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Basics about log canonical thresholds

Work over k alg closed, char(k) = 0.

Let f ∈ k[x1, . . . , xn], f(0) = 0 defining H ⊂ An

Recall: mult0(f) = max{r ≥ 0 | f ∈ (x1, . . . , xn)r}

= ordE(f)

where E is exceptional divisor on Bl0(An).

Idea: • consider all divisors over An

• normalize order of vanishing along divisors

• take an infimum over all such choices
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Consider: proper, birational morphisms π : Y →
X, with Y smooth. E prime divisor on Y giving

a valuation ordE of the function field of X

KY/X ≥ 0 div on Y locally def by det(Jac(π))

Note: Supp(KY/X) = Exc(π)

Definition. lct(f) := infE/X
ordE(KY/X)+1

ordE(f)

If only E with 0 ∈ π(E), get lct0(f).

Principle: “bad singularities ⇔ small lct”

Fundamental fact: enough to consider E on

a log resolution of f , i.e. when π−1(H)+KY/X
SNC divisor: in local coord def by

y
a1
1 · · · y

an
n
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Consequences: • inf in the definition is a min

• lct(f) ∈ Q

Examples: 1) H smooth ⇒ lct(f) = 1

2) f = x
a1
1 · · ·x

an
n ⇒ lct(f) = mini

1
ai

3)f = x
a1
1 +· · ·+xann ⇒ lct(f) = min

{
1,

∑n
i=1

1
ai

}
4) If f defines a hyperplane arrangement in An,

then

lct(f) = min
W∈L′(A)

codim(W )

#{H ∈ A | H ⊇W}

5) If f is nondegenerate with respect to its

Newton polytope P , then lct(f) = min{1/λ,1},
where

(λ, . . . , λ) ∈ ∂(P + Rn
+)
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In general: lct0(f) is a refined version of 1
mult0(f)

1

mult0(f)
≤ lct0(f) ≤

n

mult0(f)

Another useful property: for all f and g

lct0(f + g) ≤ lct0(f) + lct0(g)

Variants of the definition: replace f by ideal,

allow X with mild singularities, “mixed” case:

for g ∈ k[x1, . . . , xn] with lct(g) ≤ 1, let

lct((An, g), f) = inf
E

ordE(KY/X) + 1− ordE(g)

ordE(f)

Important for us: case of formal power series

f ∈ k[[x1, . . . , xn]]
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For f formal power series, can put

lct(f) = lim
d→∞

lct0(td(f)),

with td(f) the truncation of f up to degree d.

The above is convergent since

| lct0(td+m(f))− lct0(td(f))|

≤ lct0(td+m(f)− td(f))| ≤
n

d+ 1

Important: this can also be computed using a

log resolution of f (Hironaka, Temkin)

History of log canonical thresholds: Varchenko,

Shokurov,...
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Why care about lct’s: they show up in various

contexts

1) Birational geometry: lct(f) is the largest

q > 0 s.t. (An, qH) log canonical

2) Complex singularity exponents: over C

lct(f) = sup

{
s > 0 |

1

|f(z)|2s
loc integrable

}

3) p-adic integration (Igusa): for p prime, f

over Z, it controls asymptotic behavior of

#{u ∈ (Z/pmZ)n | f(u) = 0}

Other contexts: motivic integration, eigen-

values of monodromy action, Bernstein poly,

invar of sing in char p defined via Frobenius
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Theorem 1 (dF-E-M). For all n, the set

Tn := {lct0(f) | f ∈ k[x1, . . . , xn], f(0) = 0}

satisfies the Ascending Chain Condition (ACC).

Remarks: • This treats ambient smooth var.

• Conjectured more generally by Shokurov (for

ambient log canonical varieties and “mixed”

log canonical thresholds)

• Was known for n = 2 (Shokurov, Phong-

Sturm, Favre-Jonsson), n = 3 (Alexeev)

• Could be extended to: varieties with quo-

tient, or lci singularities

• General case in dim ≥ 4 ?
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Theorem 2 (dF-M; Kollár). The set of accu-

mulation points of Tn is Tn−1 r {1}.

