Hirzebruch Invariants of Symmetric Products

LAURENTIU MAXIM
 (joint with J. Schürmann) arXiv:0906.1264

LIB60BER
Jaca, Spain, June 2009

(1) Symmetric products
(2) Generating series

- History and Results
- Extensions to the singular setting

Symmetric products

Definition

The n-th symmetric product of a space X is defined by

$$
X^{(n)}:=\overbrace{X \times \cdots \times X}^{n \text { times }} / \Sigma_{n}
$$

the quotient of the product of n copies of X by the natural action of the symmetric group on n elements, Σ_{n}.

What are symmetric products good for?

- If X is a smooth complex projective curve, $\left\{X^{(n)}\right\}_{n}$ are used for studying the Jacobian variety of X (Macdonald).

What are symmetric products good for?

- If X is a smooth complex projective curve, $\left\{X^{(n)}\right\}_{n}$ are used for studying the Jacobian variety of X (Macdonald).
- If X is a smooth complex algebraic surface, $X^{(n)}$ is used to understand the topology of the n-th Hilbert scheme $X^{[n]}$ (Cheah, Göttsche-Soergel).

What are symmetric products good for?

- If X is a smooth complex projective curve, $\left\{X^{(n)}\right\}_{n}$ are used for studying the Jacobian variety of X (Macdonald).
- If X is a smooth complex algebraic surface, $X^{(n)}$ is used to understand the topology of the n-th Hilbert scheme $X^{[n]}$ (Cheah, Göttsche-Soergel).

What are symmetric products good for?

- If X is a smooth complex projective curve, $\left\{X^{(n)}\right\}_{n}$ are used for studying the Jacobian variety of X (Macdonald).
- If X is a smooth complex algebraic surface, $X^{(n)}$ is used to understand the topology of the n-th Hilbert scheme $X^{[n]}$ (Cheah, Göttsche-Soergel). Higher-dimensional generalizations: Gusein-Zade, Luengo, Melle-Hernández.
- Problem: How does one compute invariants $\mathcal{I}\left(X^{(n)}\right)$ of symmetric products of spaces?
- Problem: How does one compute invariants $\mathcal{I}\left(X^{(n)}\right)$ of symmetric products of spaces?
- Standard approach:
- Problem: How does one compute invariants $\mathcal{I}\left(X^{(n)}\right)$ of symmetric products of spaces?
- Standard approach:
- Consider the generating series

$$
S_{\mathcal{I}}(X):=\sum_{n \geq 0} \mathcal{I}\left(X^{(n)}\right) \cdot t^{n}
$$

provided $\mathcal{I}\left(X^{(n)}\right)$ can be defined for all n.

- Problem: How does one compute invariants $\mathcal{I}\left(X^{(n)}\right)$ of symmetric products of spaces?
- Standard approach:
- Consider the generating series

$$
S_{\mathcal{I}}(X):=\sum_{n \geq 0} \mathcal{I}\left(X^{(n)}\right) \cdot t^{n}
$$

provided $\mathcal{I}\left(X^{(n)}\right)$ can be defined for all n.

- Goal: calculate $S_{\mathcal{I}}(X)$ only in terms of invariants of X.
- Problem: How does one compute invariants $\mathcal{I}\left(X^{(n)}\right)$ of symmetric products of spaces?
- Standard approach:
- Consider the generating series

$$
S_{\mathcal{I}}(X):=\sum_{n \geq 0} \mathcal{I}\left(X^{(n)}\right) \cdot t^{n}
$$

provided $\mathcal{I}\left(X^{(n)}\right)$ can be defined for all n.

- Goal: calculate $S_{\mathcal{I}}(X)$ only in terms of invariants of X.
- Then $\mathcal{I}\left(X^{(n)}\right)$ is equal to the coefficient of t^{n} in the resulting expression in invariants of X.

Euler-Poincaré characteristic and Chern classes

- Macdonald ('62): X - compact triangulated space

$$
\sum_{n \geq 0} \chi\left(X^{(n)}\right) \cdot t^{n}=(1-t)^{-\chi(X)}=\exp \left(\sum_{r \geq 1} \chi(X) \cdot \frac{t^{r}}{r}\right)
$$

Euler-Poincaré characteristic and Chern classes

- Macdonald ('62): X- compact triangulated space

$$
\sum_{n \geq 0} \chi\left(X^{(n)}\right) \cdot t^{n}=(1-t)^{-\chi(X)}=\exp \left(\sum_{r \geq 1} \chi(X) \cdot \frac{t^{r}}{r}\right)
$$

- Ohmoto ('08): Chern class version of Macdonald's result for the Chern-MacPherson classes of complex quasi-projective varieties.

Signature and L-classes

- Hirzebruch-Zagier ('70): if X is a closed oriented manifold,

$$
\sum_{n \geq 0} \sigma\left(X^{(n)}\right) \cdot t^{n}=\frac{(1+t)^{\frac{\sigma(X)-\chi(X)}{2}}}{(1-t)^{\frac{\sigma(X)+\chi(X)}{2}}}
$$

for $\mathcal{I}=\sigma$ the signature of a compact rational homology manifold.

Signature and L-classes

- Hirzebruch-Zagier ('70): if X is a closed oriented manifold,

$$
\sum_{n \geq 0} \sigma\left(X^{(n)}\right) \cdot t^{n}=\frac{(1+t)^{\frac{\sigma(X)-\chi(X)}{2}}}{(1-t)^{\frac{\sigma(X)+\chi(X)}{2}}}
$$

for $\mathcal{I}=\sigma$ the signature of a compact rational homology manifold.

- Hirzebruch-Zagier ('70): class version for the Thom-Milnor L-classes.

