ACC for log canonical thresholds

Mircea Mustațā University of Michigan

joint work with

T. de Fernex and L. Ein

$$
\text { Jaca, June 26, } 2009
$$

Basics about log canonical thresholds

Work over k alg closed, $\operatorname{char}(k)=0$.

Let $f \in k\left[x_{1}, \ldots, x_{n}\right], f(0)=0$ defining $H \subset \mathbf{A}^{n}$

Recall: $\operatorname{mult}_{0}(f)=\max \left\{r \geq 0 \mid f \in\left(x_{1}, \ldots, x_{n}\right)^{r}\right\}$

$$
=\operatorname{ord}_{E}(f)
$$

where E is exceptional divisor on $\mathrm{Bl}_{0}\left(\mathbf{A}^{n}\right)$.

Idea: • consider all divisors over \mathbf{A}^{n}

- normalize order of vanishing along divisors
- take an infimum over all such choices

Consider: proper, birational morphisms π : $Y \rightarrow$ X, with Y smooth. E prime divisor on Y giving a valuation ord_{E} of the function field of X
$K_{Y / X} \geq 0$ div on Y locally def by $\operatorname{det}(\operatorname{Jac}(\pi))$
Note: $\operatorname{Supp}\left(K_{Y / X}\right)=\operatorname{Exc}(\pi)$
Definition. $\operatorname{Ict}(f):=\inf _{E / X} \frac{\operatorname{ord}_{E}\left(K_{Y / X}\right)+1}{\operatorname{ord}_{E}(f)}$
If only E with $0 \in \pi(E)$, get $\operatorname{Ict}_{0}(f)$.

Principle: "bad singularities \Leftrightarrow small Ict"

Fundamental fact: enough to consider E on a log resolution of f, i.e. when $\pi^{-1}(H)+K_{Y / X}$ SNC divisor: in local coord def by

$$
y_{1}^{a_{1}} \cdots y_{n}^{a_{n}}
$$

Consequences: • inf in the definition is a min

- $\operatorname{Ict}(f) \in \mathbf{Q}$

Examples: 1) H smooth $\Rightarrow \operatorname{Ict}(f)=1$
2) $f=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}} \Rightarrow \operatorname{Ict}(f)=\min _{i} \frac{1}{a_{i}}$
3) $f=x_{1}^{a_{1}}+\cdots+x_{n}^{a_{n}} \Rightarrow \operatorname{Ict}(f)=\min \left\{1, \sum_{i=1}^{n} \frac{1}{a_{i}}\right\}$
4) If f defines a hyperplane arrangement in \mathbf{A}^{n}, then

$$
\operatorname{Ict}(f)=\min _{W \in L^{\prime}(\mathcal{A})} \frac{\operatorname{codim}(W)}{\#\{H \in \mathcal{A} \mid H \supseteq W\}}
$$

5) If f is nondegenerate with respect to its Newton polytope P, then $\operatorname{Ict}(f)=\min \{1 / \lambda, 1\}$, where

$$
(\lambda, \ldots, \lambda) \in \partial\left(P+\mathbf{R}_{+}^{n}\right)
$$

In general: $\operatorname{Ict}_{0}(f)$ is a refined version of $\frac{1}{\text { mult }_{0}(f)}$

$$
\frac{1}{\operatorname{mult}_{0}(f)} \leq \operatorname{Ict}_{0}(f) \leq \frac{n}{\operatorname{mult}_{0}(f)}
$$

Another useful property: for all f and g

$$
\operatorname{Ict}_{0}(f+g) \leq \operatorname{lct}_{0}(f)+\operatorname{lct}_{0}(g)
$$

Variants of the definition: replace f by ideal, allow X with mild singularities, "mixed" case: for $g \in k\left[x_{1}, \ldots, x_{n}\right]$ with $\operatorname{Ict}(g) \leq 1$, let

$$
\operatorname{lct}\left(\left(\mathbf{A}^{n}, g\right), f\right)=\inf _{E} \frac{\operatorname{ord}_{E}\left(K_{Y / X}\right)+1-\operatorname{ord}_{E}(g)}{\operatorname{ord}_{E}(f)}
$$

Important for us: case of formal power series

$$
f \in k \llbracket x_{1}, \ldots, x_{n} \rrbracket
$$

For f formal power series, can put

$$
\operatorname{Ict}(f)=\lim _{d \rightarrow \infty} \operatorname{Ict}_{0}\left(t_{d}(f)\right)
$$

with $t_{d}(f)$ the truncation of f up to degree d.

