On a relation between algebraic and geometric properties of braids

Juan González-Meneses

Universidad de Sevilla
(Joint with Volker Gebhardt and Bert Wiest)

LIB60BER
Jaca (Spain), June 22-26, 2009.

Introduction

Braids form a group: B_{n}

The geometric side

Braids can also be seen as automorphisms of the punctured disc.

Center of $B_{n}:\left\langle\Delta^{2}\right\rangle$

Modulo this center, braids can be seen as automorphisms of the punctured sphere.

Hence one can apply Nielsen-Thurston theory to braids.

The geometric side

Geometric classification of braids:

Periodic braids: Finite order elements in $B_{n} /\left\langle\Delta^{2}\right\rangle$
That is, roots of Δ^{m}.

Rotations

The geometric side

Geometric classification of braids:
Periodic braids: Rotations

Pseudo-Anosov braids: Preserve two transverse measured foliations...

...scaling the measure of \mathcal{F}^{u} by $\lambda>1$
and the measure of \mathcal{F}^{s} by λ^{-1}

The geometric side

Geometric classification of braids:
Periodic braids: Rotations

Pseudo-Anosov braids: Preserve two transverse measured foliations...

Reducible braids:
Preserve a family of disjoint simple curves

Reduction system

The geometric side

Every braid has a canonical reduction system. (Birman-Lubotzky-McCarthy)
In general, the canonical reduction system can be quite complicated.
But it can always be simplified by an automorphism

This corresponds to a conjugation

The geometric side

We can then decompose the disc D along the reduction curves:

The geometric side

Example:

Every reducible braid can be decomposed into simpler braids

The geometric side

Example:

Every reducible braid can be decomposed into simpler braids

The geometric side

Theorem: (Thurston) (applied to braids)
Every braid is either periodic, or pseudo-Anosov, or reducible.

Theorem: (Thurston) (applied to braids)
The canonical reduction system decomposes a braid into braids which are either
periodic or pseudo-Anosov

Thurston decomposition allows to show theoretical results.

First solving the periodic and pseudo-Anosov case...
\ldots and then deducing the reducible case from the above ones.

Examples:

(GM, 2003) The n-th root of a braid is unique up to conjugacy.
(GM-Wiest, 2004) Structure of the centralizer of a braid.

In practice, knowing the canonical reduction system improves algorithms.

Example: (Birman-Gebhardt-GM, 2003)
A project to solve the conjugacy problem in braid groups.

But... how can we compute the canonical reduction system?

Remark: There is a well-known algorithm by Bestvina-Handel, using train tracks.

We will use a different approach.

The geometric side

If the reduction curves are round, they are very easy to detect.
Benardete-Gutiérrez-Nitecki, 1991

Theorem: (GM-Wiest, 2009) There is a polynomial algorithm which decides whether a braid admits an almost-round reduction curve, with trivial interior braid.

The geometric side

But...what happens if the reduction curves are very tangled?
Recall that they can be simplified by a conjugation.

But... what conjugation?

The algebraic side

E. Artin (1925)

$$
B_{n}=\left\langle\begin{array}{l|ll}
\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1} & \begin{array}{ll}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & (|i-j| \geq 2) \\
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} & (1 \leq i \leq n-2)
\end{array}
\end{array}\right\rangle
$$

Positive elements: Braids in which every crossing is positive
Simple elements: Positive elements in which
every pair of strands cross at most once.

Simple elements of $B_{n} \longleftrightarrow \mathrm{Bij}$. Permutations of Σ_{n}

$$
\Delta=\text { Biggest simple element }=\text { Half twist }
$$

The algebraic side

Garside (1969), Deligne (1972), Adyan (1984), Elrifai-Morton (1988), Thurston (1992).

Left normal form:

Every product $x_{i} x_{i+1}$ must be left-weighted.

The algebraic side

In general: Given simple elements a, b,

The algebraic side

In general: Given simple elements a, b,

The algebraic side

In general: Given simple elements a, b,

The algebraic side

In general: Given simple elements a, b,

We call this procedure a local sliding applied to $a b$.

Remark: Possibly $a s=\Delta$, or $t=1$.

The algebraic side

Computation of a left normal form, given a product of simple elements:

$$
x=s_{1} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7} s_{8} s_{9} s_{10}
$$

Apply all possible local slidings, until all consecutive factors are left weighted

$$
x=\Delta \Delta \Delta x_{1} x_{2} x_{3} x_{4} x_{5} 11
$$

Left normal form:

Maximal power of Δ.
Minimal number of factors. (canonical length)

Conjugacy problem

Garside (1969)
EIRifai-Morton (1988)
Birman-Ko-Lee (1998)
Franco-GM (2003)
Gebhardt (2005)
Birman-Gebhardt-GM (2008)
Gebhardt-GM (2009)

Charney: (1992) Artin-Tits groups of spherical type are biautomatic.

Conjugacy problem

Given an element x, compute the set of simplest conjugates of x.

x and y are conjugate \Leftrightarrow their corresponding sets coincide.

Conjugacy problem

$$
\begin{gathered}
\qquad x=\Delta^{3} x_{1} x_{2} x_{3} x_{4} x_{5} \\
\text { Could } x \text { be simplified by a conjugation? }
\end{gathered}
$$

For simplicity, we will assume that there is no power of Δ :

$$
x=x_{1} x_{2} x_{3} x_{4} x_{5}
$$

Consecutive factors are left-weighted
What about x_{5} and x_{1} ?

Up to conjugacy, we can consider that x_{5} and x_{1} are consecutive

Cyclic sliding:

Conjugacy problem

Cyclic sliding:

The resulting braid is not In left normal form

We compute its left normal form, and it may become simpler

Iterate...

Conjugacy problem

Conjugacy problem

Two braids x and y are conjugate $\Leftrightarrow S C(x)=S C(y)$

We solve the conjugacy problem by computing these sets.

Remark: Cyclic sliding simplifies braids algebraically...
...but also geometrically!

Simplifying reduction curves

Suppose that x is reducible.

In general, either round or almost-round!

Simplifying reduction curves

Theorem: (GM-Wiest, 2009) Suppose that $y \in B_{n}$ belongs to a sliding circuit and so do $y^{2}, y^{3}, \ldots, y^{m}$, where $m=(n(n-1) / 2)^{3}$.
Then y admits a reduction curve which is either round or almost-round.

Ideas of the proof:

1) Reduction curves of a braid are preserved by powers.
2) Some small power of y has the right property, provided it belongs to a sliding circuit.

Simplifying reduction curves

Suppose that y is rigid.
This means that it is in left normal form, even if considered around a circle.

Then, the braid inside an innermost tube must be either trivial or pseudo-Anosov.

Simplifying reduction curves

Proposition: (GM-Wiest, 2009) If a rigid braid has a pseudo-Anosov interior braid, the corresponding reduction curve is round.

Proposition: (GM-Wiest, 2009) If a braid has a trivial interior braid, the corresponding reduction curve is either round or almost-round.

The rigid case is solved!

Simplifying reduction curves

We investigate the conjugating element along the circuit.

Up to replacing y by a small power, $P(y)$ is rigid.
The reduction curves of $P(y)$ are reduction curves of y.
We are done!?

Unless $P(y)$ has no reduction curves. But then it is trivial. $\Rightarrow y$ is rigid.

Conclusion

Cyclic sliding simplifies left normal forms, and also reduction curves.

This provides an algorithm to determine the geometric type of the braid, and to find the reducing curves.

This algorithm has polynomial complexity if this distance has a polynomial bound.

