Hirzebruch Invariants of Symmetric Products

LAURENTIU MAXIM

(joint with **J. Schürmann**) arXiv:0906.1264

LIB<mark>60</mark>BER

Jaca, Spain, June 2009

・ 同 ト ・ ヨ ト ・ ヨ ト

2 Generating series

- History and Results
- Extensions to the singular setting

- E - - E -

æ

Symmetric products

Definition

The *n*-th symmetric product of a space X is defined by

$$X^{(n)} := \overbrace{X \times \cdots \times X}^{n \text{ times}} / \Sigma_n$$

the quotient of the product of *n* copies of *X* by the natural action of the symmetric group on *n* elements, Σ_n .

(4 同) (4 回) (4 回)

What are symmetric products good for?

 If X is a smooth complex projective curve, {X⁽ⁿ⁾}_n are used for studying the Jacobian variety of X (Macdonald).

What are symmetric products good for?

- If X is a smooth complex projective curve, {X⁽ⁿ⁾}_n are used for studying the Jacobian variety of X (Macdonald).
- If X is a smooth complex algebraic surface, X⁽ⁿ⁾ is used to understand the topology of the *n*-th Hilbert scheme X^[n] (Cheah, Göttsche-Soergel).

What are symmetric products good for?

- If X is a smooth complex projective curve, {X⁽ⁿ⁾}_n are used for studying the Jacobian variety of X (Macdonald).
- If X is a smooth complex algebraic surface, X⁽ⁿ⁾ is used to understand the topology of the *n*-th Hilbert scheme X^[n] (Cheah, Göttsche-Soergel).

What are symmetric products good for?

- If X is a smooth complex projective curve, {X⁽ⁿ⁾}_n are used for studying the Jacobian variety of X (Macdonald).
- If X is a smooth complex algebraic surface, X⁽ⁿ⁾ is used to understand the topology of the *n*-th Hilbert scheme X^[n] (Cheah, Göttsche-Soergel). Higher-dimensional generalizations: Gusein-Zade, Luengo, Melle-Hernández.

• **Problem**: How does one compute invariants $\mathcal{I}(X^{(n)})$ of symmetric products of spaces?

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

- **Problem**: How does one compute invariants $\mathcal{I}(X^{(n)})$ of symmetric products of spaces?
- Standard approach:

・ロト ・回ト ・ヨト ・ヨト

3

Outline Symmetric products Generating series History and Results Extensions to the singular setting

- **Problem**: How does one compute invariants $\mathcal{I}(X^{(n)})$ of symmetric products of spaces?
- Standard approach:
 - Consider the generating series

$$S_{\mathcal{I}}(X) := \sum_{n \ge 0} \mathcal{I}(X^{(n)}) \cdot t^n,$$

소리가 소문가 소문가 소문가

æ

provided $\mathcal{I}(X^{(n)})$ can be defined for all *n*.

- **Problem**: How does one compute invariants $\mathcal{I}(X^{(n)})$ of symmetric products of spaces?
- Standard approach:
 - Consider the generating series

$$S_{\mathcal{I}}(X) := \sum_{n \ge 0} \mathcal{I}(X^{(n)}) \cdot t^n,$$

イロン イヨン イヨン イヨン

provided $\mathcal{I}(X^{(n)})$ can be defined for all *n*.

• Goal: calculate $S_{\mathcal{I}}(X)$ only in terms of invariants of X.

Outline Symmetric products Generating series History and Results Extensions to the singular setting

- **Problem**: How does one compute invariants $\mathcal{I}(X^{(n)})$ of symmetric products of spaces?
- Standard approach:
 - Consider the generating series

$$S_{\mathcal{I}}(X) := \sum_{n \ge 0} \mathcal{I}(X^{(n)}) \cdot t^n,$$

provided $\mathcal{I}(X^{(n)})$ can be defined for all *n*.

- Goal: calculate $S_{\mathcal{I}}(X)$ only in terms of invariants of X.
- Then $\mathcal{I}(X^{(n)})$ is equal to the coefficient of t^n in the resulting expression in invariants of X.

A (10) A (10) A (10) A

History and Results Extensions to the singular setting

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Euler-Poincaré characteristic and Chern classes

• Macdonald ('62): X- compact triangulated space

$$\sum_{n\geq 0} \chi(X^{(n)}) \cdot t^n = (1-t)^{-\chi(X)} = \exp\left(\sum_{r\geq 1} \chi(X) \cdot \frac{t^r}{r}\right)$$

History and Results Extensions to the singular setting

・ 同 ト ・ ヨ ト ・ ヨ ト

Euler-Poincaré characteristic and Chern classes

• Macdonald ('62): X- compact triangulated space

$$\sum_{n\geq 0} \chi(X^{(n)}) \cdot t^n = (1-t)^{-\chi(X)} = \exp\left(\sum_{r\geq 1} \chi(X) \cdot \frac{t^r}{r}\right)$$

• <u>Ohmoto</u> ('08): Chern class version of Macdonald's result for the Chern-MacPherson classes of complex quasi-projective varieties.

History and Results Extensions to the singular setting

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Signature and L-classes

• <u>Hirzebruch-Zagier</u> ('70): if X is a closed oriented manifold,

$$\sum_{n\geq 0} \sigma(X^{(n)}) \cdot t^n = \frac{(1+t)^{\frac{\sigma(X)-\chi(X)}{2}}}{(1-t)^{\frac{\sigma(X)+\chi(X)}{2}}},$$

for $\mathcal{I} = \sigma$ the signature of a compact rational homology manifold.

