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arXiv:0906.1264

LIB60BER
Jaca, Spain, June 2009
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LAURENTIU MAXIM (joint with J. Schürmann) arXiv:0906.1264Hirzebruch Invariants of Symmetric Products



Outline
Symmetric products

Generating series

Symmetric products

Definition

The n-th symmetric product of a space X is defined by

X (n) :=

n times︷ ︸︸ ︷
X × · · · × X /Σn

the quotient of the product of n copies of X by the natural action
of the symmetric group on n elements, Σn.
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What are symmetric products good for?

If X is a smooth complex projective curve, {X (n)}n are used
for studying the Jacobian variety of X (Macdonald).

If X is a smooth complex algebraic surface, X (n) is used to
understand the topology of the n-th Hilbert scheme X [n]

(Cheah, Göttsche-Soergel).

Higher-dimensional
generalizations: Gusein-Zade, Luengo, Melle-Hernández.
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History and Results
Extensions to the singular setting

Problem: How does one compute invariants I(X (n)) of
symmetric products of spaces?

Standard approach:

Consider the generating series

SI(X ) :=
∑
n≥0

I(X (n)) · tn,

provided I(X (n)) can be defined for all n.
Goal: calculate SI(X ) only in terms of invariants of X .
Then I(X (n)) is equal to the coefficient of tn in the resulting
expression in invariants of X .

LAURENTIU MAXIM (joint with J. Schürmann) arXiv:0906.1264Hirzebruch Invariants of Symmetric Products



Outline
Symmetric products

Generating series

History and Results
Extensions to the singular setting

Problem: How does one compute invariants I(X (n)) of
symmetric products of spaces?

Standard approach:

Consider the generating series

SI(X ) :=
∑
n≥0

I(X (n)) · tn,

provided I(X (n)) can be defined for all n.
Goal: calculate SI(X ) only in terms of invariants of X .
Then I(X (n)) is equal to the coefficient of tn in the resulting
expression in invariants of X .
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Euler-Poincaré characteristic and Chern classes

Macdonald (’62): X - compact triangulated space

∑
n≥0

χ(X (n)) · tn = (1− t)−χ(X ) = exp

∑
r≥1

χ(X ) · tr

r



Ohmoto (’08): Chern class version of Macdonald’s result for
the Chern-MacPherson classes of complex quasi-projective
varieties.
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Signature and L-classes

Hirzebruch-Zagier (’70): if X is a closed oriented manifold,

∑
n≥0

σ(X (n)) · tn =
(1 + t)

σ(X )−χ(X )
2

(1− t)
σ(X )+χ(X )

2

,

for I = σ the signature of a compact rational homology
manifold.

Hirzebruch-Zagier (’70): class version for the Thom-Milnor
L-classes.
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Arithmetic genus and Todd classes

Moonen (’78): if X is a complex projective variety, then

∑
n≥0

χa(X (n)) · tn = (1− t)−χa(X ) = exp

∑
r≥1

χa(X ) · tr

r

 ,

for I(X ) = χa(X ) :=
∑

k≥0(−1)k · dimHk(X ,OX ) the
arithmetic genus.

Moonen (’78): class version for the Baum-Fulton-MacPherson
Todd classes of symmetric products.
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Hirzebruch χy -genus

If X is smooth and compact, Hk(X ; Q) carries a natural
weight k pure Hodge structure, i.e.,

Hk(X ; C) = ⊕p+q=kHp,q,

with Hp,q = ¯Hq,p. In fact, Hp,q = Hq(X ,Ωp
X ) (Deligne).

The Hirzebruch χy -genus of X is:

χy (X ) =
∑
p,q

(−1)qhp,q(X ) · yp,

with hp,q(X ) = dimHq(X ,Ωp
X ) the Hodge numbers of X .
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Borisov-Libgober, Zhou (’00): X compact smooth complex
algebraic variety:

∑
n≥0

χ−y (X (n)) · tn = exp

∑
r≥1

χ−y r (X ) · tr

r

 .

Borisov-Libgober (’00): generating series for the 2-variables
elliptic genus of compact complex algebraic manifolds.

For X a complex projective manifold:

χ−1 = χ, χ0 = χa, χ1 = σ

so get back all previous results for genera in the smooth
complex algebraic context.
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Immediate Corollaries

If Xg is a smooth projective curve of genus g , then∑
n

χ−y (X
(n)
g ) · tn = [(1− t)(1− yt)]g−1 .

In particular,

hp,q(X
(n)
g ) =

∑
0≤k≤p

(
g

p − k

)(
g

q − k

)
, 0 ≤ p ≤ q, p+q ≤ n.

