{\operatorname{det}\left(t I-v_{0}\right)}{\operatorname{det}\left(t I-v_{1}\right)}
$$

(8) Is there a natural way to define a vertical spectrum?

- For the horizontal fibration we fix the value of x while varying the parameter in $f(x, y, z)=\epsilon$. Alternatively we can fix ϵ and let x move around a small circle, obtaining the vertical fibration.
- We consider:
(7) The monodromy of the vertical fibration:

$$
\mathbf{V}(t)=\frac{\operatorname{det}\left(t I-v_{0}\right)}{\operatorname{det}\left(t I-v_{1}\right)}
$$

(8) Is there a natural way to define a vertical spectrum?
$(9,10)$ Same things for transverse slice $y=C$.

- Since the singularity is not isolated, it is natural to compare the surface to a surface in its Yomdin series:

$$
f+L^{k}=0
$$

where L is a general linear form and k is large.

- We consider:
$(11,12)$ The monodromy and spectrum of a surface in the Yomdin series.
- Since the singularity is not isolated, it is natural to compare the surface to a surface in its Yomdin series:

$$
f+L^{k}=0
$$

where L is a general linear form and k is large.

- We consider:
- Since the singularity is not isolated, it is natural to compare the surface to a surface in its Yomdin series:

$$
f+L^{k}=0
$$

where L is a general linear form and k is large.

- We consider:
$(11,12)$ The monodromy and spectrum of a surface in the Yomdin series.

Calculations

- Without changing the local topology, we may find local coordinates so that each branch is parametrized by

$$
\zeta=\sum_{i=1}^{e} x^{\lambda_{i}} y^{\mu_{i}}
$$

with $\lambda_{i} \geq \lambda_{i-1}, \mu_{i} \geq \mu_{i-1}$, and $\left(\lambda_{i}, \mu_{i}\right)$ not contained in the group generated by the previous pairs. (Abhyankar-Lipman) Each $\left(\lambda_{i}, \mu_{i}\right)$ is called a characteristic pair.

Calculations

- Without changing the local topology, we may find local coordinates so that each branch is parametrized by

$$
\zeta=\sum_{i=1}^{e} x^{\lambda_{i}} y^{\mu_{i}}
$$

with $\lambda_{i} \geq \lambda_{i-1}, \mu_{i} \geq \mu_{i-1}$, and $\left(\lambda_{i}, \mu_{i}\right)$ not contained in the group generated by the previous pairs. (Abhyankar-Lipman) Each $\left(\lambda_{i}, \mu_{i}\right)$ is called a characteristic pair.

- How do the characteristic pairs determine the invariants?
- An example: a recursion for vertical monodromy. Given

$$
\zeta=\sum_{i=1}^{e} x^{\lambda_{i}} y^{\mu_{i}}
$$

$\zeta_{1}=x^{\lambda_{1}} y^{\mu_{1}}=x^{\frac{a}{m b}} y^{\frac{n}{m}}$,
(where a and b are relatively prime).

- Let r and s be smallest nonnegative integers so that

has determinant 1 .
- An example: a recursion for vertical monodromy. Given

$$
\zeta=\sum_{i=1}^{e} x^{\lambda_{i}} y^{\mu_{i}}
$$

- ... its truncation is

$$
\zeta_{1}=x^{\lambda_{1}} y^{\mu_{1}}=x^{\frac{a}{m b}} y^{\frac{n}{m}},
$$

(where a and b are relatively prime).

- Let r and s be smallest nonnegative integers so that

has determinant 1 .
- An example: a recursion for vertical monodromy. Given

$$
\zeta=\sum_{i=1}^{e} x^{\lambda_{i}} y^{\mu_{i}}
$$

- ... its truncation is

$$
\zeta_{1}=x^{\lambda_{1}} y^{\mu_{1}}=x^{\frac{a}{m b}} y^{\frac{n}{m}},
$$

(where a and b are relatively prime).