Arithmetic genus and Todd classes

- Moonen ('78): if X is a complex projective variety, then

$$
\sum_{n \geq 0} \chi_{a}\left(X^{(n)}\right) \cdot t^{n}=(1-t)^{-\chi_{a}(X)}=\exp \left(\sum_{r \geq 1} \chi_{a}(X) \cdot \frac{t^{r}}{r}\right)
$$

for $\mathcal{I}(X)=\chi_{a}(X):=\sum_{k \geq 0}(-1)^{k} \cdot \operatorname{dim} H^{k}\left(X, \mathcal{O}_{X}\right)$ the arithmetic genus.

Arithmetic genus and Todd classes

- Moonen ('78): if X is a complex projective variety, then

$$
\sum_{n \geq 0} \chi_{a}\left(X^{(n)}\right) \cdot t^{n}=(1-t)^{-\chi_{a}(X)}=\exp \left(\sum_{r \geq 1} \chi_{a}(X) \cdot \frac{t^{r}}{r}\right)
$$ for $\mathcal{I}(X)=\chi_{a}(X):=\sum_{k \geq 0}(-1)^{k} \cdot \operatorname{dim} H^{k}\left(X, \mathcal{O}_{X}\right)$ the arithmetic genus.

- Moonen ('78): class version for the Baum-Fulton-MacPherson Todd classes of symmetric products.

Hirzebruch χ_{y}-genus

- If X is smooth and compact, $H^{k}(X ; \mathbb{Q})$ carries a natural weight k pure Hodge structure, i.e.,

$$
H^{k}(X ; \mathbb{C})=\oplus_{p+q=k} H^{p, q}
$$

with $H^{p, q}=H^{\bar{q}, p}$. In fact, $H^{p, q}=H^{q}\left(X, \Omega_{X}^{p}\right)$ (Deligne).

Hirzebruch χ_{y}-genus

- If X is smooth and compact, $H^{k}(X ; \mathbb{Q})$ carries a natural weight k pure Hodge structure, i.e.,

$$
H^{k}(X ; \mathbb{C})=\oplus_{p+q=k} H^{p, q}
$$

with $H^{p, q}=H^{\bar{q}, p}$. In fact, $H^{p, q}=H^{q}\left(X, \Omega_{X}^{p}\right)$ (Deligne).

- The Hirzebruch χ_{y}-genus of X is:

$$
\chi_{y}(X)=\sum_{p, q}(-1)^{q} h^{p, q}(X) \cdot y^{p}
$$

with $h^{p, q}(X)=\operatorname{dim} H^{q}\left(X, \Omega_{X}^{p}\right)$ the Hodge numbers of X.

- Borisov-Libgober, Zhou ('00): X compact smooth complex algebraic variety:

$$
\sum_{n \geq 0} \chi_{-y}\left(X^{(n)}\right) \cdot t^{n}=\exp \left(\sum_{r \geq 1} \chi_{-y^{r}}(X) \cdot \frac{t^{r}}{r}\right)
$$

- Borisov-Libgober, Zhou ('00): X compact smooth complex algebraic variety:

$$
\sum_{n \geq 0} \chi_{-y}\left(X^{(n)}\right) \cdot t^{n}=\exp \left(\sum_{r \geq 1} \chi_{-y^{r}}(X) \cdot \frac{t^{r}}{r}\right)
$$

- Borisov-Libgober (' 00): generating series for the 2-variables elliptic genus of compact complex algebraic manifolds.
- Borisov-Libgober, Zhou ('00): X compact smooth complex algebraic variety:

$$
\sum_{n \geq 0} \chi_{-y}\left(X^{(n)}\right) \cdot t^{n}=\exp \left(\sum_{r \geq 1} \chi_{-y^{r}}(X) \cdot \frac{t^{r}}{r}\right)
$$

- Borisov-Libgober ('00): generating series for the 2-variables elliptic genus of compact complex algebraic manifolds.
- For X a complex projective manifold:

$$
\chi_{-1}=\chi, \chi_{0}=\chi_{a}, \chi_{1}=\sigma
$$

so get back all previous results for genera in the smooth complex algebraic context.

Immediate Corollaries

- If X_{g} is a smooth projective curve of genus g, then

$$
\sum_{n} \chi_{-y}\left(X_{g}^{(n)}\right) \cdot t^{n}=[(1-t)(1-y t)]^{g-1} .
$$

In particular,

$$
h^{p, q}\left(X_{g}^{(n)}\right)=\sum_{0 \leq k \leq p}\binom{g}{p-k}\binom{g}{q-k}, \quad 0 \leq p \leq q, p+q \leq n
$$

Immediate Corollaries

- If X is a smooth projective surface and $X^{[n]}$ is the n-th Hilbert scheme, then $X^{[n]} \rightarrow X^{(n)}$ is birational (crepant resolution). So,

$$
h^{p, 0}\left(X^{[n]}\right)=h^{p, 0}\left(X^{(n)}\right) .
$$

The generating series formula yields Göttsche's formula:

$$
\sum_{n, p} h^{p, 0}\left(X^{[n]}\right) y^{p} t^{n}=\prod_{p \geq 0}\left(1-(-1)^{p} y^{p} t\right)^{(-1)^{p+1} h^{p, 0}(X)}
$$

- Aim: Unify and extend these results to the singular setting, e.g., find generating series for (intersection homology) Hodge polynomials of (possibly singular) quasi-projective varieties, and in particular, for the intersection homology Euler characteristic and the Goresky-MacPherson signature.
- Aim: Unify and extend these results to the singular setting, e.g., find generating series for (intersection homology) Hodge polynomials of (possibly singular) quasi-projective varieties, and in particular, for the intersection homology Euler characteristic and the Goresky-MacPherson signature.
- Approach: Allow coefficients in mixed Hodge modules, i.e., consider twisted Hodge polynomials, twisted signatures etc.

Extensions of Hirzebruch's genus to the singular setting

Hirzebruch's χ_{y}-genus of a complex projective manifold, $\chi_{y}(X)$, admits several generalizations to the singular setting.