LAURENTIU MAXIM (joint with J. Schürmann) arXiv:0906.1264Hirzebruch Invariants of Symmetric Products



Outline
Symmetric products

Generating series

History and Results
Extensions to the singular setting

Immediate Corollaries

If X is a smooth projective surface and X [n] is the n-th Hilbert
scheme, then X [n] → X (n) is birational (crepant resolution).
So,

hp,0(X [n]) = hp,0(X (n)).

The generating series formula yields Göttsche’s formula:∑
n,p

hp,0(X [n])yptn =
∏
p≥0

(1− (−1)pypt)(−1)p+1hp,0(X )
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Aim: Unify and extend these results to the singular setting,
e.g., find generating series for (intersection homology) Hodge
polynomials of (possibly singular) quasi-projective varieties,
and in particular, for the intersection homology Euler
characteristic and the Goresky-MacPherson signature.

Approach: Allow coefficients in mixed Hodge modules, i.e.,
consider twisted Hodge polynomials, twisted signatures etc.
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Extensions of Hirzebruch’s genus to the singular setting

Hirzebruch’s χy -genus of a complex projective manifold, χy (X ),
admits several generalizations to the singular setting.
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Definition (mHs)

A mixed hodge structure is a Q-vector space V endowed with an
increasing weight filtration W•,

and with a decreasing Hodge
filtration F • on V ⊗ C so that (GrWk V ,F •) is a pure Hodge
structure of weight k (e.g., like Hk(X ; Q), for X smooth and
projective), for any k ∈ Z.

Definition

The χy -genus transformation is the ring homomorphism

χy : K0(mHs)→ Z[y , y−1]

[(V ,F •,W•)] 7→
∑
p

dimC(grp
F (V ⊗Q C)) · (−y)p,

where K0(mHs) is the Grothendieck ring of the category of Q-mHs.
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Examples

Let X be a complex algebraic variety.

H∗(c)(X ; Q) carries Deligne’s canonical mHs, and we set

χ
(c)
y (X ) := χy ([H∗(c)(X ; Q)]) =

∑
j

(−1)j · χy ([H j
(c)(X ; Q)])

IH∗(c)(X ; Q) carries Saito’s mHs, and set:

Iχ
(c)
y (X ) := χy ([IH∗(c)(X ; Q)]).

If X is a compact algebraic manifold, then

χ
(c)
y (X ) = Iχ

(c)
y (X ) is the Hirzebruch χy -genus.

If X is projective (but possibly singular) then Iχ1(X ) = σ(X )
is the Goresky-MacPherson signature defined via Poincaré
duality in intersection cohomology.

LAURENTIU MAXIM (joint with J. Schürmann) arXiv:0906.1264Hirzebruch Invariants of Symmetric Products



Outline
Symmetric products

Generating series

History and Results
Extensions to the singular setting

Examples

Let X be a complex algebraic variety.

H∗(c)(X ; Q) carries Deligne’s canonical mHs, and we set

χ
(c)
y (X ) := χy ([H∗(c)(X ; Q)]) =

∑
j

(−1)j · χy ([H j
(c)(X ; Q)])

IH∗(c)(X ; Q) carries Saito’s mHs, and set:

Iχ
(c)
y (X ) := χy ([IH∗(c)(X ; Q)]).

If X is a compact algebraic manifold, then

χ
(c)
y (X ) = Iχ

(c)
y (X ) is the Hirzebruch χy -genus.

If X is projective (but possibly singular) then Iχ1(X ) = σ(X )
is the Goresky-MacPherson signature defined via Poincaré
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Crash course on Mixed Hodge Modules

M. Saito:

X ; MHM(X ) = algebraic mixed Hodge modules.

If X = pt is a point, then

MHM(pt) = mHsp = (polarizable) Q−mixed Hodge structures.

(complexes of) MHM can be thought as (constructible)
complexes of sheaves with additional structure.

There is a forgetful functor on the derived categories

rat : DbMHM(X )→ Db
c (X )

All six Grothendieck operations on Db
c (X ) “lift” to

DbMHM(X ).
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If X = pt, let QH
pt ∈ MHM(pt) be s.t. rat(QH

pt) = Q is the
mHs of weight (0, 0).

If k : X → pt, let QH
X := k∗QH

pt ∈ DbMHM(X ). Then

H i
(c)(X ; Q) = H i (k∗(!)QH

X )

carries a Q-mHs (same as Deligne’s).

