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1. Introduction

Let f(z) be a holomorphic function of n-variables z1, . . . , zn such that
f(0) = 0.

J. Milnor proved f/|f | : S2n−1
ε \Kε → S1 is a locally trivial fibration

for any positive ε with ε ≤ ε0 where Kε = f−1(0) ∩ S2n−1
ε ([12]).

Our situation: links coming from a pair of real-valued real analytic
functions

V = {g(x,y) = h(x,y) = 0, Kε = V ∩ Sε

f(x,y) := g(x,y) + i h(x,y) : R2n → C

When f/|f | : S2n−1
ε \Kε → S1 to be a fibration?

The difficulty is that for an arbitrary choice of g, h, it is usually not
a fibration. A breakthrough is given by the work of Ruas, Seade and
Verjovsky [20]. After this work, many examples of pairs {g, h} which
give real Milnor fibrations have been investigated. However in most
papers, certain restricted types of functions are mainly considered ([5,
6, 22, 19, 11, 18, 3]).

We consider a complex valued analytic function f expanded in a con-
vergent power series of variables z = (z1, . . . , zn) and z̄ = (z̄1, . . . , z̄n)

f(z, z̄) =
∑

ν,µ

cν,µ zν z̄µ

where zν = zν11 · · · zνn
n for ν = (ν1, . . . , νn) (respectively z̄µ = z̄µ1

1 · · · z̄µn
n

for µ = (µ1, . . . , µn)) as usual. Here z̄j is the complex conjugate of zj.
We call f(z, z̄) a mixed analytic function (or a mixed polynomial, if
f(z, z̄) is a polynomial) of z1, . . . , zn. We are interested in the topology
of the hypersurface V = {z ∈ Cn | f(z, z̄) = 0}, which we call a mixed
hypersurface.

This approach is equivalent to the original one.
1
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z = x + iy with zj = xj + i yj j = 1, . . . , n, x = (x1, . . . , xn) and
y = (y1, . . . , yn),

f(z, z̄) 7→ f(x,y) = g(x,y) + i h(x,y), g := < f, h := = f

Conversely, for a given real analytic varietyW = {g(x,y) = h(x,y) =
0} which is defined by two real-valued analytic functions g, h, we can
consider W as a mixed hypersurface by introducing a mixed function
f(z, z̄) = 0 where

f(z, z̄) := g(
z + z̄

2
,
z − z̄

2 i
) + i h(

z + z̄

2
,
z − z̄

2 i
).

The advantage of our view point is that we can use rich techniques of
complex hypersurface singularities.
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2. Newton boundary and non-degeneracy of mixed

functions

2.1. Polar weighted homogeneous polynomials.

2.1.1. Radial degree and polar degree. Let M = zν z̄µ be a mixed mono-
mial where ν = (ν1, . . . , νn), µ = (µ1, . . . , µn) and let P = t(p1, . . . , pn)
be a weight vector. We define the radial degree of M , rdegP M and the
polar degree of M , pdegP M with respect to P by

rdegP M =

n∑

j=1

pj(νj + µj), pdegP M =

n∑

j=1

pj(νj − µj).

2.1.2. Weighted homogeneous polynomials. I.Recall that a complex poly-
nomial h(z) is called a weighted homogeneous polynomial with weights
P = t(p1, . . . , pn) if p1, . . . , pn are integers and there exists a positive
integer d so that

f(tp1z1, . . . , t
pnzn) = tdf(z), t ∈ C.

The integer d is called the degree of f with respect to the weight vector
P .

II. A mixed polynomial f(z, z̄) =
∑`

i=1 ci z
νi z̄µi is called a radially

weighted homogeneous polynomial if there exist integers q1, . . . , qn ≥ 0
and dr > 0 such that it satisfies the equality:

f(tq1z1, . . . , t
qnzn, t

q1 z̄1, . . . , t
qn z̄n) = tdrf(z, z̄), t ∈ R∗.

Def. A polynomial f(z, z̄) is called a polar weighted homogeneous
polynomial if there exists a weight vector (p1, . . . , pn) and a non-zero
integer dp such that

f(λp1z1, . . . , λ
pnzn, λ̄

p1 z̄1, . . . , λ̄
pn z̄n) = λdpf(z, z̄), λ ∈ C∗, |λ| = 1

where gcd(p1, . . . , pn) = 1. This is equivalent to

pdeg P zνi z̄µi = dp, i = 1, . . . , `.

Here the weight pi can be zero or a negative integer. The weight vector
(p1, . . . , pn) is called the polar weights and dp is called the polar degree
respectively. This notion was first introduced by Ruas-Seade-Verjovsky
[20] and Cisneros-Molina [4].

Recall that the radial weights and polar weights defineR∗-action and
S1-action on Cn respectively by

t ◦ z = (tq1z1, . . . , t
qnzn), t ◦ z̄ = (tq1 z̄1, . . . , t

qn z̄n), t ∈ R∗

λ ◦ z = (λp1z1, . . . , λ
pnzn), λ ◦ z̄ = λ ◦ z, λ ∈ S1 ⊂ C

In other words, this is an R∗ × S1 action on Cn.
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Lemma 1. Let f(z, z̄) be a radially weighted homogeneous polynomial,
V = {z ∈ Cn | f(z, z̄) = 0} and V ∗ = V ∩ C∗n. Assume that V \ {O}
(respectively V ∗) is smooth and codimRV = 2. If the radial weight
vector is strictly positive, namely qj > 0 for any j = 1, . . . , n, the
sphere Sr intersects transversely with V \ {O} (resp. with V ∗ ) for any
r > 0.

2.2. Newton boundary of a mixed function. A mixed analytic
function

f(z, z̄) =
∑

ν,µ

cν,µ zν z̄µ, f(O) = 0, V = f−1(0)

We call the variety V = f−1(0) the mixed hypersurface.

The radial Newton polygon Γ+(f ; z, z̄) (at the origin) of a mixed func-
tion f(z, z̄) is defined by the convex hull of

Γ+(f ; z, z̄ : convex hull of
⋃

cν,µ 6=0

(ν + µ) + R+n

Γ(f) = ∂compactΓ
+(f)

For a given positive integer vector P = (p1, . . . , pn), we associate a
linear function `P on Γ(f) defined by `P (ν) =

∑n
j=1 pjνj for ν ∈ Γ(f)

and let ∆(P, f) = ∆(P ) be the face where `P takes its minimal value.
We denote the minimal value of `P by d(P ; f) or simply d(P ). Note

that

d(P ; f) = min {rdegP zν z̄µ | cν,µ 6= 0}.

For a positive weight P , we define the face function fP (z, z̄) by

fP (z, z̄) =
∑

ν+µ∈∆(P )

cν,µ zν z̄µ.

fP is a radially weighted homogeneous polynomial !!.