Definition (mHs)

A mixed hodge structure is a \mathbb{Q}-vector space V endowed with an increasing weight filtration W_{\bullet},

Definition (mHs)

A mixed hodge structure is a \mathbb{Q}-vector space V endowed with an increasing weight filtration W_{\bullet}, and with a decreasing Hodge filtration F^{\bullet} on $V \otimes \mathbb{C}$

Definition (mHs)

A mixed hodge structure is a \mathbb{Q}-vector space V endowed with an increasing weight filtration W_{\bullet}, and with a decreasing Hodge filtration F^{\bullet} on $V \otimes \mathbb{C}$ so that $\left(\operatorname{Gr}_{k}^{W} V, F^{\bullet}\right)$ is a pure Hodge structure of weight k (e.g., like $H^{k}(X ; \mathbb{Q})$, for X smooth and projective), for any $k \in \mathbb{Z}$.

Definition (mHs)

A mixed hodge structure is a \mathbb{Q}-vector space V endowed with an increasing weight filtration W_{\bullet}, and with a decreasing Hodge filtration F^{\bullet} on $V \otimes \mathbb{C}$ so that $\left(\operatorname{Gr}_{k}^{W} V, F^{\bullet}\right)$ is a pure Hodge structure of weight k (e.g., like $H^{k}(X ; \mathbb{Q})$, for X smooth and projective), for any $k \in \mathbb{Z}$.

Definition

The χ_{y}-genus transformation is the ring homomorphism

$$
\begin{gathered}
\chi_{y}: K_{0}(\mathrm{mHs}) \rightarrow \mathbb{Z}\left[y, y^{-1}\right] \\
{\left[\left(V, F^{\bullet}, W_{\bullet}\right)\right] \mapsto \sum_{p} \operatorname{dim}_{\mathbb{C}}\left(g r_{F}^{p}\left(V \otimes_{\mathbb{Q}} \mathbb{C}\right)\right) \cdot(-y)^{p}}
\end{gathered}
$$

where $K_{0}(\mathrm{mHs})$ is the Grothendieck ring of the category of \mathbb{Q} - mHs .

Examples

Let X be a complex algebraic variety.

Examples

Let X be a complex algebraic variety.

- $H_{(c)}^{*}(X ; \mathbb{Q})$ carries Deligne's canonical mHs , and we set

$$
\chi_{y}^{(c)}(X):=\chi_{y}\left(\left[H_{(c)}^{*}(X ; \mathbb{Q})\right]\right)=\sum_{j}(-1)^{j} \cdot \chi_{y}\left(\left[H_{(c)}^{j}(X ; \mathbb{Q})\right]\right)
$$

Examples

Let X be a complex algebraic variety.

- $H_{(c)}^{*}(X ; \mathbb{Q})$ carries Deligne's canonical mHs , and we set

$$
\chi_{y}^{(c)}(X):=\chi_{y}\left(\left[H_{(c)}^{*}(X ; \mathbb{Q})\right]\right)=\sum_{j}(-1)^{j} \cdot \chi_{y}\left(\left[H_{(c)}^{j}(X ; \mathbb{Q})\right]\right)
$$

- $I H_{(c)}^{*}(X ; \mathbb{Q})$ carries Saito's mHs , and set:

$$
I \chi_{y}^{(c)}(X):=\chi_{y}\left(\left[I H_{(c)}^{*}(X ; \mathbb{Q})\right]\right)
$$

Examples

Let X be a complex algebraic variety.

- $H_{(c)}^{*}(X ; \mathbb{Q})$ carries Deligne's canonical mHs , and we set

$$
\chi_{y}^{(c)}(X):=\chi_{y}\left(\left[H_{(c)}^{*}(X ; \mathbb{Q})\right]\right)=\sum_{j}(-1)^{j} \cdot \chi_{y}\left(\left[H_{(c)}^{j}(X ; \mathbb{Q})\right]\right)
$$

- $I H_{(c)}^{*}(X ; \mathbb{Q})$ carries Saito's $m H s$, and set:

$$
I \chi_{y}^{(c)}(X):=\chi_{y}\left(\left[I H_{(c)}^{*}(X ; \mathbb{Q})\right]\right)
$$

- If X is a compact algebraic manifold, then
$\chi_{y}^{(c)}(X)=I \chi_{y}^{(c)}(X)$ is the Hirzebruch χ_{y}-genus.

Examples

Let X be a complex algebraic variety.

- $H_{(c)}^{*}(X ; \mathbb{Q})$ carries Deligne's canonical mHs , and we set

$$
\chi_{y}^{(c)}(X):=\chi_{y}\left(\left[H_{(c)}^{*}(X ; \mathbb{Q})\right]\right)=\sum_{j}(-1)^{j} \cdot \chi_{y}\left(\left[H_{(c)}^{j}(X ; \mathbb{Q})\right]\right)
$$

- $I H_{(c)}^{*}(X ; \mathbb{Q})$ carries Saito's mHs , and set:

$$
I \chi_{y}^{(c)}(X):=\chi_{y}\left(\left[I H_{(c)}^{*}(X ; \mathbb{Q})\right]\right)
$$

- If X is a compact algebraic manifold, then
$\chi_{y}^{(c)}(X)=I \chi_{y}^{(c)}(X)$ is the Hirzebruch χ_{y}-genus.
- If X is projective (but possibly singular) then $I_{\chi_{1}}(X)=\sigma(X)$ is the Goresky-MacPherson signature defined via Poincaré duality in intersection cohomology.

Crash course on Mixed Hodge Modules

- M. Saito:
$X \leadsto \operatorname{MHM}(X)=$ algebraic mixed Hodge modules.