History and Results Extensions to the singular setting

3

Signature and L-classes

• <u>Hirzebruch-Zagier</u> ('70): if X is a closed oriented manifold,

$$\sum_{n\geq 0} \sigma(X^{(n)}) \cdot t^n = \frac{(1+t)^{\frac{\sigma(X)-\chi(X)}{2}}}{(1-t)^{\frac{\sigma(X)+\chi(X)}{2}}},$$

for $\mathcal{I}=\sigma$ the signature of a compact rational homology manifold.

• <u>Hirzebruch-Zagier</u> ('70): class version for the Thom-Milnor *L*-classes.

History and Results Extensions to the singular setting

イロト イポト イヨト イヨト

3

Arithmetic genus and Todd classes

• Moonen ('78): if X is a complex projective variety, then

$$\sum_{n\geq 0} \chi_{a}(X^{(n)}) \cdot t^{n} = (1-t)^{-\chi_{a}(X)} = \exp\left(\sum_{r\geq 1} \chi_{a}(X) \cdot \frac{t^{r}}{r}\right),$$

for $\mathcal{I}(X) = \chi_a(X) := \sum_{k \ge 0} (-1)^k \cdot \dim H^k(X, \mathcal{O}_X)$ the arithmetic genus.

History and Results Extensions to the singular setting

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Arithmetic genus and Todd classes

• Moonen ('78): if X is a complex projective variety, then

$$\sum_{n\geq 0} \chi_{a}(X^{(n)}) \cdot t^{n} = (1-t)^{-\chi_{a}(X)} = \exp\left(\sum_{r\geq 1} \chi_{a}(X) \cdot \frac{t^{r}}{r}\right),$$

- for $\mathcal{I}(X) = \chi_a(X) := \sum_{k \ge 0} (-1)^k \cdot \dim H^k(X, \mathcal{O}_X)$ the arithmetic genus.
- <u>Moonen</u> ('78): class version for the Baum-Fulton-MacPherson Todd classes of symmetric products.

History and Results Extensions to the singular setting

3

Hirzebruch χ_y -genus

If X is smooth and compact, H^k(X; Q) carries a natural weight k pure Hodge structure, i.e.,

$$H^k(X;\mathbb{C})=\oplus_{p+q=k}H^{p,q},$$

with $H^{p,q} = H^{\overline{q},p}$. In fact, $H^{p,q} = H^q(X, \Omega_X^p)$ (Deligne).

History and Results Extensions to the singular setting

3

Hirzebruch χ_y -genus

If X is smooth and compact, H^k(X; Q) carries a natural weight k pure Hodge structure, i.e.,

$$H^k(X;\mathbb{C})=\oplus_{p+q=k}H^{p,q},$$

with $H^{p,q} = H^{\overline{q},p}$. In fact, $H^{p,q} = H^q(X, \Omega_X^p)$ (Deligne).

• The Hirzebruch χ_y -genus of X is:

$$\chi_{y}(X) = \sum_{p,q} (-1)^{q} h^{p,q}(X) \cdot y^{p},$$

with $h^{p,q}(X) = \dim H^q(X, \Omega_X^p)$ the Hodge numbers of X.

• <u>Borisov-Libgober, Zhou</u> ('00): X compact smooth complex algebraic variety:

$$\sum_{n\geq 0} \chi_{-\mathbf{y}}(X^{(n)}) \cdot t^n = \exp\left(\sum_{r\geq 1} \chi_{-\mathbf{y}^r}(X) \cdot \frac{t^r}{r}\right).$$

• <u>Borisov-Libgober, Zhou</u> ('00): X compact smooth complex algebraic variety:

$$\sum_{n\geq 0} \chi_{-\mathbf{y}}(X^{(n)}) \cdot t^n = \exp\left(\sum_{r\geq 1} \chi_{-\mathbf{y}^r}(X) \cdot \frac{t^r}{r}\right).$$

・ロン ・回 と ・ ヨ と ・ ヨ と

3

• <u>Borisov-Libgober</u> ('00): generating series for the 2-variables elliptic genus of compact complex algebraic manifolds.

• <u>Borisov-Libgober, Zhou</u> ('00): X compact smooth complex algebraic variety:

$$\sum_{n\geq 0} \chi_{-\mathbf{y}}(X^{(n)}) \cdot t^n = \exp\left(\sum_{r\geq 1} \chi_{-\mathbf{y}^r}(X) \cdot \frac{t^r}{r}\right)$$

- <u>Borisov-Libgober</u> ('00): generating series for the 2-variables elliptic genus of compact complex algebraic manifolds.
- For X a complex projective manifold:

$$\chi_{-1} = \chi, \ \chi_0 = \chi_a, \ \chi_1 = \sigma$$

イロト イポト イヨト イヨト

so get back all previous results for genera in the smooth complex algebraic context.

History and Results Extensions to the singular setting

٠

イロン イヨン イヨン イヨン

3

Immediate Corollaries

• If X_g is a smooth projective curve of genus g, then

$$\sum_{n} \chi_{-y}(X_g^{(n)}) \cdot t^n = [(1-t)(1-yt)]^{g-1}$$

In particular,

$$h^{p,q}(X^{(n)}_g) = \sum_{0 \leq k \leq p} {g \choose p-k} {g \choose q-k}, \ \ 0 \leq p \leq q, \ p+q \leq n.$$

History and Results Extensions to the singular setting

- 4 回 ト 4 ヨ ト 4 ヨ ト

Immediate Corollaries

If X is a smooth projective surface and X^[n] is the n-th Hilbert scheme, then X^[n] → X⁽ⁿ⁾ is birational (crepant resolution). So,

$$h^{p,0}(X^{[n]}) = h^{p,0}(X^{(n)}).$$

The generating series formula yields Göttsche's formula:

$$\sum_{n,p} h^{p,0}(X^{[n]}) y^{p} t^{n} = \prod_{p \ge 0} (1 - (-1)^{p} y^{p} t)^{(-1)^{p+1} h^{p,0}(X)}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

• Aim: Unify and extend these results to the singular setting, e.g., find generating series for (intersection homology) Hodge polynomials of (possibly singular) quasi-projective varieties, and in particular, for the intersection homology Euler characteristic and the Goresky-MacPherson signature.

