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In Figure 9 we show the Kishino diagram K. This diagram has unit Jones polynomial and its fundamental
group is infinite cyclic. Many other invariants of virtual knots fail to detect the Kishino knot. Thus it has been a
test case for examining new invariants. Heather Dye and the author8 have used the bracket polynomial defined
for knots and links in a thickened surface (the state curves are taken as isotopy classes of curves in the surface)
to prove the non-triviality and non-classicality of the Kishino diagram. In fact, we have used this technique
to show that knots with unit Jones polynomial obtained by a single virtualization are non-classical. See the
problem list by Fenn, Kauffman and Manturov17 for other problems and proofs related to the Kishino diagram.
In the next section we describe a new extension of the bracket polynomial that can be used to discriminate the
Kishino diagram, and, in fact, shows that its corresponding flat virtual knot is non-trivial.

7. AN EXTENDED BRACKET POLYNOMIAL FOR VIRTUAL KNOTS AND LINKS
AND FLAT VIRTUAL KNOTS AND LINKS

This section describes a new invariant for virtual knots and links, and for flat virtual knots and links. The
construction of the invariant begins with the oriented state summation of the bracket polynomial. This means
that each local smoothing is either an oriented smoothing or a disoriented smoothing as illustrated in Figures 10
and 11.

In Figure 10 we illustrate the oriented bracket expansion for both positive and negative crossings in the link
diagram. An oriented crossing can be smoothed in the oriented fashion or the disoriented fashion as shown in
Figure 10. We refer to these smoothings as oriented and disoriented smoothings. To each smoothing we make
an associated configuration that will be part of the extended state summation. The configuration associated to
the oriented smoothing is that smoothing itself. The configuration associated to the disoriented smoothing is
obtained by flattening of the original crossing or applying the reduction rules described below. See Figures 11
and 14. The extended bracket state summation is defined by the formula:

<< K >>= ΣS < K|S > d||S||−1[S]

where S runs over the oriented bracket states of the diagram, < K|S > is the usual product of vertex weights as
in the standard bracket polynomial, and [S] is a sum of flat virtual graphs associated with the state S that is
obtained by rules that we describe below.

The square brackets around S in the state summation denote its replacement by a sum of reduced graphs,
using the basic replacements of Figure 11. The procedure of the basic replacements will be explained in detail
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Figure 4. Surfaces and Virtuals

Figure 3 illustrates the two forbidden moves. Neither of these follows from Reidmeister moves plus detour
move, and indeed it is not hard to construct examples of virtual knots that are non-trivial, but will become
unknotted on the application of one or both of the forbidden moves. The forbidden moves change the structure
of the Gauss code and, if desired, must be considered separately from the virtual knot theory proper.

3. INTERPRETATION OF VIRTUALS AS LINKS AS STABLE CLASSES OF LINKS
IN THICKENED SURFACES

There is a useful topological interpretation14, 16 for this virtual theory in terms of embeddings of links in thickened
surfaces. Regard each virtual crossing as a shorthand for a detour of one of the arcs in the crossing through a
1-handle that has been attached to the 2-sphere of the original diagram. By interpreting each virtual crossing in
this way, we obtain an embedding of a collection of circles into a thickened surface Sg ×R where g is the number
of virtual crossings in the original diagram L, Sg is a compact oriented surface of genus g and R denotes the
real line. We say that two such surface embeddings are stably equivalent if one can be obtained from another
by isotopy in the thickened surfaces, homeomorphisms of the surfaces and the addition or subtraction of empty
handles (i.e. the knot does not go through the handle).

We have the

Theorem.14, 21 Two virtual link diagrams are equivalent if and only if their corresponding surface embeddings
are stably equivalent.

In Figure 4 we illustrate some points about this association of virtual diagrams and knot and link diagrams on
surfaces. Note the projection of the knot diagram on the torus to a diagram in the plane (in the center of the
figure) has a virtual crossing in the planar diagram where two arcs that do not form a crossing in the thickened
surface project to the same point in the plane. In this way, virtual crossings can be regarded as artifacts of
projection. The same figure shows a virtual diagram on the left and an “abstract knot diagram” on the right.
The abstract knot diagram is a realization of the knot on the left in a thickened surface with boundary and it is
obtained by making a neighborhood of the virtual diagram that resolves the virtual crossing into arcs that travel
on separate bands. The virtual crossing appears as an artifact of the projection of this surface to the plane.
The reader will find more information about this correspondence14, 21 in other papers by the author and in the
literature of virtual knot theory.
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A Simple Invariant of Virtuals -- The Odd Writhe
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A second class of examples is shown in Figure 6. Here the examples labeled A, B and C are part of an infinite
family of long flat virtuals whose ascending long virtuals have odd writhe J = −2n for n = 1, 2, 3, · · ·. This gives
an infinite family of distinct long flat virtuals such that each one has trivial closure. In Figure 6 we give the flat
Gauss code for each example, then list the odd crossings and the value of the invariant J.

6. REVIEW OF THE BRACKET POLYNOMIAL FOR VIRTUAL KNOTS

In this section we recall how the bracket state summation model10 for the Jones polynomial6, 30 is defined for
virtual knots and links. In the next section we give an extension of this model using orientation structures on
the states of the bracket expansion. The extension is also an invariant of flat virtual links.