Example 2. Consider a mixed function f := z3
1 z̄

2
1 + z2

1z
2
2 + z3

2 z̄2. The
Newton boundary Γ(f ; z, z̄) has two faces ∆1,∆2 which have weight
vectors P := t(2, 3) and Q := t(1, 1) respectively. The corresponding
invariants are

fP (z, z̄) = z3
1 z̄

2
1 + z2

1z
2
2 , d(P ; f) = 10

fQ(z, z̄) = z2
1z

2
2 + z3

2 z̄2, d(Q; f) = 4.
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Figure 1. Γ(f)

Definition 3. Let P be a strictly positive weight vector. We say that
f(z, z̄) is non-degenerate for P , if the fiber f−1

P (0) ∩ C∗n contains no
critical point of the mapping fP : C∗n → C. In particular, f−1

P (0)∩C∗n

is a smooth real codimension 2 manifold or an empty set. We say that
f(z, z̄) is strongly non-degenerate for P if the mapping fP : C∗n → C
has no critical points. If dim ∆(P ) ≥ 1, we further assume that fP :
C∗n → C is surjective onto C.

A mixed function f(z, z̄) is called non-degenerate (respectively strongly
non-degenerate) if f is non-degenerate (resp. strongly non-degenerate)
for any strictly positive weight vector P .

Consider the function f(z, z̄) = z1z̄1 + · · ·+ znz̄n. Then V = f−1(0)
is a single point {O}. By the above definition, f is a non-degenerate
mixed function.

To avoid such an unpleasant situation, we say that a mixed function
g(z, z̄) is a true non-degenerate function if it satisfies further the non-
emptiness condition:

(NE) : For any P ∈ N++ with dim ∆(P, g) ≥ 1, the fiber g−1
P (0) ∩

C∗n is non-empty.

Example 4. I. Consider the mixed function f := z3
1 z̄

2
1 + z2

1z
2
2 + z3

2 z̄2
which we have considered in Example 2. Then f is strongly non-
degenerate for each of the weight vectors P = t(2, 3), Q = t(1, 1).

II. Consider a mixed function

g(z, z̄) = z1z̄1 + · · ·+ zrz̄r − (zr+1z̄r+1 + · · · + znz̄n), 1 ≤ r ≤ n− 1.
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Then V = g−1(0) is a smooth real codimension one variety and thus it
is degenerate for P = t(1, 1, . . . , 1).

III. Consider a mixed function

f(z, z̄) = z2
1 + az1z̄2 + z̄2

2 , a ∈ C.

Then f is non-degenerate if and only if a 6= ±2.

IV. non-degenerate but not strongly non-degenerate mixed function

f(z, z̄) = 1/4 z1
2 − 1/4 z̄2

1 + z1 z̄1 − (1 + i) (z1 + z2) (z̄1 + z̄2)

For a complex valued mixed function f(z, z̄), we use the notation
([17]):

df(z, z̄) = ( ∂f
∂z1
, . . . , ∂f

∂zn
) ∈ Cn, d̄f(z, z̄) = ( ∂f

∂z̄1
, . . . , ∂f

∂z̄n
) ∈ Cn

We use freely the following convenient criterion for a given point to be
a critical point

Proposition 5. (Proposition 1, [17]) The following two conditions are
equivalent. Let w ∈ Cn.

(1) w is a critical point of f : Cn → C.

(2) There exists a complex number α with |α| = 1 such that df(w, w̄) =
α d̄f(w, w̄).

Let J be a subset of {1, . . . , n} and consider the J-conjugation map
ιJ : Cn → Cn defined by:

ιJ : (z1, . . . , zn) 7→ (w1, . . . , wn), wj =

{
zj j /∈ J

z̄j j ∈ J.

Let f(z, z̄) be a mixed function.
f(z, z̄) is J-conjugate holomorphic ⇐⇒ f ◦ ιJ(z):holomorphic func-

tion.
Let M = zν z̄µ be a mixed monomial and let g(z, z̄) = M · f(z, z̄)

where f(z, z̄) is a J-conjugate weighted homogeneous polynomial. We
say g(z, z̄) is a pseudo J-conjugate weighted homogeneous polynomial
if pdegP ′g 6= 0 where P ′ = ιJP is the polar weight vector of f(z, z̄).
Note that g ◦ ιJ(z) need not to be holomorphic. Further, if J = ∅,
we say that g is a pseudo weighted homogeneous polynomial. Then g
takes the form M f(z) where f a weighted homogeneous polynomial
and M is a mixed monomial.

Example 6. Let f(z, z̄) = z2
1 + · · ·+z2

n−1+ z̄3
n. Then f is a J-conjugate

weighted homogeneous polynomial of the weight type (3, . . . , 3, 2; 6)
with J = {n}.
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Definition 7. Let f(z, z̄) be a mixed function. We say that f is a
Newton pseudo conjugate weighted homogeneous polynomial if for any
P ∈ N++, there exists a subset J(P ) ⊂ {1, . . . , n} such that the face
function fP (z, z̄) is a J(P )-pseudo conjugate weighted homogeneous
polynomial.

Example 8. I. Let f(z, z̄) = z5
1 + z2

1 z̄
2
2 + zm2 z̄

2
2 with m ≥ 2. Then

the Newton boundary has two faces and the corresponding weights are
P = (2, 3) and Q = (m, 2). The face functions are

fP (z, z̄) = z2
1(z

3
1 + z̄2

2), fQ(z, z̄) = z̄2
2(z

2
1 + zm2 )

and f is a Newton pseudo conjugate weighted homogeneous polynomial
if m 6= 2. Note that for m = 2, the polar degree of fQ(z, z̄) is 0.



8 M. OKA

3. Isolatedness of the singularities

Let f(z, z̄) =
∑

ν,µ cν,µ zν z̄µ. O ∈ f−1(0). Put V = f−1(0) ⊂ Cn.

3.1. Mixed singular points. We say that w ∈ V is a mixed singular
point if w is a critical point of the mapping f : Cn → C. We say that V
is mixed non-singular if it has no mixed singular points. If V is mixed
non-singular, V is smooth variety of real codimension two.

Note that a singular point of V (as a point of a real algebraic variety)
is a mixed singular point of V but the converse is not necessarily true.

3.2. Non-vanishing coordinate subspaces. For a subset J ⊂ {1, 2, . . . , n},
we consider the subspace CJ and the restriction f J := f |CJ . Consider
the set

NV(f) = {I ⊂ {1, . . . , n} | f I 6≡ 0}.

We call NV(f) the set of non-vanishing coordinate subspaces for f .
Put

V ] =
⋃

I∈NV(f)

V ∩ C∗I .

Theorem 9. Assume that f(z, z̄) is a true non-degenerate mixed func-
tion. Then there exists a positive number r0 such that the following
properties are satisfied.

(1) (Isolatedness of the singularity) The mixed hypersurface V ]∩Br0

is mixed non-singular. In particular, codimRV] = 2.
(2) (Transversality) The sphere Sr with 0 < r ≤ r0 intersects V ]

transversely.

We say that f is k-convenient if J ∈ NV(f) for any J ⊂ {1, . . . , n}
with |J | = n−k. We say that f is convenient if f is (n−1)-convenient.
Note that V ] = V \{O} if f is convenient. For a given ` with 0 < ` ≤ n,
we put W (`) = {z ∈ Cn | |I(z)| ≤ `} where I(z) = {i|zi = 0}. Thus
W (n− 1) = C∗n. If f is `-convenient, V ∩W (`) ⊂ V ].