- Let r and s be smallest nonnegative integers so that

$$
\left(\begin{array}{cc}
m & n \\
r & s
\end{array}\right)
$$

has determinant 1 .

- . . . its derived singularity is

where the new exponents are computed by

$$
\begin{aligned}
\mu_{i}^{\prime} & =m\left(\mu_{i+1}-\mu_{1}+m b \mu_{1}\right) \\
\lambda_{i}^{\prime} & =b\left(\lambda_{i+1}-\lambda_{1}+m b \lambda_{1}+r \mu_{i}^{\prime} \lambda_{1}\right)
\end{aligned}
$$

- Given

$$
\zeta=\sum_{i=1}^{e} x^{\lambda_{i}} y^{\mu_{i}}
$$

- ... its derived singularity is

where the new exponents are computed by

$$
\begin{aligned}
\mu_{i}^{\prime} & =m\left(\mu_{i+1}-\mu_{1}+m b \mu_{1}\right) \\
\lambda_{i}^{\prime} & =b\left(\lambda_{i+1}-\lambda_{1}+m b \lambda_{1}+r \mu_{i}^{\prime} \lambda_{1}\right)
\end{aligned}
$$

- Given

$$
\zeta=\sum_{i=1}^{e} x^{\lambda_{i}} y^{\mu_{i}}
$$

- ...its derived singularity is

$$
\zeta^{\prime}=\sum_{i=1}^{e-1} x^{\lambda_{i}^{\prime}} y^{\mu_{i}^{\prime}}
$$

where the new exponents are computed by

$$
\begin{aligned}
& \mu_{i}^{\prime}=m\left(\mu_{i+1}-\mu_{1}+m b \mu_{1}\right) \\
& \lambda_{i}^{\prime}=b\left(\lambda_{i+1}-\lambda_{1}+m b \lambda_{1}+r \mu_{i}^{\prime} \lambda_{1}\right)
\end{aligned}
$$

Example:

$$
\text { - } \zeta=x^{1 / 2} y^{3 / 2}+x^{1 / 2} y^{7 / 4}+x^{2 / 3} y^{11 / 6}
$$

Example:

- $\zeta=x^{1 / 2} y^{3 / 2}+x^{1 / 2} y^{7 / 4}+x^{2 / 3} y^{11 / 6}$
- $\zeta^{\prime}=x^{17 / 4} y^{13 / 2}+x^{9 / 2} y^{20 / 3}$

Example:

- $\zeta=x^{1 / 2} y^{3 / 2}+x^{1 / 2} y^{7 / 4}+x^{2 / 3} y^{11 / 6}$
- $\zeta^{\prime}=x^{17 / 4} y^{13 / 2}+x^{9 / 2} y^{20 / 3}$
- $\zeta^{\prime \prime}=x^{1438 / 3} y^{157 / 3}$
- Let \mathbf{V}_{1} and \mathbf{V}^{\prime} denote the vertical monodromy of the truncation and the derived singularity. Let d^{\prime} denote the number of sheets of the derived singularity.
- Then

- Let \mathbf{V}_{1} and \mathbf{V}^{\prime} denote the vertical monodromy of the truncation and the derived singularity. Let d^{\prime} denote the number of sheets of the derived singularity.
- Then

$$
\mathbf{V}(t)=\frac{\left(\mathbf{V}_{1}(t)\right)^{d^{\prime}} \mathbf{V}^{\prime}\left(t^{b}\right)}{\left(t^{b}-1\right)^{d^{\prime}}}
$$

Relationships among invariants

- An example: the formula of Steenbrink and Saito, worked out for $z^{n}=x^{a} y^{b}$ by McEwan.
- The horizontal and vertical monodromies commute; thus there is a common eigenbasis, and thus a pairing
\{horizontal eigenvalues\} \leftrightarrow \{vertical eigenvalues \}.