We call a diagram in the plane purely virtual if the only crossings in the diagram are virtual crossings. Each
purely virtual diagram is equivalent by the virtual moves to a disjoint collection of circles in the plane.

A state S of a link diagram K is obtained by choosing a smoothing for each crossing in the diagram and
labelling that smoothing with either A or A−1 according to the convention that a counterclockwise rotation of
the overcrossing line sweeps two regions labelled A, and that a smoothing that connects the A regions is labelled
by the letter A. Then, given a state S, one has the evaluation < K|S > equal to the product of the labels at the

Long Flats Embed in Long Virtuals via the Ascending Map.
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is the sign of the crossing when we orient it locally. Our convention of signs is

also given in Figure 14.10. Note that the type of a curl does not depend on the

orientation we choose. The small arcs on the right hand side of these formulas

indicate the removal of the curl from the corresponding diagram.

The bracket is invariant under regular isotopy and can be normalized to an

invariant of ambient isotopy by the definition

fK(A) = (−A3)−w(K)〈K〉(A),

where we chose an orientation forK, and wherew(K) is the sum of the crossing
signs of the oriented link K. w(K) is called the writhe of K. The convention
for crossing signs is shown in Figure 14.10.

One useful consequence of these formulas is the following switching formula

A〈χ〉−A−1〈χ〉 = (A2−A−2)〈$〉.

Note that in these conventions theA-smoothing of χ is$,while the A-smoothing
of χ is )(. Properly interpreted, the switching formula above says that you can

The Bracket Polynomial Model for 
the Jones Polynomial Extends to Virtual Links.



Bracket Polynomial is Unchanged 
when smoothing flanking virtuals.



~

i
v(i)

s(i)

smooth

Figure 7. Switch and Virtualize

a

b

ab

a

b

ab

Figure 8. IQ(Virt)

Figure 9. Kishino Diagram

Same
Bracket

Polynomial



~

i
v(i)

s(i)

smooth

Figure 7. Switch and Virtualize

a

b

ab

a

b

ab

Figure 8. IQ(Virt)

Figure 9. Kishino Diagram



<Virt(K)> = <Switch(K)>
and

IQ(Virt(K)) = IQ(K).

Conclusion:  There exist infinitely many 
non-trivial Virt(K) with unit Jones 

polynomial.
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In Figure 9 we show the Kishino diagram K. This diagram has unit Jones polynomial and its fundamental
group is infinite cyclic. Many other invariants of virtual knots fail to detect the Kishino knot. Thus it has been a
test case for examining new invariants. Heather Dye and the author8 have used the bracket polynomial defined
for knots and links in a thickened surface (the state curves are taken as isotopy classes of curves in the surface)
to prove the non-triviality and non-classicality of the Kishino diagram. In fact, we have used this technique
to show that knots with unit Jones polynomial obtained by a single virtualization are non-classical. See the
problem list by Fenn, Kauffman and Manturov17 for other problems and proofs related to the Kishino diagram.
In the next section we describe a new extension of the bracket polynomial that can be used to discriminate the
Kishino diagram, and, in fact, shows that its corresponding flat virtual knot is non-trivial.

7. AN EXTENDED BRACKET POLYNOMIAL FOR VIRTUAL KNOTS AND LINKS
AND FLAT VIRTUAL KNOTS AND LINKS

This section describes a new invariant for virtual knots and links, and for flat virtual knots and links. The
construction of the invariant begins with the oriented state summation of the bracket polynomial. This means
that each local smoothing is either an oriented smoothing or a disoriented smoothing as illustrated in Figures 10
and 11.

In Figure 10 we illustrate the oriented bracket expansion for both positive and negative crossings in the link
diagram. An oriented crossing can be smoothed in the oriented fashion or the disoriented fashion as shown in
Figure 10. We refer to these smoothings as oriented and disoriented smoothings. To each smoothing we make
an associated configuration that will be part of the extended state summation. The configuration associated to
the oriented smoothing is that smoothing itself. The configuration associated to the disoriented smoothing is
obtained by flattening of the original crossing or applying the reduction rules described below. See Figures 11
and 14. The extended bracket state summation is defined by the formula:

<< K >>= ΣS < K|S > d||S||−1[S]

where S runs over the oriented bracket states of the diagram, < K|S > is the usual product of vertex weights as
in the standard bracket polynomial, and [S] is a sum of flat virtual graphs associated with the state S that is
obtained by rules that we describe below.

The square brackets around S in the state summation denote its replacement by a sum of reduced graphs,
using the basic replacements of Figure 11. The procedure of the basic replacements will be explained in detail

Oriented Bracket State Sum



Our Approach:
Retain the reverse oriented vertex if possible.

Think of the reverse oriented vertex as
endowed with a spring that holds the ends together.

Reduce states to graphs.
Determine reduction rules from the 

Reidemeister moves.
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THE ARROW POLYNOMIAL
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All paired vertices are allowed to come apart.



In the arrow polynomial the paired vertices
at a disoriented crossing come apart and

the reduction relations simplify. 
The end graphs are disjoint unions of 
simplified circle graphs. Each reduced

circle graph becomes a new polynomial variable.
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Returning to Extended Bracket
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are consequences of
the reduction rules.