Corollary 10. Assume that f(z, z̄) is a convenient true non-degenerate
mixed polynomial. Then V = f−1(0) has an isolated mixed singularity
at the origin.

Remark 11. The assumption “true” is to make sure that V ∗ = f−1(0)∩
C∗n is non-empty.
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4. Resolution of the singularities

We consider a mixed analytic function f(z, z̄) and the corresponding
mixed hypersurface V = f−1(0). We assume that O ∈ V is an isolated
mixed singularity, unless otherwise stated.

If f is complex analytic, a “resolution of f” is usually understood as a
proper holomorphic mapping ϕ : X → Cn so that

(i) E := ϕ−1(O) is a union of smooth (complex analytic) divisors
which intersect transversely and ϕ : X −E → Cn − {O} is biholomor-
phic,

(ii) the divisor (ϕ∗f) is a union of smooth divisors intersecting trans-

versely and we can write (ϕ∗f) = V̂ ∪E where V̂ is the strict transform
of V (= the closure of ϕ−1(V − {O})),

(iii) for any point P ∈ E∗
I ∩ V̂ with I = {i1, . . . , is}, there exists

an analytic coordinate chart (u1, . . . , un) so that the pull-back of f
is written as U × um1

1 · · ·u
mj

j where U is a unit in a neighborhood of

P , Eik = {uk = 0} (k = 1, . . . , s − 1) and V̂ = {us = 0}. Here
E∗
I := ∩Ei∈I \ ∪j /∈IEj.

For a mixed hypersurface, a resolution of this type does not exist
in general. The main reason is that there is no complex structure in
the tangent space of V . Nevertheless we will show that a suitable toric
modification partially resolves such singularities.

4.1. Toric modification and resolution of complex analytic sin-

gularities. For the reader’s convenience, we recall some basic facts
about the toric modifications at the origin. We use the notations and
the terminologies of [14, 15, 16] and §2.2.

4.1.1. Toric modification. Let A = (ai,j) ∈ GL(n,Z) with detA = ±1.
We call such a matrix a unimodular matrix. We associate to A a
birational morphism

ψA : C∗n → C∗n

which is defined by

ψA(z) = (z
a1,1

1 · · · za1,n
n , . . . , z

an,1

1 · · · zan,n

n ).

If the coefficients of A are non-negative, ψA can be defined on Cn. Note
that ψA is a group homomorphism of the algebraic group C∗n and we
have

ψ−1
A = ψA−1 , ψA ◦ ψB = ψAB .

Suppose that Σ∗ is a regular fan. Let S be the set of n-dimensional
cones and let V+ be the set of strictly positive vertices. For simplicity,
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we assume that the vertices of Σ∗ are the union of {E1, . . . , En} and V+.
For each σ ∈ S, we consider a copy of a complex Euclidean space Cn

σ

with coordinates uσ = (uσ1, . . . , uσn) and the morphism πσ : Cn
σ → Cn

defined by πσ(uσ) = ψσ(uσ). Taking the disjoint sum qσ∈SCn
σ, we glue

together qσ∈SCn
σ under the following equivalence relation:

uσ ∼ uτ if ψτ−1σ is well-defined at uσ and ψτ−1σ(uσ) = uτ .

We denote the quotient space qσ∈SCn
σ/ ∼ by XΣ∗. Then XΣ∗ is a com-

plex manifold of dimension n and the morphisms πσ : Cn
σ → Cn, σ ∈ S

are compatible with the identification and thus they define a birational
proper holomorphic mapping

π̂ : XΣ∗ → Cn.

The restriction π̂ to XΣ∗ \ π̂−1(0) is a biholomorphic onto Cn\{O}. We
call π̂ : XΣ∗ → Cn the toric modification associated with the regular fan
Σ∗ [14, 16]. The irreducible exceptional divisors correspond bijectively

to the vertices P ∈ V+ and we denote it by Ê(P ). Then π̂−1(O) =⋃
P∈V+ Ê(P ).
The easiest non-trivial case is when V+ = {P = t(1, . . . , 1)}. In this

case, XΣ∗ is nothing but the ordinary blowing-up at the origin of Cn.
Example

Σ∗
2 =

{
E1, P =

(
1
1

)
, Q =

(
2
3

)
, R =

(
1
2

)
, E2

}
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Ê(P )

z1 = 0

z2 = 0Ê(Q)

Ê(R)

z1 = 0

z2 = 0

E1

PQRE2

Figure 2. Blowing up of a cusp

4.1.2. Dual Newton diagram and admissible toric modifications. Let
f(z, z̄) =

∑
ν,µ cν,µz

ν z̄µ be a germ of mixed function in n variables

z1, . . . , zn. We introduce an equivalence relation in N+
R

by

P ∼ Q, P,Q ∈ N+
R

⇐⇒ ∆(P ; f) = ∆(Q; f).

The set of equivalence classes gives an open polyhedral cone subdivision
of N+

R
and we denote it as Γ∗(f ; z) and we call it the dual Newton

diagram. Let Σ∗ be a regular fan which is a regular simplicial cone
subdivision of Γ∗(f). If Σ∗ is a regular simplicial cone subdivision of
Γ∗(f), the toric modification π̂ : XΣ∗ → Cn is called admissible for
f(z, z̄). The basic fact for non-degenerate holomorphic functions is:

Theorem 12. ( [14, 15, 16]) Assume that f(z) be a non-degenerate
convenient analytic function with an isolated singularity at the origin.
Let π̂ : XΣ∗ → Cn be an admissible toric modification. Then it is a
good resolution of the mapping f : Cn → C at the origin.

4.2. Blowing up examples. We consider some examples.

Example 13. A. Let

C1 = {(z1, z2) ∈ C2 | z2
1 − z2

2 = 0}}

V1 = {(z1, z2) ∈ C2 | f1(z, z̄) = z̄2
1 − z2

2 = 0}

V2 = {(z1, z2) ∈ C2 | f2(z, z̄) = z1z̄1 − z2
2 = 0}
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C1 is a union of two smooth complex line, V1 is a union of two smooth
real planes, z̄1 ± z2 = 0 and V2 is an irreducible variety. Consider

π̂1 : X1 → C2

where π̂1 : X1 → C2 is the toric modification associated with the
regular fan generated by vertices

Σ∗
1 =

{
E1 =

(
1
0

)
, P =

(
1
1

)
, E2 =

(
0
1

)}
.

Geometrically, π̂1 is an ordinary blowing up. Note that for the complex
curve C1, the two components are separated by a single blowing up π̂1.
We will see what happens to the two other mixed curves V1, V2. In the
toric coordinate C2

σ with σ = Cone(P,E2) and the toric coordinates

(u1, u2), the strict transform V̂1, V̂2 of V1, V2 are defined in the torus
C∗2
σ as

Ĉ1 ∩ C∗2
σ = {(u1, u2) ∈ C∗2

σ | u2
1 − u2

1u
2
2 = u2

1(1 − u2
2) = 0}

V̂1 ∩ C∗2
σ = {(u1, u2) ∈ C∗2

σ | ū2
1 − u2

1u
2
2 = 0},

V̂2 ∩ C∗2
σ = {(u1, u2) ∈ C∗2

σ | u1(ū1 − u1u
2
2) = 0}.