If M∈ DbMHM(X ), then

H∗(c)(X ;M) = H∗(k∗(!)M) ∈ mHs

Define
χ

(c)
y (X ,M) := χy ([H∗(c)(X ;M)])

Then χ
(c)
y (X ) = χ

(c)
y (X ,QH

X ), Iχ
(c)
y (X ) = χ

(c)
y (X , ICH

X ).
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Symmetric powers of mixed Hodge modules

Definition

Let pn : X n → X (n) be the projection to the symmetric product
X (n) = X n/Σn. The n-th symmetric power of M∈ DbMHM(X ) is
defined as:

M(n) := (pn∗M�n)Σn ∈ DbMHM(X (n)),

where

M�n ∈ DbMHM(X n) is the n-th external product of M with
the induced Σn-action.

(−)Σn := 1
n!

∑
σ∈Σn

ψσ is the projector on the Σn-invariant
sub-object.
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LAURENTIU MAXIM (joint with J. Schürmann) arXiv:0906.1264Hirzebruch Invariants of Symmetric Products



Outline
Symmetric products

Generating series

History and Results
Extensions to the singular setting

Important special cases

if M = QH
X then:

(
QH

X

)(n)
= QH

X (n)

if M = IC ′HX := ICH
X [−dimX ] then:

(
IC ′HX

)(n)
= IC ′HX (n)

if L is a “nice” variation of mHs on U ⊂ X , then
pn : Un → U(n) is a finite ramified covering branched along
the “fat diagonal”, i.e. the induced map of the configuration
spaces on n (un)ordered points in U:

F (U, n)
pn→ B(U, n) := F (U, n)/Σn,

with

F (U, n) := {(x1, x2, . . . , xn) ∈ Un | xi 6= xj for i 6= j},

is a finite unramified covering. So L(n)|B(U, n) is a “nice”

variation on B(U, n). Then
(

IC ′HX (L)
)(n)

= IC ′HX (n)(L(n))

LAURENTIU MAXIM (joint with J. Schürmann) arXiv:0906.1264Hirzebruch Invariants of Symmetric Products



Outline
Symmetric products

Generating series

History and Results
Extensions to the singular setting

Important special cases

if M = QH
X then:

(
QH

X

)(n)
= QH

X (n)

if M = IC ′HX := ICH
X [−dimX ] then:

(
IC ′HX

)(n)
= IC ′HX (n)

if L is a “nice” variation of mHs on U ⊂ X , then
pn : Un → U(n) is a finite ramified covering branched along
the “fat diagonal”, i.e. the induced map of the configuration
spaces on n (un)ordered points in U:

F (U, n)
pn→ B(U, n) := F (U, n)/Σn,

with

F (U, n) := {(x1, x2, . . . , xn) ∈ Un | xi 6= xj for i 6= j},

is a finite unramified covering. So L(n)|B(U, n) is a “nice”

variation on B(U, n). Then
(

IC ′HX (L)
)(n)

= IC ′HX (n)(L(n))
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Theorem A. (M.-Schürmann)

Let X be a complex quasi-projective variety and
M∈ DbMHM(X ). For p, q, k ∈ Z, denote by

hp,q,k
(c) (X ,M) := hp,q(Hk

(c)(X ;M)) := dim(Grp
F GrW

p+qHk
(c)(X ;M))

the corresponding Hodge numbers. Then:

∑
n≥0

 ∑
p,q,k

hp,q,k
(c) (X (n),M(n)) · ypxq(−z)k

 · tn

=
∏
p,q,k

(
1

1− ypxqzkt

)(−1)k ·hp,q,k
(c)

(X ,M)
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Idea of proof (for the experts)

Let K̄0(DbMHM(pt)) be the Grothendieck ring associated to
the abelian monoid of isomorphism classes of objects with the
direct sum; the product is induced by ⊗, and the unit is [QH

pt ].

Let h : K̄0(DbMHM(pt))→ Z[y±1, x±1, z±1] be given by

[V] 7→
∑
p,q,k

hp,q(Hk(V)) · ypxq(−z)k

Then h is a homomorphism of pre-lambda rings, with
pre-lambda structure on K̄0(DbMHM(pt)) given by

σt([V]) := 1 +
∑
n≥1

[(V⊗n)Σn ] · tn

apply this to V = k∗(!)M, with (V⊗n)Σn ' k∗(!)(M(n)).
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Alternating objects and Configuration spaces

We can work with the opposite pre-lambda structure λt = σ−1
−t on

K̄0(DbMHM(pt)) given by

λt([V]) := 1 +
∑
n≥1

[(V⊗n)sign−Σn ] · tn,

for

(−)sign−Σn :=
1

n!