C takes precendence
over rule [3].
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If S^ is a state obtained from S by
making one of these replacements, then

S^ and S have the same unique graphical reduction.
The summation
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In Figure 9 we show the Kishino diagram K. This diagram has unit Jones polynomial and its fundamental
group is infinite cyclic. Many other invariants of virtual knots fail to detect the Kishino knot. Thus it has been a
test case for examining new invariants. Heather Dye and the author8 have used the bracket polynomial defined
for knots and links in a thickened surface (the state curves are taken as isotopy classes of curves in the surface)
to prove the non-triviality and non-classicality of the Kishino diagram. In fact, we have used this technique
to show that knots with unit Jones polynomial obtained by a single virtualization are non-classical. See the
problem list by Fenn, Kauffman and Manturov17 for other problems and proofs related to the Kishino diagram.
In the next section we describe a new extension of the bracket polynomial that can be used to discriminate the
Kishino diagram, and, in fact, shows that its corresponding flat virtual knot is non-trivial.

7. AN EXTENDED BRACKET POLYNOMIAL FOR VIRTUAL KNOTS AND LINKS
AND FLAT VIRTUAL KNOTS AND LINKS

This section describes a new invariant for virtual knots and links, and for flat virtual knots and links. The
construction of the invariant begins with the oriented state summation of the bracket polynomial. This means
that each local smoothing is either an oriented smoothing or a disoriented smoothing as illustrated in Figures 10
and 11.

In Figure 10 we illustrate the oriented bracket expansion for both positive and negative crossings in the link
diagram. An oriented crossing can be smoothed in the oriented fashion or the disoriented fashion as shown in
Figure 10. We refer to these smoothings as oriented and disoriented smoothings. To each smoothing we make
an associated configuration that will be part of the extended state summation. The configuration associated to
the oriented smoothing is that smoothing itself. The configuration associated to the disoriented smoothing is
obtained by flattening of the original crossing or applying the reduction rules described below. See Figures 11
and 14. The extended bracket state summation is defined by the formula:

<< K >>= ΣS < K|S > d||S||−1[S]

where S runs over the oriented bracket states of the diagram, < K|S > is the usual product of vertex weights as
in the standard bracket polynomial, and [S] is a sum of flat virtual graphs associated with the state S that is
obtained by rules that we describe below.

The square brackets around S in the state summation denote its replacement by a sum of reduced graphs,
using the basic replacements of Figure 11. The procedure of the basic replacements will be explained in detail

where [S] denotes the reduced graph 
corresponding to the state S, is a regular 

isotopy invariant of virtual knots and links.



Reduced States with zigzags cannot be 
embedded in the plane.



Zig-zags survive in higher genus.
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In Figure 22 the flat H is non-trivial because any flat link diagram of two components with an odd number of
real crossings between the components is necessarily non-trivial (since this parity is preserved by the Reidemeister
moves). The appearance of the non-trivial flat H shows that K is non-classical.

In the next example, shown in Figure 23, we have a long virtual diagram L with two crossings. The calculation
of the extended bracket for L is given in figure 23 and shows that it is a non-trivial and non-classical. In fact,
this same formalism proves that Flat(L) is a non-trivial flat link (as we have also seen from Section 5.). Note
that the extended bracket is an invariant of flat diagrams when we take A = 1. With A = 1 we have d = −2 and
so << FL >>= 2[OH ]− 2[FL]. We will later give other examples of the detection of flat non-triviality that are
more complex than this example.

Following Example 2, we have the calculation in Figure 24 of the closure of L to the virtual diagram CL. CL
is an unknotted virtual diagram, and the calculation reflects this fact. Note that in this calculation there appears
a special replacement, corresponding to a Reidemeister 2 move, that is not available in the correspondiing long
diagram. Thus we see that the extended bracket can (sometimes) discriminate between a long knot and its
closure.

The application of the special replacements requires some attention to context. In Figures 25 and 26 we illustrate
cases where there are states with special replacement disoriented loops that are complicated by the presence of
virtual crossings (eliminated by a detour move) and local curl reversals. At the Gauss diagram level the virtual
crossings are simply not present, and they must be discounted in searching for special replacements. In Figure
26 we give an example of a calculation of the extended bracket on a long flat virtual that is in fact trivial (we
leave the verification of its triviality to the reader). Note that in the course of the calculation we find a single
disoriented loop that can be removed and this loop has virtual intersections with the rest of the diagram while
the vertex orders of its site interactions correspond to the basic reduction rules. It is removed and the resulting
flat diagrams collect and cancel.
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In this example <<L>> detects the non-triviality 
of a long virtual whose closure is unknotted.
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Virtualized Trefoil is Non-Classical with 
Virtual Crossing Number Two.



Let  #<<K>> the maximal number of 
necessary virtual crossings among all the 

virtual graphs that appear in <<K>>.

THEOREM.   The virtual crossing number 
of K is bounded below by #<<K>>.

Conclusion: The virtualized trefoil (previous 
slide) had virtual crossing number two.
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Expanding a Classical Tangle
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A Culprit (discovered by Slavik Jablan)

This virtual knot is undetectable by the extended bracket.

It is not classical as is shown by a look at its
Alexander module.
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THE ARROW POLYNOMIAL
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Figure 43. A Virtual Knot Undetectable by the Extended Bracket.

All paired vertices are allowed to come apart.



In the arrow polynomial the paired vertices
at a disoriented crossing come apart and

the reduction relations simplify. 
The end graphs are disjoint unions of 
simplified circle graphs. Each reduced

circle graph becomes a new polynomial variable.
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The arrow polynomial A[K] is
presented here as a natural simplication of 

the extended bracket <<K>>.