The above is convergent since

$$
\begin{aligned}
& \left|\operatorname{cct}_{0}\left(t_{d+m}(f)\right)-\operatorname{Ict}_{0}\left(t_{d}(f)\right)\right| \\
\leq & \operatorname{lct}_{0}\left(t_{d+m}(f)-t_{d}(f)\right) \left\lvert\, \leq \frac{n}{d+1}\right.
\end{aligned}
$$

Important: this can also be computed using a log resolution of f (Hironaka, Temkin)

History of log canonical thresholds: Varchenko, Shokurov,...

Why care about Ict's: they show up in various contexts

1) Birational geometry: $\operatorname{Ict}(f)$ is the largest $q>0$ s.t. $\left(\mathbf{A}^{n}, q H\right) \log$ canonical
2) Complex singularity exponents: over \mathbf{C} $\operatorname{Ict}(f)=\sup \left\{s>0 \left\lvert\, \frac{1}{|f(z)|^{2 s}}\right.\right.$ loc integrable $\}$
3) p-adic integration (Igusa): for p prime, f over \mathbf{Z}, it controls asymptotic behavior of

$$
\#\left\{u \in\left(\mathbf{Z} / p^{m} \mathbf{Z}\right)^{n} \mid f(u)=0\right\}
$$

Other contexts: motivic integration, eigenvalues of monodromy action, Bernstein poly, invar of sing in char p defined via Frobenius

Theorem 1 (dF-E-M). For all n, the set

$$
\mathcal{T}_{n}:=\left\{\operatorname{lct}_{0}(f) \mid f \in k\left[x_{1}, \ldots, x_{n}\right], f(0)=0\right\}
$$

satisfies the Ascending Chain Condition (ACC).

Remarks: - This treats ambient smooth var.

- Conjectured more generally by Shokurov (for ambient log canonical varieties and "mixed" log canonical thresholds)
- Was known for $n=2$ (Shokurov, PhongSturm, Favre-Jonsson), $n=3$ (Alexeev)
- Could be extended to: varieties with quotient, or Ici singularities
- General case in dim ≥ 4 ?

Theorem 2 (dF-M; Kollár). The set of accumulation points of \mathcal{T}_{n} is $\mathcal{T}_{n-1} \backslash\{1\}$.

This was conjectured by Kollár. The case of decreasing sequences treated by dF-M; Kollár then dealt with arbitrary sequences (now increasing sequences excluded by Thm. 1)

One inclusion is easy: if $g \in k\left[x_{1}, \ldots, x_{n-1}\right]$ has $\operatorname{lct}(g)<1$, then

$$
f_{m}\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{1}, \ldots, x_{n-1}\right)+x_{n}^{m}
$$

has $\operatorname{Ict}\left(f_{m}\right)=\min \left\{1, \operatorname{Ict}(g)+\frac{1}{m}\right\} \searrow \operatorname{Ict}(g)$

An interpretation of Theorem 1. Suppose

 k uncountable. Then Theorem 1 is equivalent with the following statement:For every $c>0$, the set

$$
\left\{f \in k \llbracket x_{1}, \ldots, x_{n} \rrbracket \mid \operatorname{Ict}(f) \geq c\right\}
$$

is a cylinder in $k \llbracket x_{1}, \ldots, x_{n} \rrbracket$, i.e. there is N such that $\operatorname{Ict}(f) \geq c$ iff $\operatorname{Ict}\left(t_{N}(f)\right) \geq c$.

Furthermore: the above set is a cylinder iff it is open in the projective limit topology. Hence Thm. 1 can be interpreted as a semicontinuity theorem for the infinite-dimensional family of all formal power series.

Note: for finite-dimensional families, such a semicontinuity result was known: Varchenko, Siu, Demailly-Kollár,...

Key ideas in the proof of $A C C$

Suppose $f_{m} \in k\left[x_{1}, \ldots, x_{n}\right]$ are such that $c_{m}:=$ $\operatorname{lct}\left(f_{m}\right) / c$

1) Special case that can be treated geometrically: f_{m} converges to some f in $\left(x_{1}, \ldots, x_{n}\right)$ adic toology, i.e. mult $_{0}\left(f_{m}-f\right) \rightarrow \infty$.
$\left|\operatorname{Ict}_{0}\left(f_{m}\right)-\operatorname{Ict}_{0}(f)\right| \leq \operatorname{Ict}_{0}\left(f_{m}-f\right) \leq \frac{n}{\operatorname{mult}_{0}\left(f_{m}-f\right)} \rightarrow 0$
ACC predicts: $\operatorname{Ict}\left(f_{m}\right) \geq \operatorname{Ict}(f)$ for $m \gg 0$
Suppose E computes $\operatorname{Ict}(f)$ has image $\{0\}$ on \mathbf{A}^{n}. If $\operatorname{ord}_{E}\left(f_{m}-f\right) \geq \operatorname{ord}_{E}(f)$, then
$\operatorname{lct}_{0}\left(f_{m}\right) \leq \frac{\operatorname{ord}_{E}\left(K_{Y / X}\right)+1}{\operatorname{ord}_{E}\left(f_{m}\right)} \leq \frac{\operatorname{ord}_{E}\left(K_{Y / X}\right)+1}{\operatorname{ord}_{E}(f)}$
$=\operatorname{Ict}_{0}(f)$

Theorem 3 (Kollár; dF-E-M) Let $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$. If E is a divisor computing $\operatorname{Ict}(f)$ such that $\operatorname{ord}_{E}(f-g)>\operatorname{ord}_{E}(f)$, then $\operatorname{Ict}(g)=\operatorname{lct}(f)$ around the image of E.