The first expression shows that Ĉ1 is already smooth and separated
into two pieces. Unlike the case of holomorphic functions, we observe
that

{(u1, u2) ∈ C2
σ | ū

2
1−u

2
1u

2
2 = 0} ) V̂1, {(u1, u2) ∈ C2

σ | ū1−u1u
2
2 = 0} ) V̂2

as Ê(P ) = {u1 = 0} 6⊂ V̂i, i = 1, 2. In both cases, we see that the
1-sphere |u2| = 1 appears as their intersection with the exceptional

divisor Ê(P ).

Thus L̂+ ∩ L̂− is the 1-sphere |u2| = 1 and the ordinary blowing up
does not separate the two smooth components.

For V̂2, we will see later that it has two link components. See §6 for
the definition of the link components. This illustrates the complexity
of the limit set of the tangent lines in the mixed varieties.
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B. We consider an ordinary cusp (complex analytic)

C2 = {z2
2 − z3

1 = 0}

V3 = {z2
2 − z2

1 z̄1 = 0}

with the same Newton boundary and an admissible toric blowing up
π̂ : X2 → C2 which is associated with the regular simplicial fan:

Σ∗
2 =

{
E1, P =

(
1
1

)
, Q =

(
2
3

)
, R =

(
1
2

)
, E2

}

Let (u1, u2) be the toric coordinate of C2
σ with σ = (Q,R) =

(
2 1
3 2

)
.

Then the pull back of the defining polynomials are defined in this co-
ordinate chart as

Ĉ2 ∩ C∗2
σ = {(u1, u2) ∈ C∗2

σ | u6
1u

3
2(u2 − 1) = 0}

V̂3 ∩ C∗2
σ = {(u1, u2) ∈ C∗2

σ | u4
1u

2
2(u

2
1u

2
2 − ū2

1ū2) = 0}.

Observe that Ĉ2 is smooth and transverse to the exceptional divisor

Ê(Q) = {u1 = 0}. The strict transform V̂3 is defined by u2
1 u

2
2− ū

2
1 ū2 =

0 in C∗2
σ . We see again that for Ṽ3, a sphere |u2| = 1 appears as the

intersection with the exceptional divisor. We observe that V̂3∩ Ê(Q) =
{(0, u2)||u2| = 1}.

The above examples show that the toric modification does not resolve
the singularities of non-degenerate mixed hypersurfaces.

To get a good resolution of a mixed hypersurface singularity, we need
to compose a toric modification with a normal real blowing up or a
normal polar modification which we introduce below.

4.3. Normal real blowing up and normal polar blowing up of

C. Consider the complex plane with two coordinate systems z = x+i y
and z = r exp(i θ). We can consider the following two modifications.

(I)

ιR : C \ {O} → C × RP1

defined by z = x + i y 7→ (z, [x : y]) and let RC be the closure of
the image of ιR. This is called the real blowing up. RC is a real
two dimensional manifold which has two coordinate charts (U0, (x̃, t))
and (U1, (s, ỹ)). These coordinates are defined by x̃ = x, t = y/x and
ỹ = y, s = x/y. The canonical projection ωR : RC → C is given as
ωR(x̃, t) = x̃(1 + i t) and ωR(s, ỹ) = ỹ(s+ i). Note that ω−1

R
(O) = RP1

and ωR : RC \ {O} × RP1 → C \ {O} is diffeomorphism.
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(II) Consider the polar embedding

ιp : C \ {O} → R+ × S1

which is defined by ιp(r exp(θ i)) = (r, exp(θ i)). Here R+ = {x ∈
R|x ≥ 0}. Let PC = R+ × S1 and ωp : PC → C be the projection
defined by ωp(r, exp(θ i)) = r exp(θ i). We can see easily that ω−1

p (O) =

{0}× S1 and ωp : PC \ {0}× S1 → C \ {O} is a diffeomorphism. Note
that PC is a manifold with boundary.

4.3.1. Canonical factorization. There exists a canonical mapping ψ :
PX → RC which is defined by

ψ(r, exp(θ i)) =

{
(x̃, t) = (r cos θ, tan θ), θ 6= ±π

2

(s, ỹ) = (cot θ, r sin θ), θ 6= 0, π

It is obvious that ψ gives the commutative diagram

PC
ψ

−→ RCyωp
yωR

C = C

Note that the restriction of ψ over the exceptional sets is a 2 : 1 map:

ψ : {O} × S1 → {O} × RP1, exp(θ i) 7→ [cos(θ) : sin(θ)]

4.4. Resolution of a mixed function. Let f(z, z̄) be a mixed func-
tion and let V = f−1(0) and we assume that V has an isolated mixed
singularity at the origin.

Let Y be a real analytic manifold of dimension 2n and let Φ : Y → Cn

be a proper real analytic mapping. We say that Φ : Y → Cn is a
resolution of a real type (respectively a resolution of a polar type) of
the mixed function f if

(1) Let E = Φ−1(O) and let E = E1 ∪ · · · ∪ Er be the irreducible
components. Each Ej is a real codimension one smooth subva-
riety.

(2) Y is a real analytic manifold of dimension 2n. For a resolution of
a real type, Y has no boundary while for a resolution of a polar
type Y is a real analytic manifold with boundary and ∂Y = E.

(3) The restriction Φ : Y − E → Cn \ {O} is a real analytic diffeo-
morphism.

(4) Let Ṽ be the strict transform of V (=the closure of Φ−1(V \

{O})). Then Ṽ is a smooth manifold of real codimension 2 in
an open neighborhood of E.
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(5) For I = {i1, . . . , it}, put E∗
I :=

⋂t
k=1Eik \

⋃
j /∈I Ej. For P ∈

E∗
I ∩ Ṽ , there exists a local real analytic coordinate system

(U, (u1, . . . , u2n)) centered at P such that

Φ∗f(u) = um1

1 · · ·umt

t (ut+1 + i ut+2)

so that U ∩ Eij = {uj = 0} for j = 1, . . . , t and U ∩ Ṽ =
{ut+1 + i ut+2 = 0}. In the case of a resolution of a polar type,
we assume also that Y ∩ U = {u1 ≥ 0, . . . , ut ≥ 0}.

For example, assume that t = 1 for simplicity. Then the condition (5)
says the following. If we are considering a resolution of a real type,

U ∼= R2n or B2n, Ei1 = {u1 = 0}, Φ∗f(u) = um1

1 (u2 + i u3),

if we are considering a resolution of polar type,

U ∼= R2n ∩ {u1 ≥ 0}, Ei1 = {u1 = 0}, Φ∗f(u) = um1

1 (u2 + i u3).