Crash course on Mixed Hodge Modules

- M. Saito:
$X \leadsto \operatorname{MHM}(X)=$ algebraic mixed Hodge modules.
- If $X=p t$ is a point, then
$\mathrm{MHM}(p t)=\mathrm{mHs}^{p}=($ polarizable $) \mathbb{Q}$-mixed Hodge structures.

Crash course on Mixed Hodge Modules

- M. Saito:
$X \leadsto \operatorname{MHM}(X)=$ algebraic mixed Hodge modules.
- If $X=p t$ is a point, then
$\mathrm{MHM}(p t)=\mathrm{mHs}^{p}=($ polarizable $) \mathbb{Q}$-mixed Hodge structures.
- (complexes of) MHM can be thought as (constructible) complexes of sheaves with additional structure.

Crash course on Mixed Hodge Modules

- M. Saito:
$X \leadsto \operatorname{MHM}(X)=$ algebraic mixed Hodge modules.
- If $X=p t$ is a point, then
$\mathrm{MHM}(p t)=\mathrm{mHs}^{p}=($ polarizable $) \mathbb{Q}$-mixed Hodge structures.
- (complexes of) MHM can be thought as (constructible) complexes of sheaves with additional structure.
- There is a forgetful functor on the derived categories

$$
\text { rat : } D^{b} \operatorname{MHM}(X) \rightarrow D_{c}^{b}(X)
$$

Crash course on Mixed Hodge Modules

- M. Saito:

$$
X \leadsto \operatorname{MHM}(X)=\text { algebraic mixed Hodge modules. }
$$

- If $X=p t$ is a point, then
$\mathrm{MHM}(p t)=\mathrm{mHs}^{p}=($ polarizable $) \mathbb{Q}$-mixed Hodge structures.
- (complexes of) MHM can be thought as (constructible) complexes of sheaves with additional structure.
- There is a forgetful functor on the derived categories

$$
\text { rat : } D^{b} \operatorname{MHM}(X) \rightarrow D_{c}^{b}(X)
$$

- All six Grothendieck operations on $D_{c}^{b}(X)$ "lift" to $D^{b} \mathrm{MHM}(X)$.
- If $X=p t$, let $\mathbb{Q}_{p t}^{H} \in \operatorname{MHM}(p t)$ be s.t. $\operatorname{rat}\left(\mathbb{Q}_{p t}^{H}\right)=\mathbb{Q}$ is the mHs of weight $(0,0)$.
- If $X=p t$, let $\mathbb{Q}_{p t}^{H} \in \mathrm{MHM}(p t)$ be s.t. $\operatorname{rat}\left(\mathbb{Q}_{p t}^{H}\right)=\mathbb{Q}$ is the mHs of weight $(0,0)$.
- If $k: X \rightarrow p t$, let $\mathbb{Q}_{X}^{H}:=k^{*} \mathbb{Q}_{p t}^{H} \in D^{b} \operatorname{MHM}(X)$. Then

$$
H_{(c)}^{i}(X ; \mathbb{Q})=H^{i}\left(k_{*(!)} \mathbb{Q}_{X}^{H}\right)
$$

carries a \mathbb{Q}-mHs (same as Deligne's).

- If $X=p t$, let $\mathbb{Q}_{p t}^{H} \in \operatorname{MHM}(p t)$ be s.t. $\operatorname{rat}\left(\mathbb{Q}_{p t}^{H}\right)=\mathbb{Q}$ is the mHs of weight $(0,0)$.
- If $k: X \rightarrow p t$, let $\mathbb{Q}_{X}^{H}:=k^{*} \mathbb{Q}_{p t}^{H} \in D^{b} \operatorname{MHM}(X)$. Then

$$
H_{(c)}^{i}(X ; \mathbb{Q})=H^{i}\left(k_{*(!)} \mathbb{Q}_{X}^{H}\right)
$$

carries a \mathbb{Q}-mHs (same as Deligne's).

- If $\mathcal{M} \in D^{b} \mathrm{MHM}(X)$, then

$$
H_{(c)}^{*}(X ; \mathcal{M})=H^{*}\left(k_{*(!)} \mathcal{M}\right) \in \mathrm{mHs}
$$

- If $X=p t$, let $\mathbb{Q}_{p t}^{H} \in \operatorname{MHM}(p t)$ be s.t. $\operatorname{rat}\left(\mathbb{Q}_{p t}^{H}\right)=\mathbb{Q}$ is the mHs of weight $(0,0)$.
- If $k: X \rightarrow p t$, let $\mathbb{Q}_{X}^{H}:=k^{*} \mathbb{Q}_{p t}^{H} \in D^{b} \operatorname{MHM}(X)$. Then

$$
H_{(c)}^{i}(X ; \mathbb{Q})=H^{i}\left(k_{*(!)} \mathbb{Q}_{X}^{H}\right)
$$

carries a \mathbb{Q}-mHs (same as Deligne's).

- If $\mathcal{M} \in D^{b} \mathrm{MHM}(X)$, then

$$
H_{(c)}^{*}(X ; \mathcal{M})=H^{*}\left(k_{*(!)} \mathcal{M}\right) \in \mathrm{mHs}
$$

- Define

$$
\chi_{y}^{(c)}(X, \mathcal{M}):=\chi_{y}\left(\left[H_{(c)}^{*}(X ; \mathcal{M})\right]\right)
$$

- If $X=p t$, let $\mathbb{Q}_{p t}^{H} \in \operatorname{MHM}(p t)$ be s.t. $\operatorname{rat}\left(\mathbb{Q}_{p t}^{H}\right)=\mathbb{Q}$ is the mHs of weight $(0,0)$.
- If $k: X \rightarrow p t$, let $\mathbb{Q}_{X}^{H}:=k^{*} \mathbb{Q}_{p t}^{H} \in D^{b} \operatorname{MHM}(X)$. Then

$$
H_{(c)}^{i}(X ; \mathbb{Q})=H^{i}\left(k_{*(!)} \mathbb{Q}_{X}^{H}\right)
$$

carries a \mathbb{Q}-mHs (same as Deligne's).