Relationships among invariants

- An example: the formula of Steenbrink and Saito, worked out for $z^{n}=x^{a} y^{b}$ by McEwan.
- The horizontal and vertical monodromies commute; thus there is a common eigenbasis, and thus a pairing

$$
\{\text { horizontal eigenvalues }\} \leftrightarrow\{\text { vertical eigenvalues }\} .
$$

- McEwan's pairing (writing eigenvalues as elements of \mathbf{Q} / \mathbf{Z}):

$$
\frac{i}{b}+\frac{j}{n} \leftrightarrow-\frac{a i}{b} \quad(\text { for } 1 \leq i \leq b-1 \text { and } 1 \leq j \leq n-1)
$$

- The horizontal spectral numbers are $h_{i j}=\frac{i}{b}+\frac{j}{n}-1$.
Let $v_{i j}$ be the fractional part of $-\frac{a i}{b}$ (but use 1 if it's an integer).
- By Steenbrink and Saito,

- McEwan's pairing (writing eigenvalues as elements of \mathbf{Q} / \mathbf{Z}):

$$
\frac{i}{b}+\frac{j}{n} \leftrightarrow-\frac{a i}{b} \quad(\text { for } 1 \leq i \leq b-1 \text { and } 1 \leq j \leq n-1)
$$

- The horizontal spectral numbers are $h_{i j}=\frac{i}{b}+\frac{j}{n}-1$. Let $v_{i j}$ be the fractional part of $-\frac{a i}{b}$ (but use 1 if it's an integer).
- By Steenbrink and Saito,

- McEwan's pairing (writing eigenvalues as elements of \mathbf{Q} / \mathbf{Z}):

$$
\frac{i}{b}+\frac{j}{n} \leftrightarrow-\frac{a i}{b} \quad(\text { for } 1 \leq i \leq b-1 \text { and } 1 \leq j \leq n-1)
$$

- The horizontal spectral numbers are $h_{i j}=\frac{i}{b}+\frac{j}{n}-1$. Let $v_{i j}$ be the fractional part of $-\frac{a i}{b}$ (but use 1 if it's an integer).
- By Steenbrink and Saito,

$$
\operatorname{Sp}\left(f+L^{k}\right)-\operatorname{Sp}(f)=\frac{1-t}{1-t^{1 / k}} \cdot\left[\sum t^{h_{i j}+v_{i j} / k}+\text { same for other slice }\right]
$$

$\operatorname{Sp}\left(f+L^{k}\right)-\operatorname{Sp}(f)=\frac{1-t}{1-t^{1 / k}} \cdot\left[\sum t^{h_{i j}+v_{i j} / k}+\right.$ same for other slice $]$.

- Note that all the ingredients in the formula are spectra, with the possible exception of the $v_{i j}$. It's natural to want to call these "vertical spectral numbers," but what does that really mean?
- The Steenbrink-Saito formula applies to all quasi-ordinary surfaces. Can we find compatible recursions for computing al the ingredients?

$$
\operatorname{Sp}\left(f+L^{k}\right)-\operatorname{Sp}(f)=\frac{1-t}{1-t^{1 / k}} \cdot\left[\sum t^{h_{i j}+v_{i j} / k}+\text { same for other slice }\right]
$$

- Note that all the ingredients in the formula are spectra, with the possible exception of the $v_{i j}$. It's natural to want to call these "vertical spectral numbers," but what does that really mean?
- The Steenbrink-Saito formula applies to all quasi-ordinary
surfaces. Can we find compatible recursions for computing all the ingredients?

$$
\operatorname{Sp}\left(f+L^{k}\right)-\operatorname{Sp}(f)=\frac{1-t}{1-t^{1 / k}} \cdot\left[\sum t^{h_{i j}+v_{i j} / k}+\text { same for other slice }\right]
$$

- Note that all the ingredients in the formula are spectra, with the possible exception of the $v_{i j}$. It's natural to want to call these "vertical spectral numbers," but what does that really mean?
- The Steenbrink-Saito formula applies to all quasi-ordinary surfaces. Can we find compatible recursions for computing all the ingredients?

