Instituto dє Ciências Matemáticas € d€ Computação

The Euler Obstruction and The Chern Obstruction

Nivaldo de Góes Grulha Júnior
Joint Work with: M. A. S. Ruas (ICMC) and J.-P. Brasselet (CNRS-Marseille)

E-mail address: njunior@icmc.usp.br
Instituto de Ciências Matemáticas e de Computação
Universidade de São Paulo
Brasil.

0.1. Introduction

(a) The Euler obstruction;
(b) The Euler obstruction of a function;
(c) The Euler obstruction of a 1 -form;
(d) The Euler obstruction of a k-vector field;
(e) The Euler obstruction of a map;
(f) The Chern obstruction.

0.1.1. Nash Modification

The Grassmannian of d-planes of \mathbb{C}^{m} is denoted by $G(d, m)$. Let $(V, 0) \subset\left(\mathbb{C}^{m}, 0\right)$ be the germ of a complex analytic variety, equidimensional of complex dimension d. Let us consider the fiber bundle of Grassmannians of d-planes in $T \mathbb{C}^{m}$, denoted by G. The fiber G_{x} on $x \in \mathbb{C}^{m}$ is the set of d-planes of $T_{x} \mathbb{C}^{m}$, isomorphic to $G(d, m)$. An element of G is a pair (x, P) where $x \in \mathbb{C}^{m}$ and $P \in G_{x}$. On the regular part of V, one can define the Gauss map $\phi: V_{\text {reg }} \rightarrow G$ as follows:

$$
\phi(x)=\left(x, T_{x} V_{\text {reg }}\right) .
$$

Definition 0.1.1. The Nash modification of V denoted by \widetilde{V} is defined as the closure of the image of ϕ inside G.
Let T be the tautological fiber bundle on G. We define the fiber bundle \widetilde{T} with base \widetilde{V} as the restriction of T on \widetilde{V}, so we have the diagram:

$$
\begin{array}{ccc}
\widetilde{T} & \hookrightarrow & T \\
\downarrow & & \downarrow \\
\widetilde{V} & \hookrightarrow & G \\
\nu \downarrow & & \downarrow \nu \\
V & \hookrightarrow & \mathbb{C}^{m}
\end{array}
$$

An element of T is a triple (x, P, v) where $x \in \mathbb{C}^{m}, P \in G_{x}$ and $v \in P$.

Definition 0.1.2. Let v be a radial vector field on $V \cap \partial B_{\varepsilon}$ and \tilde{v} the lifting up of v on $\nu^{-1}\left(V \cap \partial B_{\varepsilon}\right)$. The vector field \tilde{v} defines an obstruction cocycle $\operatorname{Obs}(\tilde{v})$.
The Euler obstruction is evaluation of $\operatorname{Obs}(\tilde{v})$ on the fundamental class of the pair $\left[\nu^{-1}\left(V \cap B_{\varepsilon}\right), \nu^{-1}\left(V \cap \partial B_{\varepsilon}\right)\right]$, it means:

$$
E u_{V}(0):=\left\langle O b s(\tilde{v}),\left[\nu^{-1}\left(V \cap B_{\varepsilon}\right), \nu^{-1}\left(V \cap \partial B_{\varepsilon}\right)\right]\right\rangle .
$$

Theorem 0.1.3 (BLS). Let $(V, 0) \subset\left(\mathbb{C}^{m}, 0\right)$ be the germ of a complex analytic variety, and $\left\{V_{\alpha}\right\}$ a Whitney stratification of V. Let $l: U \rightarrow \mathbb{C}$ be a generic linear form, where U is a open neighborhood of 0 in \mathbb{C}. So:

$$
E u_{V}(0)=\sum_{\alpha} \chi\left(V_{\alpha} \cap B_{\varepsilon} \cap l^{-1}\left(t_{0}\right)\right) \cdot E u_{V}\left(V_{\alpha}\right)
$$

where ε is sufficiently small, $t_{0} \in \mathbb{C} \backslash\{0\}$ is near to the origin and $E u_{V}\left(V_{\alpha}\right)$ is the obstruction of V in V_{α}.