- If $\mathcal{M} \in D^{b} \mathrm{MHM}(X)$, then

$$
H_{(c)}^{*}(X ; \mathcal{M})=H^{*}\left(k_{*(!)} \mathcal{M}\right) \in \mathrm{mHs}
$$

- Define

$$
\chi_{y}^{(c)}(X, \mathcal{M}):=\chi_{y}\left(\left[H_{(c)}^{*}(X ; \mathcal{M})\right]\right)
$$

- Then $\chi_{y}^{(c)}(X)=\chi_{y}^{(c)}\left(X, \mathbb{Q}_{X}^{H}\right), I \chi_{y}^{(c)}(X)=\chi_{y}^{(c)}\left(X, I C_{X}^{H}\right)$.

Symmetric powers of mixed Hodge modules

Definition

Let $p_{n}: X^{n} \rightarrow X^{(n)}$ be the projection to the symmetric product $X^{(n)}=X^{n} / \Sigma_{n}$. The n-th symmetric power of $\mathcal{M} \in D^{b} \mathrm{MHM}(X)$ is defined as:

$$
\mathcal{M}^{(n)}:=\left(p_{n_{*}} \mathcal{M}^{\boxtimes n}\right)^{\Sigma_{n}} \in D^{b} \operatorname{MHM}\left(X^{(n)}\right)
$$

where

Symmetric powers of mixed Hodge modules

Definition

Let $p_{n}: X^{n} \rightarrow X^{(n)}$ be the projection to the symmetric product $X^{(n)}=X^{n} / \Sigma_{n}$. The n-th symmetric power of $\mathcal{M} \in D^{b} \mathrm{MHM}(X)$ is defined as:

$$
\mathcal{M}^{(n)}:=\left(p_{n_{*}} \mathcal{M}^{\boxtimes n}\right)^{\Sigma_{n}} \in D^{b} \operatorname{MHM}\left(X^{(n)}\right),
$$

where

- $\mathcal{M}^{\boxtimes n} \in D^{b} \mathrm{MHM}\left(X^{n}\right)$ is the n-th external product of \mathcal{M} with the induced Σ_{n}-action.

Symmetric powers of mixed Hodge modules

Definition

Let $p_{n}: X^{n} \rightarrow X^{(n)}$ be the projection to the symmetric product $X^{(n)}=X^{n} / \Sigma_{n}$. The n-th symmetric power of $\mathcal{M} \in D^{b} \mathrm{MHM}(X)$ is defined as:

$$
\mathcal{M}^{(n)}:=\left(p_{n_{*}} \mathcal{M}^{\boxtimes n}\right)^{\Sigma_{n}} \in D^{b} \operatorname{MHM}\left(X^{(n)}\right),
$$

where

- $\mathcal{M}^{\boxtimes n} \in D^{b} \mathrm{MHM}\left(X^{n}\right)$ is the n-th external product of \mathcal{M} with the induced Σ_{n}-action.
- $(-)^{\Sigma_{n}}:=\frac{1}{n!} \sum_{\sigma \in \Sigma_{n}} \psi_{\sigma}$ is the projector on the Σ_{n}-invariant sub-object.

Important special cases

- if $\mathcal{M}=\mathbb{Q}_{X}^{H}$ then: $\left(\mathbb{Q}_{X}^{H}\right)^{(n)}=\mathbb{Q}_{X(n)}^{H}$

Important special cases

- if $\mathcal{M}=\mathbb{Q}_{X}^{H}$ then: $\left(\mathbb{Q}_{X}^{H}\right)^{(n)}=\mathbb{Q}_{X^{(n)}}^{H}$
- if $\mathcal{M}=I C_{X}^{\prime H}:=I C_{X}^{H}[-\operatorname{dim} X]$ then: $\left(I C_{X}^{\prime H}\right)^{(n)}=I C_{X(n)}^{\prime H}$

Important special cases

- if $\mathcal{M}=\mathbb{Q}_{X}^{H}$ then: $\left(\mathbb{Q}_{X}^{H}\right)^{(n)}=\mathbb{Q}_{X(n)}^{H}$
- if $\mathcal{M}=I C_{X}^{\prime H}:=I C_{X}^{H}[-\operatorname{dim} X]$ then: $\left(I C_{X}^{\prime H}\right)^{(n)}=I C_{X(n)}^{\prime H}$
- if \mathcal{L} is a "nice" variation of mHs on $U \subset X$, then $p_{n}: U^{n} \rightarrow U^{(n)}$ is a finite ramified covering branched along the "fat diagonal", i.e. the induced map of the configuration spaces on n (un)ordered points in U :

$$
F(U, n) \xrightarrow{p_{n}} B(U, n):=F(U, n) / \Sigma_{n},
$$

with

$$
F(U, n):=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in U^{n} \mid x_{i} \neq x_{j} \text { for } i \neq j\right\}
$$

is a finite unramified covering. So $\mathcal{L}^{(n)} \mid B(U, n)$ is a "nice" variation on $B(U, n)$. Then $\left(I^{\prime}{ }_{X}^{H}(\mathcal{L})\right)^{(n)}=I C_{X}^{\prime H}{ }_{X(n)}\left(\mathcal{L}^{(n)}\right)$

Theorem A. (M.-Schürmann)