In joint work with Heather Dye, we
found the very same invariant 

by a different set of motivations 
related to the work by
Miyazawa and Kamada.

HD and LK show that the maximum monomial
degree of the variables Kn 

with deg(Kn) = n
gives a 

a lower bound on the crossing number of
the knot.



We let A[K] denote the arrow polynonmial.

<K> = B[K] (1 = K1 = K2 = K3 = ... )
Setting all Kn = 1 gives the old bracket.

A[K] = <<K>> (replacing each graph by the corresponding
product of Kn’s)

Setting A = 1 gives a polynomial invariant of 
flat virtuals.

F[K] = B[K](A =1)
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Figure 22. Example1

odd writhe J(K) (defined in section 5). We have that J(K) = 2, proving that K is non-trivial and non-classical.
This is the simplest virtual knot, the analog of the trefoil knot for virtual knot theory. The extended bracket
polynomial gives an independent verification that K is non-trivial and non-classical. Note that in the calculation
of << K >> the fourth state entails a special replacement, and in the final polynomial we have a monomial
term and a term involving a non-trivial flat class of the simple flat H (shown in the figure) consisting of two
circles with one real flat crossing and one virtual crossing.

In this replacement, the reader should note that there are two loops, one without self-crossings and one with
a virtual self-crossing. The loop with the virtual self-crossing does not fall under the category of our reduction
rules. It is the loop with no self-crossing to which the reduction rules apply. The reduction rules are sensitve to
the order of edges at each disoriented site. The presence of virtual crossings can controvert the application of
the basic replacement of Figure 11.

In Figure 22 the flat H is non-trivial because any flat link diagram of two components with an odd number of
real crossings between the components is necessarily non-trivial (since this parity is preserved by the Reidemeister
moves). The appearance of the non-trivial flat H shows that K is non-classical.

In the next example, shown in Figure 23, we have a long virtual diagram L with two crossings. The calculation
of the extended bracket for L is given in figure 23 and shows that it is a non-trivial and non-classical. In fact,
this same formalism proves that Flat(L) is a non-trivial flat link (as we have also seen from Section 5.). Note
that the extended bracket is an invariant of flat diagrams when we take A = 1. With A = 1 we have d = −2 and
so << FL >>= 2[OH]− 2[FL]. We will later give other examples of the detection of flat non-triviality that are
more complex than this example.

Following Example 2, we have the calculation in Figure 24 of the closure of L to the virtual diagram CL. CL
is an unknotted virtual diagram, and the calculation reflects this fact. Note that in this calculation there appears
a special replacement, corresponding to a Reidemeister 2 move, that is not available in the correspondiing long
diagram. Thus we see that the extended bracket can (sometimes) discriminate between a long knot and its
closure.

A[K] =  A^2 + (1 - A^(-4))K1
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extended bracket polynomial, each circle graph contributes d = −A2 − A−2 to the state sum and the graphs
Kn for n ≥ 1 remain in the graphical expansion. For the simplified version B[K] we can regard each Kn as an
extra variable in the polynomial. Thus a product of the Kn’s denotes a state that is a disjoint union of copies
of these circle graphs with multiplicities. By evaluating each circle graph as d = −A2 − A−2 we guarantee that
the resulting polynomial will reduce to the original bracket polynomial when each of the new variables Kn is
set equal to unity. Note that we continue to use the caveat that an isolated circle or circle graph (i.e. a state
consisting in a single circle or single circle graph) is assigned a loop value of unity in the state sum. This assures
that B[K] is normalized so that the unknot receives the value one.

Formally, we have the following state summation for the simple extended bracket

B[K] = ΣS < K|S > d||S||−1B[S]

where S runs over the oriented bracket states of the diagram, < K|S > is the usual product of vertex weights as
in the standard bracket polynomial, ||S|| is the number of circle graphs in the state S, and B[S] is a product of
the variables Kn associated with the non-trivial circle graphs in the state S. Note that each circle graph (trivial or
not) contributes to the power of d in the state summation, but only non-trivial circle graphs contribute to B[S].
The regular isotopy invariance of B[K] follows from the same analysis that we used for the extended bracket,
and is combinatorially easier since the reduction rule is simpler.

Theorem. With the above conventions, the simplified extended bracket B[K] is a polynomial in A, A−1 and
the graphical variables Kn (of which finitely many will appear for any given virtual knot or link). B[K] is a
regular isotopy invariant of virtual knots and links. The normalized version

W [K] = (−A3)−wr(K)B[K]

is an invariant virtual isotopy. If we set A = 1 and d = −A2 −A−2 = −2, then the resulting specialization

F [K] = B[K](A = 1)

is an invariant of flat virtual knots and links.

Example. Refer to Figures 31 to 36. These depict the extended bracket calculations for the Kishino diagram.
It follows at once from Figure 36 that if K is the Kishino diagram, then (with d = −A2 −A−2)

B[K] = 1 + A4 + A−4 − d2K2
1 + 2K2.

It is also easy to see this result directly from the states shown in Figure 31, since the combinatorics of state
reduction is quick for the simple extended bracket. Thus the simple extended bracket shows that the Kishino is
non-trivial and non-classical. In fact, note that

F [K] = 3 + 2K2 − 4K2
1 .