イロト イポト イヨト イヨト

- Aim: Unify and extend these results to the singular setting, e.g., find generating series for (intersection homology) Hodge polynomials of (possibly singular) quasi-projective varieties, and in particular, for the intersection homology Euler characteristic and the Goresky-MacPherson signature.
- Approach: Allow coefficients in mixed Hodge modules, i.e., consider twisted Hodge polynomials, twisted signatures etc.

History and Results Extensions to the singular setting

(4月) イヨト イヨト

Extensions of Hirzebruch's genus to the singular setting

Hirzebruch's χ_y -genus of a complex projective manifold, $\chi_y(X)$, admits several generalizations to the singular setting.

History and Results Extensions to the singular setting

イロト イヨト イヨト イヨト

3

Definition (mHs)

A mixed hodge structure is a \mathbb{Q} -vector space V endowed with an increasing weight filtration W_{\bullet} ,

History and Results Extensions to the singular setting

イロト イヨト イヨト イヨト

3

Definition (mHs)

A mixed hodge structure is a \mathbb{Q} -vector space V endowed with an increasing weight filtration W_{\bullet} , and with a decreasing Hodge filtration F^{\bullet} on $V \otimes \mathbb{C}$

History and Results Extensions to the singular setting

イロト イポト イヨト イヨト

Definition (mHs)

A mixed hodge structure is a \mathbb{Q} -vector space V endowed with an increasing weight filtration W_{\bullet} , and with a decreasing Hodge filtration F^{\bullet} on $V \otimes \mathbb{C}$ so that $(\operatorname{Gr}_{k}^{W}V, F^{\bullet})$ is a pure Hodge structure of weight k (e.g., like $H^{k}(X; \mathbb{Q})$, for X smooth and projective), for any $k \in \mathbb{Z}$.

History and Results Extensions to the singular setting

イロト イポト イヨト イヨト

Definition (mHs)

A mixed hodge structure is a \mathbb{Q} -vector space V endowed with an increasing weight filtration W_{\bullet} , and with a decreasing Hodge filtration F^{\bullet} on $V \otimes \mathbb{C}$ so that $(\operatorname{Gr}_{k}^{W}V, F^{\bullet})$ is a pure Hodge structure of weight k (e.g., like $H^{k}(X; \mathbb{Q})$, for X smooth and projective), for any $k \in \mathbb{Z}$.

Definition

The χ_y -genus transformation is the ring homomorphism

$$\chi_y: \mathcal{K}_0(\mathsf{mHs}) \to \mathbb{Z}[y, y^{-1}]$$

$$[(V, F^{\bullet}, W_{\bullet})] \mapsto \sum_{p} \dim_{\mathbb{C}}(gr_{F}^{p}(V \otimes_{\mathbb{Q}} \mathbb{C})) \cdot (-y)^{p},$$

where $K_0(mHs)$ is the Grothendieck ring of the category of Q-mHs.

History and Results Extensions to the singular setting

イロン 不同と 不同と 不同と

æ

Examples

Let X be a complex algebraic variety.

History and Results Extensions to the singular setting

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Examples

Let X be a complex algebraic variety.

• $H^*_{(c)}(X; \mathbb{Q})$ carries Deligne's canonical mHs, and we set

$$\chi_{y}^{(c)}(X) := \chi_{y}([H_{(c)}^{*}(X;\mathbb{Q})]) = \sum_{j} (-1)^{j} \cdot \chi_{y}([H_{(c)}^{j}(X;\mathbb{Q})])$$

History and Results Extensions to the singular setting

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Examples

Let X be a complex algebraic variety.

• $H^*_{(c)}(X; \mathbb{Q})$ carries Deligne's canonical mHs, and we set

$$\chi_{y}^{(c)}(X) := \chi_{y}([H_{(c)}^{*}(X;\mathbb{Q})]) = \sum_{j} (-1)^{j} \cdot \chi_{y}([H_{(c)}^{j}(X;\mathbb{Q})])$$

• $IH^*_{(c)}(X; \mathbb{Q})$ carries Saito's mHs, and set:

$$I\chi_{\mathcal{Y}}^{(c)}(X) := \chi_{\mathcal{Y}}([IH^*_{(c)}(X;\mathbb{Q})]).$$

History and Results Extensions to the singular setting

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Examples

Let X be a complex algebraic variety.

• $H^*_{(c)}(X; \mathbb{Q})$ carries Deligne's canonical mHs, and we set

$$\chi_{y}^{(c)}(X) := \chi_{y}([H_{(c)}^{*}(X;\mathbb{Q})]) = \sum_{j} (-1)^{j} \cdot \chi_{y}([H_{(c)}^{j}(X;\mathbb{Q})])$$

• $IH^*_{(c)}(X; \mathbb{Q})$ carries Saito's mHs, and set:

$$I\chi_{\mathcal{Y}}^{(c)}(X) := \chi_{\mathcal{Y}}([IH^*_{(c)}(X;\mathbb{Q})]).$$

• If X is a compact algebraic manifold, then $\chi_y^{(c)}(X) = I\chi_y^{(c)}(X)$ is the Hirzebruch χ_y -genus.
History and Results Extensions to the singular setting

Examples

Let X be a complex algebraic variety.