This was conjectured by Kollár. The case of

decreasing sequences treated by dF-M; Kollár

then dealt with arbitrary sequences (now in-

creasing sequences excluded by Thm. 1)

One inclusion is easy: if g ∈ k[x1, . . . , xn−1] has

lct(g) < 1, then

fm(x1, . . . , xn) = g(x1, . . . , xn−1) + xmn

has lct(fm) = min
{

1, lct(g) + 1
m

}
↘ lct(g)
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An interpretation of Theorem 1. Suppose

k uncountable. Then Theorem 1 is equivalent

with the following statement:

For every c > 0, the set

{f ∈ k[[x1, . . . , xn]] | lct(f) ≥ c}

is a cylinder in k[[x1, . . . , xn]], i.e. there is N

such that lct(f) ≥ c iff lct(tN(f)) ≥ c.

Furthermore: the above set is a cylinder iff it

is open in the projective limit topology. Hence

Thm.1 can be interpreted as a semicontinuity

theorem for the infinite-dimensional family of

all formal power series.

Note: for finite-dimensional families, such a

semicontinuity result was known: Varchenko,

Siu, Demailly-Kollár,...

10



Key ideas in the proof of ACC

Suppose fm ∈ k[x1, . . . , xn] are such that cm :=

lct(fm)↗ c

1) Special case that can be treated geometri-

cally: fm converges to some f in (x1, . . . , xn)-

adic toology, i.e. mult0(fm − f)→∞.

| lct0(fm)−lct0(f)| ≤ lct0(fm−f) ≤ n
mult0(fm−f) → 0

ACC predicts: lct(fm) ≥ lct(f) for m� 0

Suppose E computes lct(f) has image {0} on

An. If ordE(fm − f) ≥ ordE(f), then

lct0(fm) ≤
ordE(KY/X) + 1

ordE(fm)
≤

ordE(KY/X) + 1

ordE(f)

= lct0(f)
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Theorem 3 (Kollár; dF-E-M) Let f , g ∈ k[x1, . . . , xn].

If E is a divisor computing lct(f) such that

ordE(f − g) > ordE(f), then lct(g) = lct(f)

around the image of E.

Kollár’s proof: uses the results on MMP of

Birkar-Cascini-Hacon-McKernan

dF-E-M: uses the Connectedness Theorem of

Shokurov and Kollár (easy consequence of Kawamata-

Viehweg vanishing)
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2) Second point in the proof of ACC: given a

sequence {fm}m, fm ∈ k[x1, . . . , xn] with cm :=

lct0(fm)→ c, construct F ∈ K[[x1, . . . , xn]], K ⊃
k field extension, such that lct(F ) = c.

In fact, we will have the following property: for

every d ≥ 1, have infinitely many m such that

lct0(td(F )) = lct0(td(fm))

For every such m, have

| lct(F )− lct0(fm)| ≤ | lct(F )− lct0(td(F ))|+

| lct0(td(fm))− lct0(fm)| ≤
2n

d+ 1

Since lct0(fm)→ c, it follows lct(F ) = c.
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Two ways of constructing such F ∈ K[[x1, . . . , xn]]:

• dF-M: using ultrafilter constructions

• Kollár: using a sequence of generic points

The nonstandard construction: if U is a non-

principal ultrafilter on N, then the sequence

(fm) defines an internal polynomial in ∗(k[x1, . . . , xn]).

Truncating to keep just the monomials with

standard exponents gives F ∈ ∗k[[x1, . . . , xn]].

One can show: for all d

lct(td(F )) = lct0(td(fm))

whenever m ∈ U.
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Kollár’s construction: consider the truncation

maps

P = k[[x1, . . . , xn]]
td→ Pd = k[[x1, . . . , xn]]/(x1, . . . , xn)d+1

ϕd→ Pd−1 = k[[x1, . . . , xn]]/(x1, . . . , xn)d

Each Pd is an affine space over k.

