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An irreducible germ of algebraic surface is quasi-ordinary if one
can find a finite map to a nonsingular surface germ, whose
discriminant locus is a normal crossings divisor.

Thus we can find local coordinates so that the surface is the zero
locus of

f (x, y, z) = zd + g1(x, y)zd−1 + · · ·+ gd(x, y),

and so that the discriminant locus of projection is the pair of
coordinate lines in the x-y plane.
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z = x1/2y + xy3/2
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We want to calculate certain invariants of a quasi-ordinary
surface, and to understand the relationships among them. The
invariants include:
(1) The monodromy of the Milnor fibration, as recorded in the

graded characteristic function

det(tI − m0) det(tI − m2)

det(tI − m1)

(where mi is monodromy on Hi of Milnor fiber).
(2) The spectrum of the same fibration.
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Consider a transverse slice of the surface by x = C, where C is
sufficiently small. This is a plane curve germ, with its own
Milnor fibration, which we call the horizontal fibration.
Continuing our list of invariants:
(3) The monodromy of the horizontal fibration:

H(t) =
det(tI − h0)

det(tI − h1)
.

(4) The spectrum of the same fibration.
(5,6) Same things for transverse slice y = C.
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For the horizontal fibration we fix the value of x while varying
the parameter in f (x, y, z) = ε. Alternatively we can fix ε and let
x move around a small circle, obtaining the vertical fibration.
We consider:
(7) The monodromy of the vertical fibration:

V(t) =
det(tI − v0)

det(tI − v1)
.

(8) Is there a natural way to define a vertical spectrum?
(9,10) Same things for transverse slice y = C.
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Since the singularity is not isolated, it is natural to compare the
surface to a surface in its Yomdin series:

f + Lk = 0,

where L is a general linear form and k is large.
We consider:

(11,12) The monodromy and spectrum of a surface in the Yomdin series.
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Calculations

Without changing the local topology, we may find local
coordinates so that each branch is parametrized by

ζ =
e∑

i=1

xλiyµi

with λi ≥ λi−1, µi ≥ µi−1, and (λi, µi) not contained in the
group generated by the previous pairs. (Abhyankar-Lipman)
Each (λi, µi) is called a characteristic pair.

How do the characteristic pairs determine the invariants?
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An example: a recursion for vertical monodromy. Given

ζ =
e∑

i=1

xλiyµi

. . . its truncation is

ζ1 = xλ1yµ1 = x
a

mb y
n
m ,

(where a and b are relatively prime).

Let r and s be smallest nonnegative integers so that(
m n
r s

)
has determinant 1.
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Given

ζ =
e∑

i=1

xλiyµi

. . . its derived singularity is

ζ ′ =
e−1∑
i=1

xλ′
i yµ′

i ,

where the new exponents are computed by

µ′
i = m(µi+1 − µ1 + mbµ1)

λ′i = b(λi+1 − λ1 + mbλ1 + rµ′
iλ1).
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Example:

ζ = x1/2y3/2 + x1/2y7/4 + x2/3y11/6

ζ ′ = x17/4y13/2 + x9/2y20/3

ζ ′′ = x1438/3y157/3
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Let V1 and V′ denote the vertical monodromy of the truncation
and the derived singularity. Let d′ denote the number of sheets of
the derived singularity.

Then

V(t) =
(V1(t))d′V′(tb)

(tb − 1)d′ .
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Relationships among invariants

An example: the formula of Steenbrink and Saito, worked out
for zn = xayb by McEwan.

The horizontal and vertical monodromies commute; thus there is
a common eigenbasis, and thus a pairing

{horizontal eigenvalues} ↔ {vertical eigenvalues}.
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McEwan’s pairing (writing eigenvalues as elements of Q/Z):

i
b

+
j
n
↔ −ai

b
(for 1 ≤ i ≤ b− 1 and 1 ≤ j ≤ n− 1).

The horizontal spectral numbers are hij = i
b + j

n − 1.
Let vij be the fractional part of − ai

b (but use 1 if it’s an integer).

By Steenbrink and Saito,

Sp(f +Lk)−Sp(f ) =
1− t

1− t1/k
·
[∑

thij+vij/k + same for other slice
]
.
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Sp(f + Lk)−Sp(f ) =
1− t

1− t1/k
·
[∑

thij+vij/k + same for other slice
]
.

Note that all the ingredients in the formula are spectra, with the
possible exception of the vij. It’s natural to want to call these
“vertical spectral numbers,” but what does that really mean?

The Steenbrink-Saito formula applies to all quasi-ordinary
surfaces. Can we find compatible recursions for computing all
the ingredients?
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