• $H^*_{(c)}(X; \mathbb{Q})$ carries Deligne's canonical mHs, and we set

$$\chi_{y}^{(c)}(X) := \chi_{y}([H^{*}_{(c)}(X;\mathbb{Q})]) = \sum_{j} (-1)^{j} \cdot \chi_{y}([H^{j}_{(c)}(X;\mathbb{Q})])$$

• $IH^*_{(c)}(X; \mathbb{Q})$ carries Saito's mHs, and set:

$$I\chi_{\mathcal{Y}}^{(c)}(X) := \chi_{\mathcal{Y}}([IH^*_{(c)}(X;\mathbb{Q})]).$$

- If X is a compact algebraic manifold, then $\chi_y^{(c)}(X) = I\chi_y^{(c)}(X)$ is the Hirzebruch χ_y -genus.
- If X is projective (but possibly singular) then Iχ₁(X) = σ(X) is the Goresky-MacPherson signature defined via Poincaré duality in intersection cohomology.

History and Results Extensions to the singular setting

Crash course on Mixed Hodge Modules

• M. Saito:

 $X \rightsquigarrow MHM(X) =$ algebraic mixed Hodge modules.

History and Results Extensions to the singular setting

(日) (四) (王) (王) (王)

Crash course on Mixed Hodge Modules

• M. Saito:

 $X \rightsquigarrow MHM(X) =$ algebraic mixed Hodge modules.

• If X = pt is a point, then

 $MHM(pt) = mHs^{p} = (polarizable) \mathbb{Q} - mixed Hodge structures.$

History and Results Extensions to the singular setting

Crash course on Mixed Hodge Modules

• M. Saito:

 $X \rightsquigarrow MHM(X) =$ algebraic mixed Hodge modules.

• If X = pt is a point, then

 $MHM(pt) = mHs^{p} = (polarizable) \mathbb{Q} - mixed Hodge structures.$

• (complexes of) MHM can be thought as (constructible) complexes of sheaves with additional structure.

History and Results Extensions to the singular setting

Crash course on Mixed Hodge Modules

• M. Saito:

 $X \rightsquigarrow MHM(X) =$ algebraic mixed Hodge modules.

• If X = pt is a point, then

 $MHM(pt) = mHs^{p} = (polarizable) \mathbb{Q} - mixed Hodge structures.$

- (complexes of) MHM can be thought as (constructible) complexes of sheaves with additional structure.
- There is a forgetful functor on the derived categories

 $\mathrm{rat}: D^b\mathsf{MHM}(X) \to D^b_c(X)$

History and Results Extensions to the singular setting

Crash course on Mixed Hodge Modules

• M. Saito:

 $X \rightsquigarrow MHM(X) =$ algebraic mixed Hodge modules.

• If X = pt is a point, then

 $MHM(pt) = mHs^{p} = (polarizable) \mathbb{Q} - mixed Hodge structures.$

- (complexes of) MHM can be thought as (constructible) complexes of sheaves with additional structure.
- There is a forgetful functor on the derived categories

 $\mathrm{rat}: D^b\mathsf{MHM}(X) \to D^b_c(X)$

 All six Grothendieck operations on D^b_c(X) "lift" to D^bMHM(X).

History and Results Extensions to the singular setting

・ロン ・回 と ・ 回 と ・ 回 と

3

If X = pt, let Q^H_{pt} ∈ MHM(pt) be s.t. rat(Q^H_{pt}) = Q is the mHs of weight (0,0).

- If X = pt, let Q^H_{pt} ∈ MHM(pt) be s.t. rat(Q^H_{pt}) = Q is the mHs of weight (0,0).
- If $k : X \to pt$, let $\mathbb{Q}_X^H := k^* \mathbb{Q}_{pt}^H \in D^b \mathrm{MHM}(X)$. Then

$$H^i_{(c)}(X;\mathbb{Q})=H^i(k_{*(!)}\mathbb{Q}^H_X)$$

carries a \mathbb{Q} -mHs (same as Deligne's).

- If X = pt, let Q^H_{pt} ∈ MHM(pt) be s.t. rat(Q^H_{pt}) = Q is the mHs of weight (0,0).
- If $k : X \to pt$, let $\mathbb{Q}_X^H := k^* \mathbb{Q}_{pt}^H \in D^b \mathrm{MHM}(X)$. Then

$$H^i_{(c)}(X;\mathbb{Q})=H^i(k_{*(!)}\mathbb{Q}^H_X)$$

carries a \mathbb{Q} -mHs (same as Deligne's).

• If $\mathcal{M} \in D^b \mathsf{MHM}(X)$, then

$$H^*_{(c)}(X;\mathcal{M}) = H^*(k_{*(!)}\mathcal{M}) \in \mathsf{mHs}$$

(日) (同) (E) (E) (E)

- If X = pt, let Q^H_{pt} ∈ MHM(pt) be s.t. rat(Q^H_{pt}) = Q is the mHs of weight (0,0).
- If $k : X \to pt$, let $\mathbb{Q}_X^H := k^* \mathbb{Q}_{pt}^H \in D^b \mathsf{MHM}(X)$. Then

$$H^i_{(c)}(X;\mathbb{Q})=H^i(k_{*(!)}\mathbb{Q}^H_X)$$

carries a \mathbb{Q} -mHs (same as Deligne's).

• If $\mathcal{M} \in D^b \mathsf{MHM}(X)$, then

$$H^*_{(c)}(X;\mathcal{M}) = H^*(k_{*(!)}\mathcal{M}) \in \mathsf{mHs}$$

Define

$$\chi_{\mathcal{Y}}^{(c)}(X,\mathcal{M}) := \chi_{\mathcal{Y}}([H^*_{(c)}(X;\mathcal{M})])$$

(日) (同) (E) (E) (E)

- If X = pt, let Q^H_{pt} ∈ MHM(pt) be s.t. rat(Q^H_{pt}) = Q is the mHs of weight (0,0).
- If $k : X \to pt$, let $\mathbb{Q}_X^H := k^* \mathbb{Q}_{pt}^H \in D^b \mathsf{MHM}(X)$. Then

$$H^i_{(c)}(X;\mathbb{Q})=H^i(k_{*(!)}\mathbb{Q}^H_X)$$

carries a \mathbb{Q} -mHs (same as Deligne's).