Thus the invariant F [K] of flat virtual diagrams proves that the flat Kishino diagram is non-trivial. This example
shows the power of the simple extended bracket.

Example. Refer to Figure 43. Here we give an example of a virtual knot that is undetectable by the extended
bracket and by the simple extended bracket. The reader can check that this knot is also undectected by the
Sawollek polynonmial34 but that it can be seen to be non-trivial and non-classical by examining the structure of
its Alexander module (Its classical Alexander polynomial is non-trivial and does not have the symmetry property
of a classical knot). This example (for which we are indebted to Slavik Jablan) shows that the extended bracket
invariant is not invulnerable. It is an open problem to determine which virtual knots cannot be seen by the
extended bracket polynomial or by the simple extended bracket polynomial. In joint work with Slavik Jablan,35
we will publish tables of calculations for the simple extended bracket and its relatives.
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Figure 43: Reduction Relation for Simple Extended Bracket.

appear for any given virtual knot or link). A[K] is a regular isotopy invariant of virtual
knots and links. The normalized version

W[K] = (−A3)−wr(K)A[K]

is an invariant virtual isotopy. If we set A = 1 and d = −A2 − A−2 = −2, then the
resulting specialization

F [K] = A[K](A = 1)

is an invariant of flat virtual knots and links.

Example. Refer to Figures 31 to 36. These depict the extended bracket calculations
for the Kishino diagram. It follows at once from Figure 36 that if K is the Kishino
diagram, then (with d = −A2 −A−2)

A[K] = 1 + A4 + A−4 − d2K2
1 + 2K2.

It is also easy to see this result directly from the states shown in Figure 31, since the
combinatorics of state reduction is quick for the simple extended bracket. Thus the
simple extended bracket shows that the Kishino is non-trivial and non-classical. In
fact, note that

F [K] = 3 + 2K2 − 4K2
1 .

Thus the invariant F [K] of flat virtual diagrams proves that the flat Kishino diagram is
non-trivial. This example shows the power of the simple extended bracket.
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Using the Extended Bracket to
Determine Virtual Genus.

The virtual genus is the least genus orientable surface
on which the virtual knot (or flat virtual knot) 

can be represented.



L

L is a flat virtual link whose virtual genus is 2.
We prove this by using the arrow polynomial to

show that the state S survives and thus
the graph G survives in the extended bracket.

One then sees that G is a virtual graph of 
genus 2.

S G

This example shows 
how extended bracket 
has more information 

than arrow poly.



~

~

~

K S S’

H

Here we have a similar story for the 
flat virtual knot K. The state S reduces to S’.

And S’ gives the surviving graph H.
H has genus 2. And the graph of K itself

has genus 2. This proves that K is a virtual flat
knot of virtual genus 2.
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Link: VT Link: RV

Fig. 29. Two oriented torus links.

4. The Arrow Polynomial for Surface Embeddings1

We can obtain an invariant of knots and links in surfaces by applying the arrow
polynomial to a link in a surface. We describe this method here. If K is a link3

diagram in the surface F , we expand the classical crossings as shown in Fig. 7. This
results in a generalization of the arrow polynomial where we retain arrow number5

on the state loops, but also discriminates them via their isotopy class in the surface
(taken up to orientation preserving homeomorphisms of the surface). This results7

in many more variables for the polynomial. This generalized arrow polynomial is
a powerful invariant of link diagrams in surfaces (that is, of link embeddings in9

thickened surfaces). Note that it is possible in this framework to have multiple Ki’s
corresponding to distinct isotopy classes. Note also that this generalized arrow poly-11

nomial is not formulated directly as an invariant of virtual knots, since it depends
upon a specific surface embedding. We mention this generalization here, but in fact13

we will pursue an intermediate course and ask what information is in the arrow
polynomial itself about the structure of surface representations of a given virtual15

knot or link. We will see that the minimal genus of such a surface can sometimes
be determined from the arrow polynomial alone.17

There is a useful topological interpretation [7, 5, 2] of virtual links in terms of
embeddings of links in thickened surfaces. Virtual links are in one to one corre-19

spondence with equivalence classes of links in thickened surfaces modulo 1-handle
stabilization and Dehn twists (representations of virtual links, see [3, 5, 2]). We21

can also apply the generalized arrow polynomial to representations of virtual links.
For a representation of a virtual link, there is a unique surface with minimum23

genus in which these links embed [13]. A virtual link with minimal genus g is
a link diagram that corresponds to a representation with a surface of genus g25

such that this is the minimum genus of any representation. In the remainder of
this section, we consider the generalized arrow polynomial (respecting the iso-27

topy classes of each Ki) in order to make arguments about the original arrow
polynomial.29

Recall that a state of the arrow polynomial consists of a collection of simple
closed curves (possibly with nodal arrows) on the surface. In particular, for the31

generalized arrow polynomial, if some loop has non-zero arrow number then it is an
essential curve in the surface. Therefore, the existence of non-zero arrow numbers33

in the polynomial implies that there are essential loops in the states. We obtain the
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following lemma:1

Lemma 4.1. Let C be a curve in a state of the generalized arrow polynomial applied
to a link in a surface. If C has non-zero arrow number then C is an essential curve3

in the surface.

Proof. The same argument that shows a state loop from a classical knot has5

arrow number zero (Theorem 1.5) also demonstrates that a non-essential loop will
have arrow number zero. Hence, an essential loop must have a non-zero arrow7

number.