∑
σ∈Σn

(−1)sign(σ) · ψσ

the projector onto the alternating Σn-equivariant sub-object.
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Theorem B. (M.-Schürmann)

Let X {n} := B(X , n) the configuration space of all unordered
n-tuples of different points in X , and

M{n} := (pn∗M�n)sign−Σn ∈ DbMHM(X (n)).

Then:

∑
n≥0

 ∑
p,q,k

hp,q,k
c (X {n},M{n}) · ypxq(−z)k

 · tn

=
∏
p,q,k

(
1 + ypxqzkt

)(−1)k ·hp,q,k
c (X ,M)

.
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Corollary of Theorem A.

Let f p
(c) :=

∑
i (−1)idimCGrpF H i

(c)(X ,M), so that

χ
(c)
−y (X ,M) =

∑
p f p

(c)(X ,M) · yp. Then:

∑
n≥0

χ
(c)
−y (X (n),M(n)) · tn =

∏
p

(
1

1− ypt

)f p
(c)

(X ,M)

= exp

∑
r≥1

χ
(c)
−y r (X ,M) · tr

r

 .
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A different proof based on equivariant genera and traces

Main ingredient: The Künneth isomorphism holds in mHs:

H∗(c)(X (n);M(n)) ' (H∗(c)(X n;M�n))Σn ' ((H∗(c)(X ;M))⊗n)Σn

Σn acts graded anti-symmetrically on H∗(c)(X n,M�n), so can
take traces of the action.

Define equivariant Hodge genera
by:

χ
(c)
−y (X n,M�n;σ)

:=
∑
i ,p

(−1)i trace
(
σ| GrpF H i

(c)(X n,M�n)
)
· yp.
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Step 1: For any n ≥ 0,

χ
(c)
−y (X (n),M(n)) =

1

n!

∑
σ∈Σn

χ
(c)
−y (X n,M�n;σ)

Step 2: If σ ∈ Σn has cycle-type (k1, k2, · · · , kn), i.e.,
kr = # of length r cycles in σ,

∑n
r=1 kr · r = n, then

χ
(c)
−y (X n,M�n;σ) =

n∏
r=1

χ
(c)
−y (X r ,M�r ;σr )kr ,

with σr = (12 · · · r) an r -cycle.

Step 3: For any r -cycle σr :

χ
(c)
−y (X r ,M�r ;σr ) = χ

(c)
−y r (X ,M) = Ψr

(
χ

(c)
−y (X ,M)

)
,

for Ψr the r -th Adams operation on Z[y±1].
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Step 1: For any n ≥ 0,

χ
(c)
−y (X (n),M(n)) =

1

n!

∑
σ∈Σn

χ
(c)
−y (X n,M�n;σ)

Step 2: If σ ∈ Σn has cycle-type (k1, k2, · · · , kn), i.e.,
kr = # of length r cycles in σ,

∑n
r=1 kr · r = n, then

χ
(c)
−y (X n,M�n;σ) =

n∏
r=1

χ
(c)
−y (X r ,M�r ;σr )kr ,

with σr = (12 · · · r) an r -cycle.

Step 3: For any r -cycle σr :

χ
(c)
−y (X r ,M�r ;σr ) = χ

(c)
−y r (X ,M) = Ψr

(
χ

(c)
−y (X ,M)

)
,

for Ψr the r -th Adams operation on Z[y±1].
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Characteristic class version

For X a complex projective variety,

χy (X ) =

∫
X

Ty ∗(X )

for Ty ∗(X ) the (homology) Hirzebruch class of
Brasselet-Schürmann-Yokura.

The 3 steps above admit class versions and yield generating
series for the Hirzebruch classes of symmetric products
(extending a calculation by Moonen for the case when X is
smooth and projective).
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Theorem (Cappell-Schürmann-Shaneson-M.-Yokura)

Let X be a complex quasi-projective variety and X (n) := X n/Σn.
Then the following identity holds in

∑
n HBM

2∗ (X (n); Q[y ]) · tn:

∑
n≥0

T−y ∗(X (n)) · tn = exp

∑
r≥1

Ψr d r
∗T−y r ∗(X ) · tr

r

 ,

where

Ψr is the r-th homological Adams operation.

d r : X → X (r) is the composition of the projection X r → X (r)

with the diagonal embedding X → X r .

The multiplication on the right-hand side is with respect to
the Pontrjagin product induced by

X (m) × X (n) → X (m+n), m, n ∈ N.
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Happy Birthday, ANATOLY !!!
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