Kollár's proof: uses the results on MMP of Birkar-Cascini-Hacon- M^{C} Kernan
dF-E-M: uses the Connectedness Theorem of Shokurov and Kollár (easy consequence of KawamataViehweg vanishing)
2) Second point in the proof of ACC: given a sequence $\left\{f_{m}\right\}_{m}, f_{m} \in k\left[x_{1}, \ldots, x_{n}\right]$ with $c_{m}:=$ $\operatorname{lct}_{0}\left(f_{m}\right) \rightarrow c$, construct $F \in K \llbracket x_{1}, \ldots, x_{n} \rrbracket, K \supset$ k field extension, such that $\operatorname{Ict}(F)=c$.

In fact, we will have the following property: for every $d \geq 1$, have infinitely many m such that

$$
\operatorname{Ict}_{0}\left(t_{d}(F)\right)=\operatorname{lct}_{0}\left(t_{d}\left(f_{m}\right)\right)
$$

For every such m, have

$$
\begin{gathered}
\left|\operatorname{Ict}(F)-\operatorname{Ict}_{0}\left(f_{m}\right)\right| \leq\left|\operatorname{Ict}(F)-\operatorname{Ict}_{0}\left(t_{d}(F)\right)\right|+ \\
\left|\operatorname{Ict}_{0}\left(t_{d}\left(f_{m}\right)\right)-\operatorname{Ict}_{0}\left(f_{m}\right)\right| \leq \frac{2 n}{d+1}
\end{gathered}
$$

Since $\operatorname{Ict}_{0}\left(f_{m}\right) \rightarrow c$, it follows $\operatorname{Ict}(F)=c$.

Two ways of constructing such $F \in K \llbracket x_{1}, \ldots, x_{n} \rrbracket$:

- dF-M: using ultrafilter constructions
- Kollár: using a sequence of generic points

The nonstandard construction: if \mathcal{U} is a nonprincipal ultrafilter on \mathbf{N}, then the sequence (f_{m}) defines an internal polynomial in $*\left(k\left[x_{1}, \ldots, x_{n}\right]\right)$. Truncating to keep just the monomials with standard exponents gives $F \in{ }^{*} k \llbracket x_{1}, \ldots, x_{n} \rrbracket$.

One can show: for all d

$$
\operatorname{Ict}\left(t_{d}(F)\right)=\operatorname{lct}_{0}\left(t_{d}\left(f_{m}\right)\right)
$$

whenever $m \in \mathcal{U}$.

Kollár's construction: consider the truncation maps

$$
\begin{aligned}
P= & k \llbracket x_{1}, \ldots, x_{n} \rrbracket \xrightarrow{t_{d}} P_{d}=k \llbracket x_{1}, \ldots, x_{n} \rrbracket /\left(x_{1}, \ldots, x_{n}\right)^{d+1} \\
& \xrightarrow{\varphi_{d}} P_{d-1}=k \llbracket x_{1}, \ldots, x_{n} \rrbracket /\left(x_{1}, \ldots, x_{n}\right)^{d}
\end{aligned}
$$

Each P_{d} is an affine space over k.

Construct by induction on $d \geq 1$ a sequence of irreducible, closed subsets $Z_{d} \subseteq P_{d}$ such that
i) Each Z_{d} is minimal with the property that there are infinitely many m such that $t_{d}\left(f_{m}\right) \in$ Z_{d}.
ii) Each φ_{d} induces a dominant map $Z_{d} \rightarrow$ Z_{d-1}.

Get a sequence of field extensions $k\left(Z_{d}\right) \subseteq$ $k\left(Z_{d+1}\right) \subseteq \cdots$. Let $K=\bigcup_{d} k\left(Z_{d}\right)$.

The sequence of compatible maps
$\operatorname{Spec}(K) \rightarrow P_{d}$
defines a formal power series $F \in K \llbracket x_{1}, \ldots, x_{n} \rrbracket$.