We investigate the relationship between genus and the summands of the poly-9

nomial 〈K〉A.

Proposition 4.2. For any i ≥ 1, there exists a virtual knot (and a virtual link), L,11

with minimal genus 1 such that some summand of 〈L〉A contains the variable Ki.

Proof. We consider two cases: a virtual knot that satisfies the above proposition13

and a virtual link that satisfies the above proposition.
Consider the virtual tangle illustrated in Fig. 30 and its corresponding repre-

sentation in S1 × I. We apply the arrow polynomial and obtain the sum of tangles
shown in Fig. 31. Notice that one tangle contains two oppositely oriented nodal
arrows. To construct a virtual knot diagram with arrow polynomial containing the
variable Ki and minimal genus one, we glue together i copies of the virtual trefoil
tangle. We illustrate the case with variable K3. Let T3 denote the virtual knot
shown in Fig. 32. The arrow polynomial of the link T3 is:

〈T3〉A = A−6 + K1(−3 + 3A−4) + K2(3A−2 − 6A2 + 3A6)

+ K3(1 − 3A4 + 3A8 − A12). (4.1)

Fig. 30. Virtual trefoil tangle.

(–A  +1)
4

+ A 
–2

Fig. 31. Arrow polynomial of the virtual trefoil tangle.
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Fig. 32. The knot T3.

Fig. 33. The Hopf tangle.

A + A
–1

Fig. 34. Expansion of the Hopf tangle.

Similarly, we can construct a virtual link L such that 〈L〉A contains the summand1

Ki. Consider the tangle shown in Fig. 33. Applying the arrow polynomial to this
virtual tangle, we obtain the sum of tangles shown in Fig. 34. As a result, we can3

construct a virtual link with minimal genus one that has an arrow polynomial with
some summand containing the variable Ki.5

We now demonstrate that there is a connection between the isotopy class in the
surface of a state curve of the arrow polynomial and the variables Ki. We begin7

by analyzing the number of essential, non-intersecting curves that an oriented, two
dimensional surface of genus g can contain.9

Theorem 4.3. Let S be an oriented, closed, 2-dimensional surface with genus
g ≥ 1. If g = 1, then S contains at most 1 nonintersecting, essential curve and if11

g > 1, then S contains at most 3g − 3 non-intersecting, essential curves.

Proof. Cutting a torus along an essential curve produces a twice punctured sphere.13

If the torus contains two non-intersecting essential curves, then they must co-bound
an annulus. Consider an oriented surface S with genus g > 1. In this surface, there15

is a collection of 3g− 3 essential curves e1, e2, . . . , e3g−3 such that no pair of curves
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Fig. 35. Decomposition of a genus three, oriented surface.

co-bounds an annulus. Cutting along these curves decomposes the surface into a1

collection of 2g − 2 triple punctured spheres (pairs of pants surfaces) as shown in
Fig. 35. If the surface contains any other non-intersecting, essential curve then such3

a curve must be contained in one of the triple punctured spheres. As a result, the
curve co-bounds an annulus with one of the essential curves e1, e2, . . . , e3g−3.5

We also obtain the converse.

Theorem 4.4. If S is an oriented, closed, 2-dimensional surface that contains7

3g − 3 non-intersecting, essential curves with g ≥ 2 then the genus of S is at
least g.9

Proof. See [4].

Theorem 4.5. Let L be a virtual link diagram with arrow polynomial 〈L〉A. Sup-11

pose that 〈L〉A contains a summand with the monomial Ki1Ki2 · · ·Kin where ij %= ik
for all i, k in the set {1, 2, . . . , n}. Then n determines a lower bound on the genus13

g of the minimal genus surface in which L embedds. That is, if n ≥ 1, then the
minimum genus is 1 or greater and if n ≥ 3g − 3 then the minimum genus is g or15

higher.

Proof. The proof of the this theorem is based on Theorem 4.3. Let L be a virtual17

link diagram with minimal genus one. Suppose that the arrow polynomial contains
a summand with the monomial KiKj with i %= j. The summand corresponds to19

a state of expansion of L in a torus that contains two non-intersecting, essential
curves with non-zero arrow number. As a result, these curves cobound an annulus21

and either share at least one crossing or both curves share a crossing with a curve
that bounds a disk in some state obtained from expanding the link L. Smoothing23

the shared crossings results in a curve that bounds a disk and has non-zero arrow
number (either |i − j| or |i + j|) resulting in a contradiction. Hence, the minimum25

genus of L can not be one.
Suppose that L is a virtual link diagram and that 〈L〉A contains a summand with27

the factor Ki1Ki2 · · ·Ki3g−3 . Hence, the corresponding state of the skein expansion
contains 3g − 3 non-intersecting, essential curves in any surface representation of29

L. If any of these curves cobound an annulus in the surface, then some state in
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pose that 〈L〉A contains a summand with the monomial Ki1Ki2 · · ·Kin where ij %= ik
for all i, k in the set {1, 2, . . . , n}. Then n determines a lower bound on the genus13

g of the minimal genus surface in which L embedds. That is, if n ≥ 1, then the
minimum genus is 1 or greater and if n ≥ 3g − 3 then the minimum genus is g or15

higher.