Theorem 0.1.4 (BMPS). Let $f:(V, 0) \rightarrow(\mathbb{C}, 0)$, be an analytic function with isolated singularity at the origin, and $\left\{V_{\alpha}\right\}$ a Whitney stratification of V. so:

$$
E u_{V}(0)=\left(\sum_{\alpha} \chi\left(V_{\alpha} \cap B_{\varepsilon} \cap f^{-1}\left(t_{0}\right)\right) \cdot E u_{V}\left(V_{\alpha}\right)\right)+E u_{f, V}(0)
$$

where ε is sufficiently small, $t_{0} \in \mathbb{C} \backslash\{0\}$ near to the origin.

0.1.2. The Euler obstruction of a p-frame

One says that a collection $v^{(p)}=\left\{v_{1}, \ldots, v_{p}\right\}$ of p vector fields is a p-frame if the vector fields are \mathbb{C}-linearly independent. The point x is a singular point for $v^{(p)}$ if the collection $v^{(p)}(x)$ is not linearly independent.

Let us denote by $\left\{V_{\alpha}\right\}$ a Whitney stratification of \mathbb{C}^{m} compatible with V, i.e. $\mathbb{C}^{m} \backslash V$ is a stratum. Let (K) be a triangulation of \mathbb{C}^{m} subordinated to the stratification $\left\{V_{\alpha}\right\}$, and (D) a cell decomposition of \mathbb{C}^{m} dual to (K). Let us denote by σ a (D)-cell of (real) dimension $2(m-p+1)$. The cell σ is transverse to all strata of $\left\{V_{\alpha}\right\}$. One says that the p-frame $v^{(p)}=\left\{v_{1}, \ldots, v_{p}\right\}$ is stratified if each vector field v_{i} is a stratified vector field.

Let us denote by

$$
\operatorname{Obs}\left(\tilde{v}^{(p)}, \sigma \cap V\right) \in H^{2(d-p+1)}\left(\nu^{-1}(\sigma \cap V),\left(\nu^{-1}(\partial \sigma \cap V)\right)\right)
$$

the class of the obstruction cocycle to extending $\tilde{v}^{(p)}$ as a set of p linearly independent sections of \widetilde{T} on $\nu^{-1}(\sigma \cap V)$.

Definition 0.1.5. The local Euler obstruction $E u\left(v^{(p)}, V, \sigma\right)$ of a stratified p-frame $v^{(p)}$ defined on $\sigma \cap V$ with an isolated singularity at the barycenter a of σ is defined as the evaluation of the obstruction cocycle $\operatorname{Obs}\left(\tilde{v}^{(p)}, \sigma \cap V\right)$ on the fundamental class of the pair $\left[\nu^{-1}(\sigma \cap\right.$ $\left.V), \nu^{-1}(\partial \sigma \cap V)\right]$. That is,

$$
E u\left(v^{(p)}, V, \sigma\right)=\left\langle O b s\left(\tilde{v}^{(p)}, \sigma \cap V\right),\left[\nu^{-1}(\sigma \cap V), \nu^{-1}(\partial \sigma \cap V)\right]\right\rangle
$$

Definition 0.1.6. Let $\left\{\omega_{j}\right\}$ be a collection of $p 1$-forms. The local Euler obstruction $\operatorname{Eu}\left(\left\{\omega_{j}\right\}, V, \sigma\right)$ of the collection is defined in a similar way, but in this case we will take a section of the dual nash bundle $\widetilde{T^{*}}$.

0.1.3. Euler obstruction of a map

Let us fix an integer $p, 1 \leq p \leq d$. Let us consider a germ of analytic map $f:(V, 0) \rightarrow\left(\mathbb{C}^{p}, 0\right)$, restriction of $F:(U, 0) \rightarrow\left(\mathbb{C}^{p}, 0\right)$, $f(z)=\left(f_{1}(x), f_{2}(x), \ldots, f_{p}(x)\right)$ where U is a neighborhood of 0 in of \mathbb{C}^{m} and $F(x)=\left(F_{1}(x), F_{2}(x), \ldots, F_{p}(x)\right)$.
We denote by B_{ε} a closed ball centered at 0 with radius ε and by Σf the singular set of f.