By construction, for every $d \geq 1$, we have an infinite subset $I_{d} \subseteq \mathbf{N}$ such that
$t_{d}(F)$ corresponds to the generic point of

$$
\left\{t_{d}\left(f_{m}\right) \mid m \in I_{d}\right\}
$$

But there is $U_{d} \subset Z_{d}$ open such that $\operatorname{lct}_{0}\left(t_{d}(F)\right)=$ $\operatorname{Ict}_{0}(g)$ for every $g \in U_{d}$. The set

$$
\left\{m \in I_{d} \mid t_{d}\left(f_{m}\right) \in U_{d}\right\}
$$

is infinite, hence F satisfies our requirement.

Rough outline of the proof of Thm. 1:

Step 1. Given $f_{m} \in k\left[x_{1}, \ldots, x_{n}\right]$ with $\operatorname{Ict}_{0}\left(f_{m}\right) \nearrow$ c, construct $F \in K \llbracket x_{1}, \ldots, x_{n} \rrbracket$ as above.

Step 2. Reduce to the case when $\operatorname{Ict}(F)$ is computed by a divisor E with image $\{0\}$. This is done by replacing f_{m} by $f_{m}^{r} g^{s}$, for suitable $r, s \geq 1$, and a general polynomial g of suitable degree. Can do this such that

$$
\operatorname{Ict}\left(F^{r}\right)=\operatorname{Ict}\left(F^{r} g^{s}\right)>\operatorname{Ict}\left(f_{m}^{r}\right) \geq \operatorname{Ict}\left(f_{m}^{r} g^{s}\right)
$$

Step 3. Use Thm. 3 to show that if $\operatorname{Ict}(F)$ is computed by a divisor E with image $\{0\}$, then $\operatorname{lct}\left(f_{m}\right)=c$ for some c (shown by Kollár).

For Thm. 2: Step 3 in the previous proof shows that if $\operatorname{Ict}_{0}\left(f_{m}\right)$ is a (strictly) decreasing sequence with limit c, then $\operatorname{Ict}(F)$ can not be computed by a divisor with image $\{0\}$.

Let E be a divisor computing $\operatorname{Ict}(F)$. Localize at the generic point of the image of E, and complete, to get to a "variety" of dimension \leq $n-1$. It is then standard to get $f \in k\left[x_{1}, \ldots, x_{n}\right]$ with $\operatorname{Ict}_{0}(f)=c$.

Why care about ACC: related to termination of flips (Shokurov, Birkar)

Let $\left(X_{1}, \Delta_{1}\right) \xrightarrow{\varphi_{1}}\left(X_{2}, \Delta_{2}\right) \xrightarrow{\varphi_{2}} \cdots\left(X_{m}, \Delta_{m}\right) \xrightarrow{\varphi_{m}}$
sequence of flips
φ_{i} rational map, isomorphism in codim one

$$
\Delta_{i+1}=\left(\varphi_{i}\right)_{*}\left(\Delta_{i}\right), \Delta_{i}=\text { Q-divisor }
$$

Idea: φ_{i} replaces some ($K_{X_{i}}+\Delta_{i}$)-negative curves by ($K_{X_{i+1}}+\Delta_{i+1}$)-positive curves

Consequence: if $\Gamma \geq 0, \Gamma \sim_{\mathbf{Q}}\left(K_{X_{i}}+\Delta_{i}\right)$, then $\left.\operatorname{Ict}\left(\left(X_{i}, \Delta_{i}\right), \Gamma\right) \leq \operatorname{lct}\left(\left(X_{i+1}, \Delta_{i+1}\right),\left(\varphi_{i}\right)_{*}(\Gamma)\right)\right)$

Furthermore: strict inequality if Ict's computed by divisors with center inside "flipping locus"

Theorem (Birkar). Suppose that

- MMP holds in dim $\leq(n-1)$.
- ACC holds (in a general form) in dim. n

Then there is no infinite sequence of flips as above if there is $\Gamma \geq 0$ with $\Gamma \sim_{\mathbf{Q}}\left(K_{X_{1}}+\Delta_{1}\right)$

Note: this is the case when one expects a minimal model at the end of MMP

Idea of proof:

Let Γ_{i} the direct image of Γ on X_{i}. Consider the weakly increasing sequence consisting of

$$
c_{i}=\operatorname{Ict}\left(\left(X_{i}, \Delta_{i}\right), \Gamma_{i}\right)
$$

Each φ_{i} is also a flip w.r.t. $\left(K_{X_{i}}+\Delta_{i}+c_{i} \Gamma_{i}\right)$
Key point: if $\Delta_{i}+c_{i} \Gamma_{i}$ contains F with coeff 1: can restrict to F and use adjunction More generally, have Shokurov's Special Termination: given MMP dim $\leq(n-1)$
for $i \gg 0$, if E computes $\operatorname{Ict}\left(\left(X_{i}, \Delta_{i}\right), \Gamma_{i}\right)$, then its image does not intersect "flipping locus"

Birkar uses this to produce an increasing sequence of Ict's