Proof. The proof of the this theorem is based on Theorem 4.3. Let L be a virtual17

link diagram with minimal genus one. Suppose that the arrow polynomial contains
a summand with the monomial KiKj with i %= j. The summand corresponds to19

a state of expansion of L in a torus that contains two non-intersecting, essential
curves with non-zero arrow number. As a result, these curves cobound an annulus21

and either share at least one crossing or both curves share a crossing with a curve
that bounds a disk in some state obtained from expanding the link L. Smoothing23

the shared crossings results in a curve that bounds a disk and has non-zero arrow
number (either |i − j| or |i + j|) resulting in a contradiction. Hence, the minimum25

genus of L can not be one.
Suppose that L is a virtual link diagram and that 〈L〉A contains a summand with27

the factor Ki1Ki2 · · ·Ki3g−3 . Hence, the corresponding state of the skein expansion
contains 3g − 3 non-intersecting, essential curves in any surface representation of29

L. If any of these curves cobound an annulus in the surface, then some state in

1st Reading
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the expansion of L contains a curve that bounds a disk and has non-zero arrow1

number, a contradiction. Hence, none of the 3g− 3 curves cobound an annulus and
as a result, the minimum genus of a surface containing L is at least g.3

Remark 4.1. From this theorem, we can determine a lower bound on the minimal
genus of a virtual link directly from the arrow polynomial. As a result, we can obtain5

genus information directly from the virtual link diagram and the arrow polynomial.
There remains much more to investigate in this direction.7
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Z - Equivalence

Z - Equivalent Links have the
same Jones polynomial

Kauffman, Fenn, Manturov conjectured that virtual 
knots of unit Jones polynomial are Z-equivalent to 

classical knots.

Here are some recent examples to ponder.



The Knot S3 (work with Slavik Jablan) has unit Jones 
polynomial. Is it Z-equivalent to a classical knot?

Answer: It is not!
(Proof via a new parity 

technique due to 
Manturov.)



The knot S7 has unit Jones polynomial. Is it Z-equivalent 
to a classical knot? Does it have crossing number  3?

(Our best lower bound is 2.)



Legendrian Knots

x’(t)y(t) = z’(t)
no tangents parallel to z-axis

project into x-z plane
finite number of points with tangent parallel to y axis
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FF 2. Front projections may be parameterized by a map that is an immersion except at a finite
number of points, at which there is still a well defined tangent line. Such points are called
generalized cusps.

Actually this condition only guarantees the y coordinate defined by Equation (2) is a C0 function.
We need to add conditions on the second derivatives of x and z to get the y coordinate to be C1.
We will not concern ourselves here with this. It is interesting to note that if we demand that all the
coordinates be C∞ then generically our cusps must be “semi-cubic parabolas”. By this we mean
that after a change of coordinates z(θ) = 3θ3 and x(θ) = 2θ2.

Our above discussion implies that FF 1. and FF 2. characterize front projections. In particular,
any map f : S1 → xz–plane : θ "→ (xf (θ), zf (θ)) that satisfies FF 1. and FF 2. represents a
Legendrian knot, since under these conditions we can always define y(θ) by Equation (2). Then the
image of the map φ(θ) = (xf (θ), y(θ), zf (θ)) will be a Legendrian knot.

Interpreting this in terms of knot diagrams one sees that given any knot diagram

(1) that has no vertical tangencies,
(2) the only non-smooth points are generalized cusps and
(3) at each crossing the slope of the overcrossing is smaller (that is, more negative) than the

undercrossing

represents the front projection of a Legendrian knot. To understand the condition on the overcrossing
recall that in order to have the standard orientation on R3 the positive y axis goes into the page.

Example 2.4 In Figure 4 we show front diagrams for Legendrian knots realizing the unknot, right
and left trefoil knots and the figure eight knot.

Figure 4. Legendrian knots realizing the unknot, right and left trefoil knots and
the figure eight knot.

Using these observations one can easily prove.

Theorem 2.5. Given any topological knot K there is a Legendrian knot C0 close to it. In particular,
there are Legendrian knots representing any topological knot type.

Proof. Consider (R3, ξstd). First we show that any knot type can be represented by a Legendrian
knot. This is now quite simple, just take any diagram for the knot (Figure 5), make the modifications
shown if Figure 6 and then use the above procedure to recover a Legendrian knot (Figure 5).

Of course the problem with the construction of a Legendrian knot this way is that it is certainly
not C0 close to the original knot since the difference between y-coordinates of the original knot
and the Legendrian knot determined by the front projection can be quite far apart. This problem
with the y-coordinate can be fixed with the idea illustrated in Figure 7 that any arc may be C0

approximated rel end points by a Legendrian arc.
Using Darboux’s theorem (that all contact structures are locally the same as (R3, ξstd)) one may

easily finish the proof for a general contact 3–manifold. !



no vertical tangencies.
only non-smooth points are generalized cusps.

at each crossing the slope of th overcrossing is smaller 
(more negative) than the slope of the undercrossing.

8 JOHN B. ETNYRE

Figure 5. Converting a knot diagram (left) into a Legendrian front (right).

or

Figure 6. Realizing a knot type as a Legendrian knot.

Figure 7. C0 approximating an arc by a Legendrian arc.

Of course we could have used this last technique to show that any knot type has a Legendrian
representative thus avoiding the first part of the proof. But, in practice, if one is trying to construct
Legendrian representatives of a knot type (and not C0 approximations of a specific knot) one uses
Figure 6. This is because using Figure 7 introduces too many “zig-zags”. We will see below it is
best to avoid these as much as possible.