• If $\mathcal{M} \in D^b \mathsf{MHM}(X)$, then

$$H^*_{(c)}(X;\mathcal{M}) = H^*(k_{*(!)}\mathcal{M}) \in \mathsf{mHs}$$

Define

$$\chi_{\mathcal{Y}}^{(\boldsymbol{c})}(\boldsymbol{X},\mathcal{M}):=\chi_{\mathcal{Y}}([H^*_{(\boldsymbol{c})}(\boldsymbol{X};\mathcal{M})])$$

イロト イポト イヨト イヨト

3

• Then
$$\chi_y^{(c)}(X) = \chi_y^{(c)}(X, \mathbb{Q}_X^H), \ I\chi_y^{(c)}(X) = \chi_y^{(c)}(X, IC_X^H)$$

History and Results Extensions to the singular setting

소리가 소문가 소문가 소문가

Symmetric powers of mixed Hodge modules

Definition

Let $p_n : X^n \to X^{(n)}$ be the projection to the symmetric product $X^{(n)} = X^n / \Sigma_n$. The *n*-th symmetric power of $\mathcal{M} \in D^b \mathsf{MHM}(X)$ is defined as:

$$\mathcal{M}^{(n)} := (p_{n_*}\mathcal{M}^{\boxtimes n})^{\Sigma_n} \in D^b \mathsf{MHM}(X^{(n)}),$$

where

History and Results Extensions to the singular setting

・ロン ・回 と ・ ヨ と ・ ヨ と

Symmetric powers of mixed Hodge modules

Definition

Let $p_n : X^n \to X^{(n)}$ be the projection to the symmetric product $X^{(n)} = X^n / \Sigma_n$. The *n*-th symmetric power of $\mathcal{M} \in D^b \mathsf{MHM}(X)$ is defined as:

$$\mathcal{M}^{(n)} := (p_{n_*}\mathcal{M}^{\boxtimes n})^{\Sigma_n} \in D^b \mathsf{MHM}(X^{(n)}),$$

where

• $\mathcal{M}^{\boxtimes n} \in D^b \mathsf{MHM}(X^n)$ is the *n*-th external product of \mathcal{M} with the induced Σ_n -action.

History and Results Extensions to the singular setting

Symmetric powers of mixed Hodge modules

Definition

Let $p_n : X^n \to X^{(n)}$ be the projection to the symmetric product $X^{(n)} = X^n / \Sigma_n$. The *n*-th symmetric power of $\mathcal{M} \in D^b MHM(X)$ is defined as:

$$\mathcal{M}^{(n)} := (p_{n_*}\mathcal{M}^{\boxtimes n})^{\Sigma_n} \in D^b \mathsf{MHM}(X^{(n)}),$$

where

- $\mathcal{M}^{\boxtimes n} \in D^b \mathsf{MHM}(X^n)$ is the *n*-th external product of \mathcal{M} with the induced Σ_n -action.
- $(-)^{\Sigma_n} := \frac{1}{n!} \sum_{\sigma \in \Sigma_n} \psi_{\sigma}$ is the projector on the Σ_n -invariant sub-object.

History and Results Extensions to the singular setting

・ロト ・回ト ・ヨト ・ヨト

3

Important special cases

• if
$$\mathcal{M} = \mathbb{Q}^H_X$$
 then: $\left(\mathbb{Q}^H_X\right)^{(n)} = \mathbb{Q}^H_{X^{(n)}}$

LAURENTIU MAXIM (joint with J. Schürmann) arXiv:0906.1 Hirzebruch Invariants of Symmetric Products

History and Results Extensions to the singular setting

1 1

イロン イヨン イヨン イヨン

3

Important special cases

• if
$$\mathcal{M} = \mathbb{Q}_X^H$$
 then: $(\mathbb{Q}_X^H)^{(n)} = \mathbb{Q}_{X^{(n)}}^H$

• if
$$\mathcal{M} = IC_X'^H := IC_X^H[-\dim X]$$
 then: $\left(IC_X'^H\right)^{(n)} = IC_{X(n)}'^H$

History and Results Extensions to the singular setting

Important special cases

- if $\mathcal{M} = \mathbb{Q}_X^H$ then: $(\mathbb{Q}_X^H)^{(n)} = \mathbb{Q}_{X^{(n)}}^H$
- if $\mathcal{M} = IC_X'^H := IC_X^H[-\dim X]$ then: $\left(IC_X'^H\right)^{(n)} = IC'_{X^{(n)}}^H$
- if *L* is a "nice" variation of mHs on *U* ⊂ *X*, then
 p_n: *Uⁿ* → *U*⁽ⁿ⁾ is a finite ramified covering branched along the "fat diagonal", i.e. the induced map of the configuration spaces on *n* (un)ordered points in *U*:

$$F(U,n) \xrightarrow{p_n} B(U,n) := F(U,n)/\Sigma_n,$$

with

is

$$F(U, n) := \{(x_1, x_2, \dots, x_n) \in U^n \mid x_i \neq x_j \text{ for } i \neq j\},\$$
a finite unramified covering. So $\mathcal{L}^{(n)}|B(U, n)$ is a "nice"

variation on B(U, n). Then $\left(IC'_{X}^{H}(\mathcal{L})\right)^{(n)} = IC'_{X^{(n)}}^{H}(\mathcal{L}^{(n)})$

Theorem A. (M.-Schürmann)