Definition 0.1.7. Let $(V, 0) \subset\left(\mathbb{C}^{m}, 0\right)$ the germ of an analytic variety and $f:(V, 0) \rightarrow\left(\mathbb{C}^{p}, 0\right)$ an analytic germ with singular set Σf. One say that f satisfies the (δ) condition if there exists one cell σ of barycenter 0 , of real dimension $2(m-p+1)$ of a cellular decomposition (D) of \mathbb{C}^{m}, such that:

$$
\Sigma f \cap \partial \sigma=\emptyset
$$

If f satisfies the (δ) condition for the cell σ, we can lift up the p-frame $\bar{\nabla}_{V}^{(p)} f$ as a set of p linearly independent sections $\widetilde{\bar{\nabla}}_{V}^{(p)} f$ of \widetilde{T} on $\nu^{-1}\left(V^{\sigma}\right)$ where $V^{\sigma}=V \cap \partial \sigma$. Let us denote by $\xi \in H^{2(d-p+1)}\left(\nu^{-1}\left(V^{\sigma}\right), \nu^{-1}\left(\partial V^{\sigma}\right)\right)$ the obstruction cocycle to extend $\widetilde{\bar{\nabla}}_{V}^{(p)} f$ as a set of p linearly independent sections of \widetilde{T} on $\nu^{-1}\left(V^{\sigma}\right)$.

Definition 0.1.8. In the above situation one can define the Euler obstruction of f relatively to σ, denoted by $E u_{f, V}(\sigma)$, as the evaluation of the cocycle ξ on the fundamental class of the pair $\left[\nu^{-1}\left(V^{\sigma}\right), \nu^{-1}\left(\partial V^{\sigma}\right)\right]$. That means

$$
E u_{f, V}(\sigma)=\left\langle\xi,\left[\nu^{-1}\left(V^{\sigma}\right), \nu^{-1}\left(\partial V^{\sigma}\right)\right]\right\rangle .
$$

0.1.4. Local Chern obstruction of collections of 1-forms and special points.

The notion of local Chern obstruction extends the notion of local Euler obstruction in the case of collections of germs of 1 -forms, This number is well defined for any germ of a reduced equidimensional complex analytic space. The Chern obstruction can be characterized as a intersection number. More precisely, W. Ebeling and S. M. Gusein-Zade perfom the following construction.

Let $\left(V^{d}, 0\right) \subset\left(\mathbb{C}^{m}, 0\right)$ be the germ of a purely d-dimensional reduced complex analytic variety at the origin. Let $\mathbf{k}=\left\{k_{i}\right\},(i=$ $\left.1, \cdots, s ; j=1, \cdots, d-k_{i}+1\right),\left\{\omega_{j}^{(i)}\right\}$ be a collection of germs of 1 -forms on $\left(\mathbb{C}^{m}, 0\right)$. Let $\varepsilon>0$ be small enough so that there is a representative V of the germ $(V, 0)$ and representatives $\left\{\omega_{j}^{(i)}\right\}$ of the germs of 1 -forms inside the ball $B_{\varepsilon}(0) \subset \mathbb{C}^{m}$.

Definition 0.1.9. A point $x \in V$ is called a special point of the collection $\left\{\omega_{j}^{(i)}\right\}$ of 1-forms on the variety V if there exists a sequence x_{n} of points from the non-singular part $V_{\text {reg }}$ of the variety V such that the sequence $T_{x_{n}} V_{\text {reg }}$ of the tangent spaces at the points x_{n} has a limit L (in $G(d, m)$) and the restriction of the 1 -forms $\omega_{1}^{(i)}, \cdots, \omega_{d-k_{i}+1}^{(i)}$ to the subspace $L \subset T_{x} \mathbb{C}^{m}$ are linearly dependent for each $i=1, \cdots, s$. The collection $\left\{\omega_{j}^{(i)}\right\}$ of 1-forms has an isolated special point on $(V, 0)$ if it has no special point on V in a punctured neighborhood of the origin.