Let X be a complex quasi-projective variety and $\mathcal{M} \in D^{b} M H M(X)$. For $p, q, k \in \mathbb{Z}$, denote by

$$
h_{(c)}^{p, q, k}(X, \mathcal{M}):=h^{p, q}\left(H_{(c)}^{k}(X ; \mathcal{M})\right):=\operatorname{dim}\left(G r_{F}^{p} G r_{p+q}^{W} H_{(c)}^{k}(X ; \mathcal{M})\right)
$$

the corresponding Hodge numbers. Then:

$$
\begin{aligned}
\sum_{n \geq 0}\left(\sum _ { p , q , k } h _ { (c) } ^ { p , q , k } \left(X^{(n)},\right.\right. & \left.\left.\mathcal{M}^{(n)}\right) \cdot y^{p} X^{q}(-z)^{k}\right) \cdot t^{n} \\
& =\prod_{p, q, k}\left(\frac{1}{1-y^{p} X^{q} z^{k} t}\right)^{(-1)^{k} \cdot h_{(c)}^{p, q, k}(X, \mathcal{M})}
\end{aligned}
$$

Idea of proof (for the experts)

- Let $\bar{K}_{0}\left(D^{b} \mathrm{MHM}(p t)\right)$ be the Grothendieck ring associated to the abelian monoid of isomorphism classes of objects with the direct sum; the product is induced by \otimes, and the unit is $\left[\mathbb{Q}_{p t}^{H}\right]$.

Idea of proof (for the experts)

- Let $\bar{K}_{0}\left(D^{b} \mathrm{MHM}(p t)\right)$ be the Grothendieck ring associated to the abelian monoid of isomorphism classes of objects with the direct sum; the product is induced by \otimes, and the unit is $\left[\mathbb{Q}_{p t}^{H}\right]$.
- Let $h: \bar{K}_{0}\left(D^{b} \mathrm{MHM}(p t)\right) \rightarrow \mathbb{Z}\left[y^{ \pm 1}, x^{ \pm 1}, z^{ \pm 1}\right]$ be given by

$$
[\mathcal{V}] \mapsto \sum_{p, q, k} h^{p, q}\left(H^{k}(\mathcal{V})\right) \cdot y^{p} x^{q}(-z)^{k}
$$

Idea of proof (for the experts)

- Let $\bar{K}_{0}\left(D^{b} \mathrm{MHM}(p t)\right)$ be the Grothendieck ring associated to the abelian monoid of isomorphism classes of objects with the direct sum; the product is induced by \otimes, and the unit is $\left[\mathbb{Q}_{p t}^{H}\right]$.
- Let $h: \bar{K}_{0}\left(D^{b} \mathrm{MHM}(p t)\right) \rightarrow \mathbb{Z}\left[y^{ \pm 1}, x^{ \pm 1}, z^{ \pm 1}\right]$ be given by

$$
[\mathcal{V}] \mapsto \sum_{p, q, k} h^{p, q}\left(H^{k}(\mathcal{V})\right) \cdot y^{p} x^{q}(-z)^{k}
$$

- Then h is a homomorphism of pre-lambda rings, with pre-lambda structure on $\bar{K}_{0}\left(D^{b} \mathrm{MHM}(p t)\right)$ given by

$$
\sigma_{t}([\mathcal{V}]):=1+\sum_{n \geq 1}\left[\left(\mathcal{V}^{\otimes n}\right)^{\Sigma_{n}}\right] \cdot t^{n}
$$

Idea of proof (for the experts)

- Let $\bar{K}_{0}\left(D^{b} \mathrm{MHM}(p t)\right)$ be the Grothendieck ring associated to the abelian monoid of isomorphism classes of objects with the direct sum; the product is induced by \otimes, and the unit is $\left[\mathbb{Q}_{p t}^{H}\right]$.
- Let $h: \bar{K}_{0}\left(D^{b} \mathrm{MHM}(p t)\right) \rightarrow \mathbb{Z}\left[y^{ \pm 1}, x^{ \pm 1}, z^{ \pm 1}\right]$ be given by

$$
[\mathcal{V}] \mapsto \sum_{p, q, k} h^{p, q}\left(H^{k}(\mathcal{V})\right) \cdot y^{p} x^{q}(-z)^{k}
$$

- Then h is a homomorphism of pre-lambda rings, with pre-lambda structure on $\bar{K}_{0}\left(D^{b} \mathrm{MHM}(p t)\right)$ given by

$$
\sigma_{t}([\mathcal{V}]):=1+\sum_{n \geq 1}\left[\left(\mathcal{V}^{\otimes n}\right)^{\Sigma_{n}}\right] \cdot t^{n}
$$

- apply this to $\mathcal{V}=k_{*(!)} \mathcal{M}$, with $\left(\mathcal{V}^{\otimes n}\right)^{\Sigma_{n}} \simeq k_{*(!)}\left(\mathcal{M}^{(n)}\right)$.

Alternating objects and Configuration spaces

We can work with the opposite pre-lambda structure $\lambda_{t}=\sigma_{-t}^{-1}$ on $\bar{K}_{0}\left(D^{b} \mathrm{MHM}(p t)\right)$ given by

$$
\lambda_{t}([\mathcal{V}]):=1+\sum_{n \geq 1}\left[\left(\mathcal{V}^{\otimes n}\right)^{\operatorname{sign}-\Sigma_{n}}\right] \cdot t^{n},
$$

for

$$
(-)^{\operatorname{sign}-\Sigma_{n}}:=\frac{1}{n!} \sum_{\sigma \in \Sigma_{n}}(-1)^{\operatorname{sign}(\sigma)} \cdot \psi_{\sigma}
$$

the projector onto the alternating Σ_{n}-equivariant sub-object.

Theorem B. (M.-Schürmann)

Let $X^{\{n\}}:=B(X, n)$ the configuration space of all unordered n-tuples of different points in X, and

$$
\mathcal{M}^{\{n\}}:=\left(p_{n_{*}} \mathcal{M}^{\boxtimes n}\right)^{\operatorname{sign}-\Sigma_{n}} \in D^{b} M H M\left(X^{(n)}\right) .
$$

Then:

$$
\begin{aligned}
\sum_{n \geq 0}\left(\sum _ { p , q , k } h _ { c } ^ { p , q , k } \left(X^{\{n\}},\right.\right. & \left.\left.\mathcal{M}^{\{n\}}\right) \cdot y^{p} x^{q}(-z)^{k}\right) \cdot t^{n} \\
& =\prod_{p, q, k}\left(1+y^{p} x^{q} z^{k} t\right)^{(-1)^{k} \cdot h_{c}^{p, q, k}(X, \mathcal{M})}
\end{aligned}
$$

Corollary of Theorem A.