4.4.1. Normal real blowing up. Let X be a complex manifold of di-
mension n with a finite number of smooth complex divisors E1, . . . , E`
such that the union of divisors E =

⋃`
i=1Ei has at most normal cross-

ing singularities. Then we can consider the composite of real mod-
ifications for the normal complex 1-dimensional subspaces along the
divisor E1, . . . , E`. Put it as ωR : RX → X and we call it the normal
real blowing up along E. It is immediate from the definition that

(1) RX is a differentiable manifold and ωR : RX \ω−1
R

(E) → Y \E
is a diffeomorphism.

(2) Inverse image Ẽj := ω−1
R

(Ej) of Ej is a real codimension 1
variety which is fibered over E ′

j with a fiber S1. Here E ′
j is

the normal real blowing up of Ej along
⋃
i6=j Ei ∩ Ej. Putting

E∗
I :=

⋂
i∈I Ei\

⋃
j /∈I Ej, Ẽ

∗
I := ω−1

R
(E∗

I ) is fibered over E∗
I with

fiber (S1)k where k = |I|.

Take a point P ∈ E∗
1 and choose a local coordinate (W, (u1, . . . , un))

E1 = {u1 = 0}. Then ω−1
R

(W ) is isomorphic to (RC) × Cn−1 covered
by 2 coordinates Wε1 = Uε1 × Cn−m1 where εj = 0 or 1. For example,
W1 has the coordinates (as a real analytic manifold) (s1, ỹ1, u2, . . . , un)
so that the projection to the coordinate chart u ∈ W is given by

u1 = ỹ1(s1 + i)

4.4.2. Normal polar blowing up. We can also consider the composite of
the polar blowing ups along exceptional divisors, which we denote as
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ωp : PX → X. In the same coordinate chart (W,u), u = (u1, . . . , un)
as in the previous discussion, ω−1

p (W ) is written as

ω−1
p (W ) = (R+ × S1) × Cn−1

with coordinates (r1, exp(i θ1), u2, . . . , un) and the projection is given
by

(r1, exp(i θ1), u2, . . . , un) 7→ (u1, . . . , un),

u1 = r1 exp(i θ1)

Note that PX is a manifold with boundary and ω−1
p (E1) is the bound-

ary component which is given by {r1 = 0}.

4.5. A resolution of a real type and a resolution of a polar type.

Assume that f(z, z̄) =
∑

ν,µ cν,µ zν z̄µ is a non-degenerate convenient

mixed function and consider the mixed hypersurface V = f−1(0).

Step 1. Let Γ(f) be the Newton boundary and let Γ∗(f) be the dual
Newton diagram. Take a regular simplicial cone subdivision in the
sense of [16] and let π̂ : X → Cn be the associated toric modification.

Let V+ be the set of strictly positive vertices of Σ∗ and let Ê(P ), P ∈

V+ be the exceptional divisors. Put Ê =
⋃
P∈P Ê(P ).

Step2. Then we take the normal real blowing-ups ωR : RX → X along

the exceptional divisors of Ê. Then we consider the composite

Φ := π̂ ◦ ωR : RX
ωR−→X

bπ
−→Cn, ξ 7→ π̂(ωR(ξ)).

Put Ẽ(P ) := ω−1
R

(Ê(P )) with P ∈ V+.

Theorem 14. Φ := π̂ ◦ ωR : RX
ωR−→X

bπ
−→Cn gives a good resolution

of a real type of f at the origin and the exceptional divisors are Ẽ(P )

for P ∈ V+. The multiplicity of Ẽ(P ) of the function Φ∗f along Ẽ(P )
is d(P ; f).

Let f(z, z̄) = g(x,y)+ih(x,y) be the decomposition of f into the real
and the imaginary part. Then the above assertion for the multiplicity

is equivalent to: the mutiplicities of Φ∗g, Φ∗h along Ẽ(P ) are the same
and equal to d(P ; f).

We can also use the normal polar blowing-up ωp : PX → X along

Ê(P ), P ∈ V+ and the composite Φp : PX → Cn. Put Ẽ(P ) :=

Φ−1
p (Ê(P )), P ∈ V+.

Theorem 15. Under the same assumption as in Theorem 14, Φp :
PX → X gives a good resolution of a polar type of f(z, z̄) where Φp is
the composite

Φp : PX
ωp

−→X
bπ

−→Cn.
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The multiplicity of Ẽ(P ) of the function Φ∗
pf along Ẽ(P ) is d(P ; f).

There is a canonical factorization η : PX → RX so that ωp = ωR ◦ η
and Φp = Φ ◦ η.

Example 16. We consider two modifications:

π̂1 : X1 → C2, π̂2 : X2 → C2

where π̂j : Xj → C2 is the toric modification associated with the regular
fan Σ∗

j (j = 1, 2) which are defined by the vertices as follows.

Σ∗
1 =

{
E1 =

(
1
0

)
, P =

(
1
1

)
, E2 =

(
0
1

)}
,

Σ∗
2 =

{
E1, P =

(
1
1

)
, Q =

(
2
3

)
, R =

(
1
2

)
, E2

}

1. Let V1 = f(z, z̄) = z̄2
1 − z2

2 = 0. This is a union of two smooth
real planes z2 ± z̄1 = 0. In the toric coordinate chart C2

σ with σ =

Cone(P,E2), the strict transform Ṽ1 of V1 is defined in C∗2
σ by

V̂1 : ū2
1 − u2

1u
2
2 = 0.

We have seen that V̂1 ∩ Ê(P ) = {u1 = 0 | |u2| = 1}. Now take the nor-

mal real blowing up along Ê(P ), ωR : RX → X. The strict transform
is defined in (C2

σ)ε as

V̂1 = {(x̃1, t1, u2) ∈ R2 × C | (1 − i t1)
2 − (1 + i t1)

2u2
2 = 0}

= {(ỹ1, s1, u2) ∈ R2 × C | (s1 − i)2 − (s1 + i)2u2
2 = 0}

Note these equations give two smooth components Lε, ε = ±1 which
are disjoint:

{(x̃1, t1, u2) ∈ R2 × C | (1 − i t1) ± (1 + i t1)u2 = 0}.

This expression shows that the strict transform is embedded in the
cylinder |u2| = 1. Let us see this in a normal polar modification ωp :
PX → X. Now PX is locally diffeomorphic to the product of S1 ×
R+ × C and the strict transform is now defined in a simple equation

Ṽ1 = {(r1, exp(θ i), u2) | u2 = ∓ exp(−2 θ i)}

and it has two link components.
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Figure 3. Polar modification and Half Real lines

This shows that the strict transform is a product (it does not depend
on r1) and for a fixed r1, they are parallel torus knots in S1 × S1 =
S1 × {|u2| = 1}. Observe that the direction of twisting is opposite in
the first and the second S1’s with respect to the canonical orientation
of S1.
2. Let us consider another mixed curve:

V2 : {z1z̄1 − z2
2 = 0}

Equivalently V2 is defined by

{(x1, y1, x2, y2) ∈ R4 | x2
1 + y2

1 = x2
2 − y2

2, x2y2 = 0}.

This can be defined as

V2 = {(x1, y1, x2, y2) ∈ R4 | y2 = 0, x2
2 = x2

1 + y2
1}.