Just as there are Reidemeister moves for topological knot diagrams there is a set of “Reidemeister”
moves for front diagrams too.

Theorem 2.6 (See [81]). Two front diagrams represent the Legendrian isotopic Legendrian knots
if and only if they are related by regular homotopy and a sequence of moves shown in Figure 8.

Example 2.7 If Figure 9 we show that two different front diagrams for a Legendrian unknot are
Legendrian isotopic.

To illustrate the difficulty in using these move one might want to try to show the two Legendrian
figure eight knots in Figure 10 are Legendrian isotopic.

We now discuss the Lagrangian projection of a Legendrian knot. Let

π : R3 → R2 : (x, y, z) "→ (x, y).

Then the Lagrangian projection of a Legendrian knot L is π(L). The terminology “Lagrangian
projection” comes from the fact that dα|xy−plane, which is a symplectic form, vanishes when restricted
to π(L). This is very important when considering Legendrian knots in R2n+1 but is irrelevant in our
discussion. However, we keep the terminology for the sake of consistency. If we again parameterize L

See survey article by John Entnyre.
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Figure 8. Legendrian Reidemeister moves. (Also need the corresponding figures
rotated 180 degrees about all three coordinate axes.)

Figure 9. Various fronts of the same Legendrian unknot.

Figure 10. Two fronts of the same Legendrian figure eight knot.

by φ (all notation is as above) then π(L) is parameterized by φπ(θ) = (x(θ), y(θ)). Unlike the front
projection, the Lagrangian projection is always parameterized by an immersion, since if x′(θ) =
y′(θ) = 0 for some θ then z′(θ) != 0 so the tangent vector to L is pointing in the ∂

∂z direction which
does not lie in ξ.

The Legendrian knot L can be recovered (up to translation in the z-direction) from the Lagrangian
projection as follows: pick some number z0 and define z(0) = z0. Then define

(4) z(θ) = z0 +

∫ θ

0
y(θ)x′(θ)dθ.

Since a Legendrian knot satisfies Equation (1) we see this equation can be written

z(θ) = z0 +

∫ θ

0
z′(θ)dθ,

which is a tautology. So the only ambiguity in recovering L is the choice of z0.
Let’s observe a few restrictions on immersions S1 → R2 that can be Lagrangian projections of a

Legendrian knot. First let g : S1 → R2 : θ #→ (x(θ), y(θ)) be any immersion. If we try to define z(θ)
by Equation (4) then we run into problems. Specifically, if we think of θ ∈ [0, 2π] then z(θ) will be
a well defined function on S1 only if z(0) = z(2π). This condition can be written

∫ 2π

0
y(θ)x′(θ)dθ = 0

and of course is not satisfied for all immersions g. This is the only obstruction to lifting g to an
immersion G : S1 → R3 whose image is tangent to ξ. The image of G will be a Legendrian knot if

Legendrian Reidemeister Moves
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Figure 8. Legendrian Reidemeister moves. (Also need the corresponding figures
rotated 180 degrees about all three coordinate axes.)

Figure 9. Various fronts of the same Legendrian unknot.

Figure 10. Two fronts of the same Legendrian figure eight knot.

by φ (all notation is as above) then π(L) is parameterized by φπ(θ) = (x(θ), y(θ)). Unlike the front
projection, the Lagrangian projection is always parameterized by an immersion, since if x′(θ) =
y′(θ) = 0 for some θ then z′(θ) != 0 so the tangent vector to L is pointing in the ∂

∂z direction which
does not lie in ξ.

The Legendrian knot L can be recovered (up to translation in the z-direction) from the Lagrangian
projection as follows: pick some number z0 and define z(0) = z0. Then define

(4) z(θ) = z0 +

∫ θ

0
y(θ)x′(θ)dθ.

Since a Legendrian knot satisfies Equation (1) we see this equation can be written

z(θ) = z0 +

∫ θ

0
z′(θ)dθ,

which is a tautology. So the only ambiguity in recovering L is the choice of z0.
Let’s observe a few restrictions on immersions S1 → R2 that can be Lagrangian projections of a

Legendrian knot. First let g : S1 → R2 : θ #→ (x(θ), y(θ)) be any immersion. If we try to define z(θ)
by Equation (4) then we run into problems. Specifically, if we think of θ ∈ [0, 2π] then z(θ) will be
a well defined function on S1 only if z(0) = z(2π). This condition can be written

∫ 2π

0
y(θ)x′(θ)dθ = 0

and of course is not satisfied for all immersions g. This is the only obstruction to lifting g to an
immersion G : S1 → R3 whose image is tangent to ξ. The image of G will be a Legendrian knot if



Work In Progress:
The Arrow Polynomial generalizes to

an invariant of Legendrian knots.

Stay tuned for more 
developments.



Many Questions

1. Find better bounds on virtual crossing numbers.
2. Understand virtual graph classes.

3. Relative strength of <<K>> and A[K].

4. Categorify these invariants (work with Heather 
Dye and Vassily Manturov. see recent paper on 

arxiv.)
5. Relationship of these invariants with 
with the virtual Temperley Lieb algebra.

6. Second order generalizations to invariants 
of knots in surfaces and to long flats.

7. Deeper oriented structure in other state sums?
8. Legendrian knots.