Let X be a complex quasi-projective variety and $\mathcal{M} \in D^{b}MHM(X)$. For $p, q, k \in \mathbb{Z}$, denote by

$$h_{(c)}^{p,q,k}(X,\mathcal{M}) := h^{p,q}(H_{(c)}^k(X;\mathcal{M})) := \dim(Gr_F^pGr_{p+q}^WH_{(c)}^k(X;\mathcal{M}))$$

the corresponding Hodge numbers. Then:

$$\sum_{n\geq 0} \left(\sum_{p,q,k} h_{(c)}^{p,q,k} (X^{(n)}, \mathcal{M}^{(n)}) \cdot y^p x^q (-z)^k \right) \cdot t^n$$
$$= \prod_{p,q,k} \left(\frac{1}{1 - y^p x^q z^k t} \right)^{(-1)^k \cdot h_{(c)}^{p,q,k}(X,\mathcal{M})}$$

イロト イヨト イヨト イヨト

History and Results Extensions to the singular setting

・ 同 ト ・ ヨ ト ・ ヨ ト

Idea of proof (for the experts)

 Let K
₀(D^bMHM(pt)) be the Grothendieck ring associated to the abelian monoid of isomorphism classes of objects with the direct sum; the product is induced by ⊗, and the unit is [Q^H_{pt}].

History and Results Extensions to the singular setting

・ 同 ト ・ ヨ ト ・ ヨ ト

Idea of proof (for the experts)

- Let K
 ₀(D^bMHM(pt)) be the Grothendieck ring associated to the abelian monoid of isomorphism classes of objects with the direct sum; the product is induced by ⊗, and the unit is [Q^H_{pt}].
- Let $h: \bar{K}_0(D^b\mathsf{MHM}(\rho t)) o \mathbb{Z}[y^{\pm 1}, x^{\pm 1}, z^{\pm 1}]$ be given by

$$[\mathcal{V}] \mapsto \sum_{p,q,k} h^{p,q}(H^k(\mathcal{V})) \cdot y^p x^q(-z)^k$$

History and Results Extensions to the singular setting

・ 同 ト ・ ヨ ト ・ ヨ ト

Idea of proof (for the experts)

- Let K
 ₀(D^bMHM(pt)) be the Grothendieck ring associated to the abelian monoid of isomorphism classes of objects with the direct sum; the product is induced by ⊗, and the unit is [Q^H_{pt}].
- Let $h: \bar{K}_0(D^b\mathsf{MHM}(\rho t)) o \mathbb{Z}[y^{\pm 1}, x^{\pm 1}, z^{\pm 1}]$ be given by

$$[\mathcal{V}] \mapsto \sum_{p,q,k} h^{p,q}(H^k(\mathcal{V})) \cdot y^p x^q(-z)^k$$

• Then *h* is a homomorphism of pre-lambda rings, with pre-lambda structure on $\bar{K}_0(D^b \text{MHM}(pt))$ given by

$$\sigma_t([\mathcal{V}]) := 1 + \sum_{n \ge 1} [(\mathcal{V}^{\otimes n})^{\Sigma_n}] \cdot t^n$$

History and Results Extensions to the singular setting

Idea of proof (for the experts)

- Let K
 ₀(D^bMHM(pt)) be the Grothendieck ring associated to the abelian monoid of isomorphism classes of objects with the direct sum; the product is induced by ⊗, and the unit is [Q^H_{pt}].
- Let $h: \bar{K}_0(D^b\mathsf{MHM}(\rho t)) o \mathbb{Z}[y^{\pm 1}, x^{\pm 1}, z^{\pm 1}]$ be given by

$$[\mathcal{V}] \mapsto \sum_{p,q,k} h^{p,q}(H^k(\mathcal{V})) \cdot y^p x^q(-z)^k$$

• Then *h* is a homomorphism of pre-lambda rings, with pre-lambda structure on $\bar{K}_0(D^b \text{MHM}(pt))$ given by

$$\sigma_t([\mathcal{V}]) := 1 + \sum_{n \ge 1} [(\mathcal{V}^{\otimes n})^{\Sigma_n}] \cdot t^n$$

• apply this to
$$\mathcal{V} = k_{*(!)}\mathcal{M}$$
, with $(\mathcal{V}^{\otimes n})^{\sum_{n}} \simeq k_{*(!)}(\mathcal{M}^{(n)})$.

History and Results Extensions to the singular setting

3

Alternating objects and Configuration spaces

We can work with the opposite pre-lambda structure $\lambda_t = \sigma_{-t}^{-1}$ on $\bar{K}_0(D^b \text{MHM}(pt))$ given by

$$\lambda_t([\mathcal{V}]) := 1 + \sum_{n \geq 1} [(\mathcal{V}^{\otimes n})^{sign - \Sigma_n}] \cdot t^n,$$

for

$$(-)^{\operatorname{sign}-\Sigma_n} := rac{1}{n!} \sum_{\sigma \in \Sigma_n} (-1)^{\operatorname{sign}(\sigma)} \cdot \psi_\sigma$$

the projector onto the alternating \sum_{n} -equivariant sub-object.

Theorem B. (M.-Schürmann)

Let $X^{\{n\}} := B(X, n)$ the configuration space of all unordered *n*-tuples of different points in X, and

$$\mathcal{M}^{\{n\}} := (p_{n*}\mathcal{M}^{\boxtimes n})^{sign-\Sigma_n} \in D^bMHM(X^{(n)}).$$

Then:

$$\sum_{n\geq 0} \left(\sum_{p,q,k} h_c^{p,q,k}(X^{\{n\}}, \mathcal{M}^{\{n\}}) \cdot y^p x^q (-z)^k \right) \cdot t^n$$
$$= \prod_{p,q,k} \left(1 + y^p x^q z^k t \right)^{(-1)^k \cdot h_c^{p,q,k}(X,\mathcal{M})}.$$

イロト イヨト イヨト イヨト

æ

Corollary of Theorem A.