This curve is real analytically (or real algebraically) irreducible at the
origin (see [2] for the definition) but we can see that V2 \ {O} has
two connected components z2 = |z1| and z2 = −|z1|. Thus for the
geometrical study of real analytic varieties, especially for the study
of real analytic curves, it is better to see the connected components
of f−1(0) \ {O}. We apply the same toric modification π̂1 and we
consider its strict transform on the toric chart Cone(P,E2) where we
use the same notation as in Example 16.

V̂2 : ū1 − u1u
2
2 = 0.

Again we see that V̂2 ∩ Ê(P ) = {(0, u2) | |u2| = 1}. Take the normal

real blowing up along Ê(P ). The strict transform is defined in (C2
σ)ε
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as

Ṽ2 = {(x̃1, t1, u2) ∈ R2 × C | (1 − i t1) − (1 + i t1)u
2
2 = 0}

= {(ỹ1, s1, u2) ∈ R2 × C | (s1 − i) − (s1 + i)u2
2 = 0}

which is non-singular. They have two real analytic components:

{(x̃1, t1, u2) ∈ R2 × C | u2 ± (1 − i t1)/
√

1 + t21 = 0} or

{(ỹ1, s1, u2) ∈ R2 × C | u2 ± (s1 − i)/
√
s2
1 + 1 = 0}

Note that
√

1 + t21 is a real analytic function, although
√
x2

1 + y2
1 is

not an analytic function at O. The above expression says that Ṽ2 is a
product {

(t1, u2)|
√

1 + t21 u2 ± (1 − i t1) = 0

}
× R

where the second factor is the line with coordinate x̃1. Using the reso-

lution of a polar type, Ṽ2 is simply written as

Ṽ2 = {(r1, θ1, u2) ∈ R+ × S1 × C | u2 ± exp(− θ1 i) = 0}.

Again we observe that it is a product of torus knots and R+.
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5. Milnor fibration

In this section, we study the Milnor fibration, assuming that f(z, z̄) is
a strongly non-degenerate convenient mixed function. We have seen in
Theorem 9 that there exists a positive number r0 such that V = f−1(0)
is mixed non-singular except at the origin in the ball B2n

r0
and the sphere

S2n−1
r intersects transversely with V for any 0 < r ≤ r0. The following

is a key assertion for which we need the strong non-degeneracy.
Lemma 17. Assume that f(z, z̄) is a strongly non-degenerate conve-
nient mixed function. For any fixed positive number r1 with r1 ≤ r0,
there exists positive numbers δ0 � r1 such that for any η 6= 0, |η| ≤ δ0
and r with r1 ≤ r ≤ r0, (a) the fiber Vη := f−1(η) has no mixed
singularity inside the ball B2n

r0
and (b) the intersection Vη ∩ S2n−1

r is
transverse and smooth.

f

Figure 4. Second Milnor fibering

5.1. Milnor fibration, the second description. Put

D(δ0)
∗ = {η ∈ C | 0 < |η| ≤ δ0}, S

1
δ0

= ∂D(δ0)
∗ = {η ∈ C | |η| = δ0}

E(r, δ0)
∗ = f−1(D(δ0)

∗) ∩B2n
r , ∂E(r, δ0)

∗ = f−1(S1
δ0

) ∩B2n
r .

By Lemma 17 and the theorem of Ehresman ([24]), we obtain the
following description of the Milnor fibration of the second type ([8]).
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Theorem 18. (The second description of the Milnor fibration) Assume
that f(z, z̄) is a convenient, strongly non-degenerate mixed function.
Take positive numbers r0, r1 and δ0 such that r ≤ r0 and δ0 � r1 as in
Lemma 17. Then

E(r, δ0)
∗ f

−→ D(δ0)
∗x

x
∂E(r, δ0)

∗ f
−→ S1

δ0

are locally trivial fibrations and the topological isomorphism class does
not depend on the choice of δ0 and r.

5.2. Milnor fibration, the first description. We consider now the
original Milnor fibration on the sphere, which is defined as follows:

ϕ : S2n−1
r \Kr → S1, z 7→ ϕ(z) = f(z, z̄)/|f(z, z̄)|

where Kr = V ∩ S2n−1
r .

For a mixed function g(z, z̄), we use two complex “gradient vectors”
defined by

dg = (
∂g

∂z1
, . . . ,

∂g

∂zn
), d̄g = (

∂g

∂z̄1
, . . . ,

∂g

∂z̄n
).

Take a smooth path z(t), −1 ≤ t ≤ 1 with z(0) = w ∈ Cn \ V and put
v = dz

dt
(0) ∈ TwCn. Then we have

−
d

dt
(<(i log f(z(t), z̄(t)))t=0

= −<

(
n∑

i=1

i

{
∂f

∂zj
(w, w̄)

dzj
dt

(0) +
∂f

∂z̄j
(w, w̄)

dz̄j
dt

(0)

}
/f(w, w̄)

)

= <(v, i d log f(w, w̄)) + <(v̄, i d̄ log f(w, w̄))

= <(v, i d log f(w, w̄)) + <(v,−i d̄ log f(w, w̄))

= <(v, i (d log f − d̄ log f)(w, w̄)).

Namely we have

−
d

dt
(<(i log f(z(t), z̄(t)))t=0 = <(v, i (d log f − d̄ log f)(w, w̄)).

Thus by the same argument as in Milnor [12], we get

Lemma 19. A point z ∈ S2n−1
r \ Kr is a critical point of ϕ if and

only if the two complex vectors i (d log f(z, z̄)− d̄ log f(z, z̄)) and z are
linearly dependent over R.

The key assertion is the following.
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Lemma 20. Assume that f(z, z̄) is a strongly non-degenerate mixed
function. Then there exists a positive number r0 such that the two com-
plex vectors i (d log f(z, z̄) − d̄ log f(z, z̄)) and z ∈ Sr \Kr are linearly
independent over R for any r with 0 < r ≤ r0.

Observation 21. Let w ∈ f−1(η), η 6= 0 be a smooth point. Then the
tangent space Twf

−1(η) is the real subspace of Cn whose vectors are
orthogonal in R2n to the two vectors

i (d log f − d̄ log f)(w, w̄), (d log f + d̄ log f)(w, w̄).

Now we are ready to prove the existence of the Milnor fibration of
the first description.

Theorem 22. (Milnor fibration, the first description) Let f(z, z̄) be
a strongly non-degenerate convenient mixed function. There exists a
positive number r0 such that

ϕ = f/|f | : S2n−1
r \Kr → S1

is a locally trivial fibration for any r with 0 < r ≤ r0.