Let $f_{(c)}^{p}:=\sum_{i}(-1)^{i} \operatorname{dim}_{\mathbb{C}} \operatorname{Gr}_{F}^{p} H_{(c)}^{i}(X, \mathcal{M})$, so that $\chi_{-y}^{(c)}(X, \mathcal{M})=\sum_{p} f_{(c)}^{p}(X, \mathcal{M}) \cdot y^{p}$. Then:

$$
\begin{aligned}
\sum_{n \geq 0} \chi_{-y}^{(c)}\left(X^{(n)}, \mathcal{M}^{(n)}\right) \cdot t^{n} & =\prod_{p}\left(\frac{1}{1-y^{p} t}\right)^{f_{(c)}^{p}(X, \mathcal{M})} \\
& =\exp \left(\sum_{r \geq 1} \chi_{-y^{r}}^{(c)}(X, \mathcal{M}) \cdot \frac{t^{r}}{r}\right)
\end{aligned}
$$

A different proof based on

and

- Main ingredient: The Künneth isomorphism holds in mHs:

$$
H_{(c)}^{*}\left(X^{(n)} ; \mathcal{M}^{(n)}\right) \simeq\left(H_{(c)}^{*}\left(X^{n} ; \mathcal{M}^{\boxtimes n}\right)\right)^{\Sigma_{n}} \simeq\left(\left(H_{(c)}^{*}(X ; \mathcal{M})\right)^{\otimes n}\right)^{\Sigma_{n}}
$$

A different proof based on

and

- Main ingredient: The Künneth isomorphism holds in mHs:

$$
H_{(c)}^{*}\left(X^{(n)} ; \mathcal{M}^{(n)}\right) \simeq\left(H_{(c)}^{*}\left(X^{n} ; \mathcal{M}^{\boxtimes n}\right)\right)^{\Sigma_{n}} \simeq\left(\left(H_{(c)}^{*}(X ; \mathcal{M})\right)^{\otimes n}\right)^{\Sigma_{n}}
$$

- Σ_{n} acts graded anti-symmetrically on $H_{(c)}^{*}\left(X^{n}, \mathcal{M}^{\boxtimes n}\right)$, so can take traces of the action.

A different proof based on

and

- Main ingredient: The Künneth isomorphism holds in mHs:

$$
H_{(c)}^{*}\left(X^{(n)} ; \mathcal{M}^{(n)}\right) \simeq\left(H_{(c)}^{*}\left(X^{n} ; \mathcal{M}^{\boxtimes n}\right)\right)^{\Sigma_{n}} \simeq\left(\left(H_{(c)}^{*}(X ; \mathcal{M})\right)^{\otimes n}\right)^{\Sigma_{n}}
$$

- Σ_{n} acts graded anti-symmetrically on $H_{(c)}^{*}\left(X^{n}, \mathcal{M}^{\boxtimes n}\right)$, so can take traces of the action.

A different proof based on

and

- Main ingredient: The Künneth isomorphism holds in mHs:

$$
H_{(c)}^{*}\left(X^{(n)} ; \mathcal{M}^{(n)}\right) \simeq\left(H_{(c)}^{*}\left(X^{n} ; \mathcal{M}^{\boxtimes n}\right)\right)^{\Sigma_{n}} \simeq\left(\left(H_{(c)}^{*}(X ; \mathcal{M})\right)^{\otimes n}\right)^{\Sigma_{n}}
$$

- Σ_{n} acts graded anti-symmetrically on $H_{(c)}^{*}\left(X^{n}, \mathcal{M}^{\boxtimes n}\right)$, so can take traces of the action. Define equivariant Hodge genera by:

$$
\begin{aligned}
\chi_{-y}^{(c)}\left(X^{n},\right. & \left.\mathcal{M}^{\boxtimes n} ; \sigma\right) \\
& :=\sum_{i, p}(-1)^{i} \operatorname{trace}\left(\sigma \mid \operatorname{Gr}_{F}^{p} H_{(c)}^{i}\left(X^{n}, \mathcal{M}^{\boxtimes n}\right)\right) \cdot y^{p} .
\end{aligned}
$$

- Step 1: For any $n \geq 0$,

$$
\chi_{-y}^{(c)}\left(X^{(n)}, \mathcal{M}^{(n)}\right)=\frac{1}{n!} \sum_{\sigma \in \Sigma_{n}} \chi_{-y}^{(c)}\left(X^{n}, \mathcal{M}^{\boxtimes n} ; \sigma\right)
$$

- Step 1: For any $n \geq 0$,

$$
\chi_{-y}^{(c)}\left(X^{(n)}, \mathcal{M}^{(n)}\right)=\frac{1}{n!} \sum_{\sigma \in \Sigma_{n}} \chi_{-y}^{(c)}\left(X^{n}, \mathcal{M}^{\boxtimes n} ; \sigma\right)
$$

- Step 2: If $\sigma \in \Sigma_{n}$ has cycle-type $\left(k_{1}, k_{2}, \cdots, k_{n}\right)$, i.e., $k_{r}=\#$ of length r cycles in $\sigma, \sum_{r=1}^{n} k_{r} \cdot r=n$, then

$$
\chi_{-y}^{(c)}\left(X^{n}, \mathcal{M}^{\boxtimes n} ; \sigma\right)=\prod_{r=1}^{n} \chi_{-y}^{(c)}\left(X^{r}, \mathcal{M}^{\boxtimes r} ; \sigma_{r}\right)^{k_{r}}
$$

with $\sigma_{r}=(12 \cdots r)$ an r-cycle.