Let $\left\{\omega_{j}^{(i)}\right\}$ be a collection of germs of 1-forms on $(V, 0)$ with an isolated special point at the origin. Let $\nu: \widetilde{V} \rightarrow V$ be the Nash transformation of the variety V and \widetilde{T} the Nash bundle. The collection of 1-forms $\left\{\omega_{j}^{(i)}\right\}$ gives rise to a section $\Gamma(\omega)$ of the bundle

$$
\widetilde{\mathbb{T}}=\bigoplus_{i=1}^{s} \bigoplus_{j=1}^{d-k_{i}+1} \widetilde{T}_{i, j}^{*}
$$

where $\widetilde{T}_{i, j}^{*}$ are copies of the dual Nash bundle \widetilde{T}^{*} over the Nash transform \widetilde{V} numbered by indices i and j.

Let $\mathbb{D} \subset \widetilde{\mathbb{T}}$ be the set of pairs $\left(x,\left\{\alpha_{j}^{(i)}\right\}\right)$ where $x \in \widetilde{V}$ and the collection $\left\{\alpha_{j}^{(i)}\right\}$ is such that $\alpha_{1}^{(i)}, \cdots, \alpha_{n-k_{i}+1}^{(i)}$ are linearly dependent for each $i=1, \cdots, s$.

Definition 0.1.10. Let 0 be a special point of the collection $\left\{\omega_{j}^{(i)}\right\}$. The local Chern obstruction $C h_{V, 0}\left\{\omega_{j}^{(i)}\right\}$ of the collection of germs of 1-forms $\left\{\omega_{j}^{(i)}\right\}$ on $(V, 0)$ at the origin is the obstruction to extend the section $\Gamma(\omega)$ of the fibre bundle $\widetilde{\mathbb{T}} \backslash \mathbb{D} \rightarrow \widetilde{X}$ from the preimage of a neighbourhood of the sphere $S_{\varepsilon}=\partial B_{\varepsilon}$ to \widetilde{V}. More precisely its value (as an element of the cohomology group

$$
\left.H^{2 d}\left(\nu^{-1}\left(V \cap B_{\varepsilon}\right), \nu^{-1}\left(V \cap S_{\varepsilon}\right), \mathbb{Z}\right)\right)
$$

on the fundamental class of the pair

$$
\left(\nu^{-1}\left(V \cap B_{\varepsilon}\right), \nu^{-1}\left(V \cap S_{\varepsilon}\right)\right) .
$$

Let V be a complex analytic equidimensional reduced variety in \mathbb{C}^{m}, $\operatorname{dim} V=d$, and $f:(V, 0) \rightarrow\left(\mathbb{C}^{p}, 0\right), 1 \leq p \leq d$, a map-germ defined on V.
In what follows we adapt the definition of the Euler obstruction of a map (Definition 0.1.8)in the context of collections of 1-forms.

Let us denote by $d f_{i}$ the 1 -form dual to the vector field $\bar{\nabla}_{V}^{(i)} f$. We denote by \widetilde{T}^{*} the dual bundle of \widetilde{T}. In the same way as above, if f satisfies the condition (δ) for the cell σ, the 1 -forms $d f_{i}$ can be lifted as linearly independent sections $\widetilde{d} f_{i}$ of \widetilde{T}^{*} over $\nu^{-1}\left(\partial V^{\sigma}\right)$. Let $\xi^{*} \in H^{2(d-p+1)}\left(\nu^{-1}\left(V^{\sigma}\right), \nu^{-1}\left(\partial V^{\sigma}\right)\right)$ the obstruction cocycle for the extension of the $\widetilde{d} f_{i}$ as a set of k linearly independent sections of \widetilde{T}^{*} over $\nu^{-1}\left(V^{\sigma}\right)$.