5.3. Equivalence of two Milnor fibrations. Take positive numbers
r, δ0 with δ0 � r as in Theorem 18. We compare the two fibrations

f : ∂E(r, δ0) → S1
δ0
, ϕ : S2n−1

r \Kr → S1

and we will show that they are isomorphic. However the proof is much
more complicated compared with the case of holomorphic functions.
The reason is that we have to take care of the two vectors

i (d log f − d̄ log f), d log f + d̄ log f

which are not perpendicular. (In the holomorphic case, the proof is easy
as the two vectors reduce to the perpendicular vectors i d log f, d log f .)
Consider a smooth curve z(t), −1 ≤ t ≤ 1, with z(0) = w ∈ B2n

r \ V

and v = dz(t)
dt

(0). Put v = (v1, . . . , vn). First from (1) and (??), we
observe that

log f(z(t), z̄(t))

dt
|t=0 =

n∑

j=1

(
vj
∂ log f

∂zj
(w, w̄) + v̄j

∂ log f

∂z̄j
(w, w̄)

)

= <(v, (d log f + d̄ log f)(w, w̄)) + i<(v, i (d log f − d̄ log f)(w, w̄)).

Define two vectors on Cn − V :

v1(z, z̄) = d log f(z, z̄) + d̄ log f(z, z̄)

v2(z, z̄) = i (d log f(z, z̄) − d̄ log f(z, z̄))
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The above equality is translated as

log f(z(t), z̄(t))

dt
|t=0 = <(v,v1(w, w̄)) + i<(v,v2(w, w̄)).(1)

Now we are ready to prove the isomorphism theorem:

Theorem 23. Under the same assumption as in Theorem 22, the two
fibrations

f : ∂E(r, δ0) → S1
δ0
, ϕ : S2n−1

r \Kr → S1

are topologically isomorphic.

5.4. Polar weighted homogeneous polynomial and its Milnor

fibration. Consider a mixed polynomial f(z, z̄) which is a radially
weighted homogeneous polynomial of type (q1, . . . , qn; dr) and a polar
weighted homogeneous polynomial of type (p1, . . . , pn; dp). Put V =
f−1(0) as before. Then

f : Cn \ V → C∗

is a locally trivial fibration [17]. We call it the global fibration. On the
other hand, the Milnor fibration of the first type:

ϕ := f/|f | : Sr \Kr → S1, Kr = f−1(0) ∩ Sr

always exists for any r > 0 and the isomorphism class does not depend
on the choice of r. This can be shown easily, using the polar action.
We simply use the polar action to show the local triviality:

ψ : ϕ−1(θ) × (θ − π, θ + π) → ϕ−1((θ − π, θ + π))

ψ(z, θ + η) := (z1 exp(i p1η/dp), . . . , zn exp(i pnη/dp))

Now we have the following assertion which is a generalization of the
same assertion for weighted homogeneous polynomials.

Theorem 24. Let f(z, z̄) be a polar weighted polynomial as above. We
assume that the radial weight vector t(q1, . . . , qn) is strictly positive.
Then the two fibrations

f : f−1(S1
δ ) → S1

δ , ϕ = f/|f | : S2n−1
r −Kr → S1,

are isomorphic for any r > 0 and δ > 0.

The following is an important criterion for the connectivity of the
Milnor fiber of a polar weighted mixed polynomial.

Proposition 25. Let f(z, z̄) be a polar weighted mixed polynomial of
n variables z = (z1, . . . , zn). We assume that f−1(0) has at least one
mixed smooth point. Then the fiber F := f−1(1) ⊂ Cn is connected.
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6. Curves defined by mixed functions

In this section, we focus our study to mixed plane curves (n = 2).

6.1. Holomorphic plane curves. Assume that C is a germ of a com-
plex analytic curve defined by a convenient non-degenerate holomor-
phic function f(z1, z2) and let ∆j, j = 1, . . . , r be the 1-dimensional
faces and M0,M1, . . . ,Mr−1,Mr be the vertices of Γ(f) such that ∆j =
Mj−1Mj and M0,Mr are on the coordinate axes. Then each face func-
tion f∆j

can be factorized as

f∆j
(z1, z2) = cj z

aj

1 z
bj
2

νj∏

i=1

(z
pj

1 + αj,i z
qj
2 ), gcd(pj, qj) = 1

where αj,1, . . . , αj,νj
are mutually distinct.

νj

Ê(Pj)

Figure 5. irreducible components

Then any toric modification with respect to a regular simplicial cone
subdivision Σ∗ of the dual Newton diagram Γ∗(f) gives a good res-
olution of f : (C2, O) → (C, 0). Let Pj be the weight vector of the

face ∆j. Each vertex P of Σ∗ gives an exceptional divisor Ê(P ) and

the strict transform C̃ intersects with Ê(P ) if and only if P = Pj for

some j = 1, . . . , r. In the case P = Pj, Ê(Pj) ∩ C̃ is νj point which
corresponds to irreducible components associated with f∆j

. The ver-
tices M1, . . . ,Mr−1 do not contribute to the irreducible components.
The number of irreducible components of (C,O) is given by

∑r
i=1 νi.

Note that 1 +
∑r

i=1 νi is the number of integral points on Γ(f) ([16]).
The situation for mixed polynomials is more complicated as we will see
later.
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6.2. Mixed curves. Now we consider curves defined by a mixed func-
tion with the same Newton boundary as in the previous subsection.
Let f(z, z̄) be a non-degenerate convenient mixed function with two
variables z = (z1, z2) and let C = f−1(0). Let

ϕ : Y
ω

−→X
bπ

−→C2

(Y = RX, ω = ωR or PX and ω = ωp) be the resolution map, described

in Theorem 14 and Theorem 15. Let Ẽ(P ) = ω−1(Ê(P )) for a vertex
P of Σ∗.

6.2.1. Simple vertices. A vertex M = (a, b) ∈ Γ(f) is called simple
if fM contains only a single monomial za11 zb12 z̄a21 z̄b22 such that a =
a1 + a2, b = b1 + b2. Otherwise we say M is a multiple vertex of Γ(f).

Example 26. Let

f(z, z̄) = z3
1 + t z2

1 z̄1 + z2
2

Then Γ(f) has one face with edge vertices M1 = (3, 0) and M2 = (0, 2).
f(z, z̄) is a radially weighted homogeneous polynomial of type (2, 3; 6).
The vertex M1 is a multiple vertex as fM1

(z, z̄) = z3
1 + t z2

1 z̄1.

Lemma 27. Suppose M = (n, 0) and let fM (z1, z̄1) =
∑n

j=0 cj z
j
1 z̄
n−j
1 .

Consider the factorization fM(z1, z̄1) = c
∏n

j=1(z1−αj z̄1). Then V ∗ :=

{z1 ∈ C∗ | fM(z1, z̄1) = 0} is empty if and only if |αj| 6= 1 for any
j = 1, . . . , n.

Note that fM(z1, z̄1) is non-degenerate if and only if V ∗ = ∅. For
an inside vertex Mj (namely, Mj is not on the axis), the criterion for
non-degeneracy of the function fMj

(z, z̄) is not so simple.

Example 28. Consider

C := {z ∈ C2 | fM(z, z̄) = t z1z2 + z1z̄2 + z̄1z2}.

We assert that

Assertion 29. f−1
M (0) ⊂ C∗2 is non-empty if and only if |t| ≤ 2. fM

is non-degenerate if and only if |t| > 2 or 0 < |t| < 2.