Let
$$f_{(c)}^{p} := \sum_{i} (-1)^{i} \dim_{\mathbb{C}} \operatorname{Gr}_{F}^{p} H_{(c)}^{i}(X, \mathcal{M})$$
, so that $\chi_{-y}^{(c)}(X, \mathcal{M}) = \sum_{p} f_{(c)}^{p}(X, \mathcal{M}) \cdot y^{p}$. Then:

$$\sum_{n\geq 0} \chi_{-y}^{(c)}(X^{(n)}, \mathcal{M}^{(n)}) \cdot t^n = \prod_p \left(\frac{1}{1-y^p t}\right)^{f_{(c)}^p(X, \mathcal{M})}$$
$$= \exp\left(\sum_{r\geq 1} \chi_{-y^r}^{(c)}(X, \mathcal{M}) \cdot \frac{t^r}{r}\right)$$

•

3

▲□→ ▲圖→ ▲厘→ ▲厘→

LAURENTIU MAXIM (joint with J. Schürmann) arXiv:0906.1 Hirzebruch Invariants of Symmetric Products

イロト イポト イヨト イヨト

3

A different proof based on equivariant genera and traces

- Main ingredient: The Künneth isomorphism holds in mHs:
 - $H^*_{(c)}(X^{(n)};\mathcal{M}^{(n)})\simeq (H^*_{(c)}(X^n;\mathcal{M}^{\boxtimes n}))^{\Sigma_n}\simeq ((H^*_{(c)}(X;\mathcal{M}))^{\otimes n})^{\Sigma_n}$

・ 同 ト ・ ヨ ト ・ ヨ ト

A different proof based on equivariant genera and traces

• Main ingredient: The Künneth isomorphism holds in mHs:

$$H^*_{(c)}(X^{(n)};\mathcal{M}^{(n)})\simeq (H^*_{(c)}(X^n;\mathcal{M}^{\boxtimes n}))^{\Sigma_n}\simeq ((H^*_{(c)}(X;\mathcal{M}))^{\otimes n})^{\Sigma_n}$$

Σ_n acts graded anti-symmetrically on H^{*}_(c)(Xⁿ, M^{⊠n}), so can take traces of the action.

・ 同 ト ・ ヨ ト ・ ヨ ト

A different proof based on equivariant genera and traces

• Main ingredient: The Künneth isomorphism holds in mHs:

$$H^*_{(c)}(X^{(n)};\mathcal{M}^{(n)})\simeq (H^*_{(c)}(X^n;\mathcal{M}^{\boxtimes n}))^{\Sigma_n}\simeq ((H^*_{(c)}(X;\mathcal{M}))^{\otimes n})^{\Sigma_n}$$

Σ_n acts graded anti-symmetrically on H^{*}_(c)(Xⁿ, M^{⊠n}), so can take traces of the action.

・ 同 ト ・ ヨ ト ・ ヨ ト

A different proof based on equivariant genera and traces

• Main ingredient: The Künneth isomorphism holds in mHs:

$$H^*_{(c)}(X^{(n)};\mathcal{M}^{(n)})\simeq (H^*_{(c)}(X^n;\mathcal{M}^{\boxtimes n}))^{\sum_n}\simeq ((H^*_{(c)}(X;\mathcal{M}))^{\otimes n})^{\sum_n}$$

• Σ_n acts graded anti-symmetrically on $H^*_{(c)}(X^n, \mathcal{M}^{\boxtimes n})$, so can take traces of the action. Define equivariant Hodge genera by:

$$\begin{split} \chi^{(c)}_{-y}(X^n,\mathcal{M}^{\boxtimes n};\sigma) \\ &:= \sum_{i,p} (-1)^i \mathrm{trace}\left(\sigma \mid \mathrm{Gr}_F^p \; H^i_{(c)}(X^n,\mathcal{M}^{\boxtimes n})\right) \cdot y^p. \end{split}$$

History and Results Extensions to the singular setting

(ロ) (四) (E) (E) (E)

• Step 1: For any $n \ge 0$,

$$\chi_{-y}^{(c)}(X^{(n)},\mathcal{M}^{(n)}) = \frac{1}{n!} \sum_{\sigma \in \Sigma_n} \chi_{-y}^{(c)}(X^n,\mathcal{M}^{\boxtimes n};\sigma)$$

History and Results Extensions to the singular setting

(日) (同) (E) (E) (E)

• Step 1: For any $n \ge 0$,

$$\chi_{-y}^{(c)}(X^{(n)},\mathcal{M}^{(n)}) = \frac{1}{n!} \sum_{\sigma \in \Sigma_n} \chi_{-y}^{(c)}(X^n,\mathcal{M}^{\boxtimes n};\sigma)$$

• Step 2: If $\sigma \in \Sigma_n$ has cycle-type (k_1, k_2, \dots, k_n) , i.e., $k_r = \#$ of length r cycles in σ , $\sum_{r=1}^n k_r \cdot r = n$, then

$$\chi_{-y}^{(c)}(X^n, \mathcal{M}^{\boxtimes n}; \sigma) = \prod_{r=1}^n \chi_{-y}^{(c)}(X^r, \mathcal{M}^{\boxtimes r}; \sigma_r)^{k_r},$$

with $\sigma_r = (12 \cdots r)$ an *r*-cycle.