Construct by induction on d ≥ 1 a sequence of

irreducible, closed subsets Zd ⊆ Pd such that

i) Each Zd is minimal with the property that

there are infinitely many m such that td(fm) ∈
Zd.

ii) Each ϕd induces a dominant map Zd →
Zd−1.

Get a sequence of field extensions k(Zd) ⊆
k(Zd+1) ⊆ · · · . Let K =

⋃
d k(Zd).
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The sequence of compatible maps

Spec(K)→ Pd

defines a formal power series F ∈ K[[x1, . . . , xn]].

By construction, for every d ≥ 1, we have an

infinite subset Id ⊆ N such that

td(F ) corresponds to the generic point of

{td(fm) | m ∈ Id}

But there is Ud ⊂ Zd open such that lct0(td(F )) =

lct0(g) for every g ∈ Ud. The set

{m ∈ Id | td(fm) ∈ Ud}

is infinite, hence F satisfies our requirement.
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Rough outline of the proof of Thm. 1:

Step 1. Given fm ∈ k[x1, . . . , xn] with lct0(fm)↗
c, construct F ∈ K[[x1, . . . , xn]] as above.

Step 2. Reduce to the case when lct(F ) is

computed by a divisor E with image {0}. This

is done by replacing fm by frmg
s, for suitable

r, s ≥ 1, and a general polynomial g of suitable

degree. Can do this such that

lct(F r) = lct(F rgs) > lct(frm) ≥ lct(frmg
s)

Step 3. Use Thm. 3 to show that if lct(F ) is

computed by a divisor E with image {0}, then

lct(fm) = c for some c (shown by Kollár).
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For Thm. 2: Step 3 in the previous proof

shows that if lct0(fm) is a (strictly) decreasing

sequence with limit c, then lct(F ) can not be

computed by a divisor with image {0}.

Let E be a divisor computing lct(F ). Localize

at the generic point of the image of E, and

complete, to get to a “variety” of dimension ≤
n−1. It is then standard to get f ∈ k[x1, . . . , xn]

with lct0(f) = c.
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Why care about ACC: related to termination

of flips (Shokurov, Birkar)

Let (X1,∆1)
ϕ1
99K (X2,∆2)

ϕ2
99K · · · (Xm,∆m)

ϕm
99K

sequence of flips

ϕi rational map, isomorphism in codim one

∆i+1 = (ϕi)∗(∆i), ∆i = Q-divisor

Idea: ϕi replaces some (KXi + ∆i)-negative

curves by (KXi+1
+ ∆i+1)-positive curves

Consequence: if Γ ≥ 0, Γ ∼Q (KXi + ∆i), then

lct((Xi,∆i),Γ) ≤ lct((Xi+1,∆i+1), (ϕi)∗(Γ)))
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Furthermore: strict inequality if lct’s computed

by divisors with center inside “flipping locus”

Theorem (Birkar). Suppose that

• MMP holds in dim ≤ (n− 1).

• ACC holds (in a general form) in dim. n

Then there is no infinite sequence of flips as

above if there is Γ ≥ 0 with Γ ∼Q (KX1
+ ∆1)

Note: this is the case when one expects a min-

imal model at the end of MMP
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Idea of proof:

Let Γi the direct image of Γ on Xi. Consider

the weakly increasing sequence consisting of

ci = lct((Xi,∆i),Γi)

Each ϕi is also a flip w.r.t. (KXi + ∆i + ciΓi)

Key point: if ∆i + ciΓi contains F with co-

eff 1: can restrict to F and use adjunction

More generally, have Shokurov’s Special Ter-

mination: given MMP dim ≤ (n− 1)

for i� 0, if E computes lct((Xi,∆i),Γi), then

its image does not intersect “flipping locus”

Birkar uses this to produce an increasing se-

quence of lct’s
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