- Step 1: For any $n \geq 0$,

$$
\chi_{-y}^{(c)}\left(X^{(n)}, \mathcal{M}^{(n)}\right)=\frac{1}{n!} \sum_{\sigma \in \Sigma_{n}} \chi_{-y}^{(c)}\left(X^{n}, \mathcal{M}^{\boxtimes n} ; \sigma\right)
$$

- Step 2: If $\sigma \in \Sigma_{n}$ has cycle-type $\left(k_{1}, k_{2}, \cdots, k_{n}\right)$, i.e., $k_{r}=\#$ of length r cycles in $\sigma, \sum_{r=1}^{n} k_{r} \cdot r=n$, then

$$
\chi_{-y}^{(c)}\left(X^{n}, \mathcal{M}^{\boxtimes n} ; \sigma\right)=\prod_{r=1}^{n} \chi_{-y}^{(c)}\left(X^{r}, \mathcal{M}^{\boxtimes r} ; \sigma_{r}\right)^{k_{r}}
$$

with $\sigma_{r}=(12 \cdots r)$ an r-cycle.

- Step 3: For any r-cycle σ_{r} :

$$
\chi_{-y}^{(c)}\left(X^{r}, \mathcal{M}^{\boxtimes r} ; \sigma_{r}\right)=\chi_{-y^{r}}^{(c)}(X, \mathcal{M})=\Psi_{r}\left(\chi_{-y}^{(c)}(X, \mathcal{M})\right),
$$

for Ψ_{r} the r-th Adams operation on $\mathbb{Z}\left[y^{ \pm 1}\right]$.

Characteristic class version

- For X a complex projective variety,

$$
\chi_{y}(X)=\int_{X} T_{y_{*}}(X)
$$

for $T_{y_{*}}(X)$ the (homology) Hirzebruch class of Brasselet-Schürmann-Yokura.

Characteristic class version

- For X a complex projective variety,

$$
\chi_{y}(X)=\int_{X} T_{y_{*}}(X)
$$

for $T_{y_{*}}(X)$ the (homology) Hirzebruch class of
Brasselet-Schürmann-Yokura.

- The 3 steps above admit class versions and yield generating series for the Hirzebruch classes of symmetric products (extending a calculation by Moonen for the case when X is smooth and projective).

Theorem (Cappell-Schürmann-Shaneson-M.-Yokura)

Let X be a complex quasi-projective variety and $X^{(n)}:=X^{n} / \Sigma_{n}$. Then the following identity holds in $\sum_{n} H_{2 *}^{B M}\left(X^{(n)} ; \mathbb{Q}[y]\right) \cdot t^{n}$:

$$
\sum_{n \geq 0} T_{-y_{*}}\left(X^{(n)}\right) \cdot t^{n}=\exp \left(\sum_{r \geq 1} \Psi_{r} d_{*}^{r} T_{-y^{r} *}(X) \cdot \frac{t^{r}}{r}\right)
$$

where

Theorem (Cappell-Schürmann-Shaneson-M.-Yokura)

Let X be a complex quasi-projective variety and $X^{(n)}:=X^{n} / \Sigma_{n}$. Then the following identity holds in $\sum_{n} H_{2 *}^{B M}\left(X^{(n)} ; \mathbb{Q}[y]\right) \cdot t^{n}$:

$$
\sum_{n \geq 0} T_{-y_{*}}\left(X^{(n)}\right) \cdot t^{n}=\exp \left(\sum_{r \geq 1} \Psi_{r} d_{*}^{r} T_{-y^{r} *}(X) \cdot \frac{t^{r}}{r}\right)
$$

where

- Ψ_{r} is the r-th homological Adams operation.

Theorem (Cappell-Schürmann-Shaneson-M.-Yokura)

Let X be a complex quasi-projective variety and $X^{(n)}:=X^{n} / \Sigma_{n}$. Then the following identity holds in $\sum_{n} H_{2 *}^{B M}\left(X^{(n)} ; \mathbb{Q}[y]\right) \cdot t^{n}$:

$$
\sum_{n \geq 0} T_{-y_{*}}\left(X^{(n)}\right) \cdot t^{n}=\exp \left(\sum_{r \geq 1} \Psi_{r} d_{*}^{r} T_{-y_{*}}(X) \cdot \frac{t^{r}}{r}\right)
$$

where

- Ψ_{r} is the r-th homological Adams operation.
- $d^{r}: X \rightarrow X^{(r)}$ is the composition of the projection $X^{r} \rightarrow X^{(r)}$ with the diagonal embedding $X \rightarrow X^{r}$.

Theorem (Cappell-Schürmann-Shaneson-M.-Yokura)

Let X be a complex quasi-projective variety and $X^{(n)}:=X^{n} / \Sigma_{n}$. Then the following identity holds in $\sum_{n} H_{2 *}^{B M}\left(X^{(n)} ; \mathbb{Q}[y]\right) \cdot t^{n}$:

$$
\sum_{n \geq 0} T_{-y_{*}}\left(X^{(n)}\right) \cdot t^{n}=\exp \left(\sum_{r \geq 1} \Psi_{r} d_{*}^{r} T_{-y^{r} *}(X) \cdot \frac{t^{r}}{r}\right)
$$

where

- Ψ_{r} is the r-th homological Adams operation.
- $d^{r}: X \rightarrow X^{(r)}$ is the composition of the projection $X^{r} \rightarrow X^{(r)}$ with the diagonal embedding $X \rightarrow X^{r}$.
- The multiplication on the right-hand side is with respect to the Pontrjagin product induced by

$$
X^{(m)} \times X^{(n)} \rightarrow X^{(m+n)}, \quad m, n \in \mathbb{N}
$$

Happy Birthday, ANATOLY !!!