History and Results Extensions to the singular setting

• Step 1: For any $n \ge 0$,

$$\chi_{-y}^{(c)}(X^{(n)},\mathcal{M}^{(n)}) = \frac{1}{n!} \sum_{\sigma \in \Sigma_n} \chi_{-y}^{(c)}(X^n,\mathcal{M}^{\boxtimes n};\sigma)$$

• Step 2: If $\sigma \in \Sigma_n$ has cycle-type (k_1, k_2, \dots, k_n) , i.e., $k_r = \#$ of length r cycles in σ , $\sum_{r=1}^n k_r \cdot r = n$, then

$$\chi_{-y}^{(c)}(X^n, \mathcal{M}^{\boxtimes n}; \sigma) = \prod_{r=1}^n \chi_{-y}^{(c)}(X^r, \mathcal{M}^{\boxtimes r}; \sigma_r)^{k_r},$$

with $\sigma_r = (12 \cdots r)$ an *r*-cycle.

• Step 3: For any *r*-cycle σ_r :

$$\chi_{-y}^{(c)}(X^r, \mathcal{M}^{\boxtimes r}; \sigma_r) = \chi_{-y^r}^{(c)}(X, \mathcal{M}) = \Psi_r\left(\chi_{-y}^{(c)}(X, \mathcal{M})\right),$$

for Ψ_r the *r*-th Adams operation on $\mathbb{Z}[y^{\pm 1}]$.

History and Results Extensions to the singular setting

- 4 回 ト 4 ヨ ト 4 ヨ ト

3

Characteristic class version

• For X a complex projective variety,

$$\chi_{y}(X) = \int_{X} T_{y_{*}}(X)$$

for $T_{y_*}(X)$ the (homology) Hirzebruch class of Brasselet-Schürmann-Yokura.

History and Results Extensions to the singular setting

・ 同 ト ・ ヨ ト ・ ヨ ト

Characteristic class version

• For X a complex projective variety,

$$\chi_{y}(X) = \int_{X} T_{y_{*}}(X)$$

for $T_{y_*}(X)$ the (homology) Hirzebruch class of Brasselet-Schürmann-Yokura.

• The 3 steps above admit class versions and yield generating series for the Hirzebruch classes of symmetric products (extending a calculation by Moonen for the case when X is smooth and projective).

History and Results Extensions to the singular setting

Theorem (Cappell-Schürmann-Shaneson-M.-Yokura)

Let X be a complex quasi-projective variety and $X^{(n)} := X^n / \Sigma_n$. Then the following identity holds in $\sum_n H_{2*}^{BM}(X^{(n)}; \mathbb{Q}[y]) \cdot t^n$:

$$\sum_{n\geq 0} T_{-\mathbf{y}_*}(X^{(n)}) \cdot t^n = \exp\left(\sum_{r\geq 1} \Psi_r d_*^r T_{-\mathbf{y}_*}(X) \cdot \frac{t^r}{r}\right),$$

where

History and Results Extensions to the singular setting

Theorem (Cappell-Schürmann-Shaneson-M.-Yokura)

Let X be a complex quasi-projective variety and $X^{(n)} := X^n / \Sigma_n$. Then the following identity holds in $\sum_n H_{2*}^{BM}(X^{(n)}; \mathbb{Q}[y]) \cdot t^n$:

$$\sum_{n\geq 0} \mathcal{T}_{-\mathbf{y}_{*}}(X^{(n)}) \cdot t^{n} = \exp\left(\sum_{r\geq 1} \Psi_{r} d_{*}^{r} \mathcal{T}_{-\mathbf{y}_{*}}(X) \cdot \frac{t^{r}}{r}\right),$$

where

• Ψ_r is the r-th homological Adams operation.
Outline Symmetric products Generating series

History and Results Extensions to the singular setting

Theorem (Cappell-Schürmann-Shaneson-M.-Yokura)

Let X be a complex quasi-projective variety and $X^{(n)} := X^n / \Sigma_n$. Then the following identity holds in $\sum_n H_{2*}^{BM}(X^{(n)}; \mathbb{Q}[y]) \cdot t^n$:

$$\sum_{n\geq 0} \mathcal{T}_{-\mathbf{y}_{*}}(X^{(n)}) \cdot t^{n} = \exp\left(\sum_{r\geq 1} \Psi_{r} d_{*}^{r} \mathcal{T}_{-\mathbf{y}^{r}_{*}}(X) \cdot \frac{t^{r}}{r}\right)$$

where

- Ψ_r is the r-th homological Adams operation.
- $d^r: X \to X^{(r)}$ is the composition of the projection $X^r \to X^{(r)}$ with the diagonal embedding $X \to X^r$.

Outline Symmetric products Generating series

History and Results Extensions to the singular setting

Theorem (Cappell-Schürmann-Shaneson-M.-Yokura)

Let X be a complex quasi-projective variety and $X^{(n)} := X^n / \Sigma_n$. Then the following identity holds in $\sum_n H_{2*}^{BM}(X^{(n)}; \mathbb{Q}[y]) \cdot t^n$:

$$\sum_{n\geq 0} \mathcal{T}_{-\mathbf{y}_{*}}(X^{(n)}) \cdot t^{n} = \exp\left(\sum_{r\geq 1} \Psi_{r} d_{*}^{r} \mathcal{T}_{-\mathbf{y}_{*}}(X) \cdot \frac{t^{r}}{r}\right)$$

where

- Ψ_r is the r-th homological Adams operation.
- $d^r: X \to X^{(r)}$ is the composition of the projection $X^r \to X^{(r)}$ with the diagonal embedding $X \to X^r$.
- The multiplication on the right-hand side is with respect to the Pontrjagin product induced by

$$X^{(m)} \times X^{(n)} \to X^{(m+n)}, \quad m, n \in \mathbb{N}.$$

Outline Symmetric products Generating series

History and Results Extensions to the singular setting

イロン イヨン イヨン イヨン

æ

Happy Birthday, ANATOLY !!!

LAURENTIU MAXIM (joint with J. Schürmann) arXiv:0906.1 Hirzebruch Invariants of Symmetric Products