Definition 0.1.11. One denotes by $E u_{f, V}^{*}(\sigma)$, the evaluation of the cocycle ξ^{*} over the fundamental class of $\left[\nu^{-1}\left(V^{\sigma}\right), \nu^{-1}\left(\partial V^{\sigma}\right)\right]$. That is,

$$
E u_{f, V}^{*}(\sigma)=\left\langle\xi^{*},\left[\nu^{-1}\left(V^{\sigma}\right), \nu^{-1}\left(\partial V^{\sigma}\right)\right]\right\rangle
$$

Theorem 0.1.12. Let $\left(V^{d}, 0\right) \subset\left(\mathbb{C}^{m}, 0\right)$ be the germ of a purely d-dimensional reduced complex analytic variety at the origin. Let $\boldsymbol{k}=\left\{k_{i}\right\},\left(i=1,2 ; j=1, \cdots, d-k_{i}+1\right),\left\{\omega_{j}^{(i)}\right\}$ a collection of germs of 1 -forms on $\left(\mathbb{C}^{m}, 0\right)$. Let σ be a $2 k_{1}$-cell from a dual decomposition (D) as above and τ the $2 k_{2}$-simplex dual to σ, so τ is transverse to σ and $\sigma \cap \tau=\{0\}$. In this case we have the product formula,

$$
C h_{V, 0}\left\{\omega_{j}^{(i)}\right\}=E u\left(\omega^{(1)}, V, \sigma\right) \times \operatorname{Ind}_{P H}\left(\omega^{(2)}, \tau, 0\right)
$$

Corollary 0.1.13. The Euler obstruction $E u_{f, V}^{*}(0)$ can be characterized as the intersection number $\Gamma(\omega) \circ \mathbb{D}_{V}^{p}$.

Proposition 0.1.14. Let $f:\left(\mathbb{C}^{2}, 0\right) \rightarrow\left(\mathbb{C}^{2}, 0\right)$ be a finitely determined map germ, let us take $\omega_{j}^{(i)}=\left\{\omega^{1}, \omega^{2}\right\}$ where we have $\omega^{1}=\left\{d f_{1}, d f_{2}\right\}$ and $\omega^{2}=\left\{d f_{1}, d \Delta\right\}$, where $d \Delta$ is the determinant of the jacobian matrix of f. In this case, where $V=\mathbb{C}^{2}$, we have that

$$
C h_{V, 0}\left\{\omega_{j}^{(i)}\right\}=c(f),
$$

where $c(f)$ is the number of cusps of f and $V=\mathbb{C}^{2}$.

Proof. Let us denote by M the 3×2-matrix with columns $d f_{1}, d f_{2}$ and $d \Delta$. If we denote by I the ideal generate by the determinants of de 2×2 minors of the matrix M, we know by [GM] that

$$
c(f)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\mathbb{C}^{2}} / I
$$

By the other hand, from $[\mathrm{EG}]$ and using that $V=\mathbb{C}^{2}$, we also have that

$$
C h_{V, 0}=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\mathbb{C}^{2}} / I
$$

in this case, we have $C h_{V, 0}=c(f)$.

Bibliography

[BMPS] J.-P. Brasselet, D. Massey and A. J. Parameswaran and J. Seade, Euler obstruction and defects of functions on singular varieties, J. London Math. Soc. (2) 70 (2004), no. 1, 59-76.
[EG] W. Ebeling and S. M. Gusein-Zade, Chern obstruction for collections of 1 -forms on singular varieties, Singularity theory, 557-564, World Sci. Publ., Hackensack, NJ, 2007.
[GM] T. Gaffney and D. Mond, Cusps and double folds germs of analytic maps $\mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$,J. London Math. Soc. (2) 43, 185-192, (1991).
[Gru] N. G. Grulha Jr., L'Obstruction d'Euler Locale d'une Application, Annales de la Faculté des Sciences de Toulouse- Vol XVII, no 1, p. 53-71, 2008.