6.2.2. Link components. Let f(z, z̄) be a mixed function with two vari-
ables z = (z1, z2) and let C = f−1(0). The link components at the
origin are the components of S3

ε ∩ C for a sufficiently small ε. We are
interested in finding out how to compute the number of the link com-
ponents of C at the origin. Let us denote this number by lkn(C,O) and
we call lkn(C,O) the link component number. Let us denote the num-
ber of components which are not the coordinate axes z1 = 0 or z2 = 0
by lkn∗(C, 0). In the case of f being a holomorphic function, lkn(C,O)
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is equal to the number of irreducible components of (C,O), which is a
combinatorial invariant, provided f is Newton non-degenerate, as we
have seen in the previous section §6.1. However for a generic mixed
function, lkn(C,O) might be strictly greater than the number of irre-
ducible components (see Example 16 for example).

Theorem 30. Assume that f(z, z̄) is a convenient non-degenerate
mixed polynomial of two variables z = (z1, z2) and let C = f−1(0).
Let F be the set of 1-faces of Γ(f). Assume that the vertices of Γ(f)
are simple. Then the number of the link components lkn(C,O) is given
be the formula:

lkn(C,O) =
∑

∆∈F

lkn∗(f−1
∆ (0), O).

Now our interest is finding out how we can compute lkn∗(f−1
∆ (0), O).

In general, it is not so easy to compute this number but there is a class
for which the link number is easily computed.

6.2.3. Good Newton polar boundary. We say that f∆(z, z̄) is a good

polar weighted polynomial if dim ∆̂ = 1 and f∆(z, z̄) factors as

f∆(z, z̄) = c zm z̄n
k∏

j=1

(za2 z̄
a′

2 − λj z1
b z̄b

′

1 )µj(2)

with a 6= a′, b 6= b′ and gcd(a, a′, b, b′) = 1. Note that in this case,
p1(b − b′) = p2(a − a′) and non-zero. We say that f(z, z̄) has a good
Newton polar boundary if for every face ∆ of Γ(f), f∆(z, z̄) is a good
polar weighted polynomial.

Lemma 31. Assume that f∆(z, z̄) is a good polar weighted polyno-
mial and assume that a factorization of f∆(z, z̄) is given as (2). Then
f∆(z, z̄) is non-degenerate if and only if µ1 = · · · = µk = 1.

6.2.4. Good binomial polar weighted polynomial. A polynomial

f(z, z̄) = za2 z̄
a′

2 − λzb1z̄
b′

1

with a 6= a′, b 6= b′, λ 6= 0 and gcd(a, a′, b, b′) = 1 is called an irreducible
binomial polar weighted homogeneous polynomial. It is irreducible as
a mixed polynomial. By Lemma 31, this is a basic polar weighted
polynomial for our purpose. Then the associated Laurent polynomial
in the sense of [17] is

g(z1, z2) = zc22 − λzc11 , c1 = b− b′, c2 = a− a′.

Let C = {f = 0} and C ′ = {g = 0}. Note that c1, c2 6= 0 by the polar
weightedness.
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Lemma 32. We have the equality:

lkn∗(C,O) = gcd(c1, c2) = ](C ′)

where ](C ′) is the number if irreducible components of C ′.

Corollary 33. Let f∆(z, z̄) be a good polar weighted polynomial which
is factored as

f∆(z, z̄) = c zν z̄µ
k∏

j=1

(za2 z̄
a′

2 − λj z1
bz̄b

′

1 )

with gcd(a, a′, b, b′) = 1, a 6= a′, b 6= b′ as in Lemma 31 and let C =
f−1

∆ (0). Then lkn∗(C) = k gcd(a− a′, b− b′).

6.2.5. Example of a radially weighted homogeneous polynomial with a
non-simple vertex. The link number for a radially weighted homoge-
neous polynomial with a non-simple vertex is more complicated, as is
seen by the next example. Consider the radially weighted homogeneous
polynomial

f(z, z̄) = z3
1 + c z1z̄

2
1 − z3

2

and put C = f−1(0). Then Γ(f) consists of a single face with vertices
(3, 0), (0, 3). It is easy to see that f is non-degenerate if and only if
|c| 6= 1. The vertex (3,0) is not simple.

For |c| < 1, we have

z2 = z1ω
j (1 + c exp(−4 θ i))1/3 , j = 0, 1, 2

where ω = exp(2 π i/3), z1 = r exp(θ i) and lkn(C,O) = 3. The func-
tion (1 + c exp(−4 θ i))1/3 is a well-defined single-valued function of
c, z1 with |c| < 1 so that it takes value 1 for c = 0. Considering the
family f(z, z̄, t) = z3

1 + c t z1z̄
2
1 −z

3
2 for 0 ≤ t ≤ 1, we see that this curve

is topologically the same as z3
1 + z3

2 = 0.
Assume that |c| > 1. Then (1 + c exp(−4 θ i))1/3 is not a single

valued function as a function of 0 ≤ θ ≤ 2π. However we have a better
expression. Put z1 = r exp(θ i) and c = s exp(η i).

z2 = s1/3 r ωj exp(i
−θ + η

3
)

(
1 +

exp(4 θ i)

c

)1/3

, j = 1, 2, 3

where 0 ≤ θ ≤ 2π. Note that f−1(0) \ {O} is a 3-sheeted covering
over {z1 6= 0} and three points over θ = 0 are cyclically permuted
by the monodromy θ : 0 → 2π. Thus this expression shows that
lkn(C,O) = 1. It is also easy to see that this knot is topologically the
same with z1|z1|2 − z3

2 = 0. Thus we observe that the topology of a
mixed singularities is not a combinatorial invariant of Γ(f).
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7. Resolution of a polar type and the zeta function

In this section, we will study the relation between a resolution of
a polar type and the Milnor fibration of the second type. We expect
a similar formula like the formula of A’Campo ([1]) or the formula of
Varchenko [23]. We will restrict ourselves to the case of mixed curves.
7.1. Polar weighted case. Let f(z, z̄) be a mixed polynomial of n
variables z1, . . . , zn and let (q1, . . . , qn; dr) and (p1, . . . , pn; dp) be the
radial and polar weight types. We assume that dp > 0.

f : C∗n − f−1(0) → C∗

is a fibration. Put F ∗
s = f−1(s)∩C∗n for s ∈ C∗. Then the monodromy

map h : F ∗
s → F ∗

s is given by the polar action as

h(z1, . . . , zn) = (z1ω
p1, . . . , znω

pn), ω = exp(
2πi

dp
)

Put F ∗ = F ∗
1 and let χ(F ∗) be the Euler characteristic of F ∗. Then

the monodromy has the period dp and the set of the fixed points of
hj : F ∗ → F ∗ is empty if j 6≡ 0 modulo dp, where hj = h ◦ · · · ◦ h
(j-times). Thus using the formula of the zeta function for a periodic
mapping ([12]), we get

Lemma 34. Under the above assumption, the zeta-function of h :
F ∗ → F ∗ is given as

ζ(t) = (1 − tdp)−χ(F ∗)/dp .

The zeta function of the global fibration f : Cn \ f−1(0) → C∗ can
be obtained by patching the data for each torus stratum.

Let us do this for curves (n = 2). Let f(z) be a non-degenerate
polar weighted homogeneous polynomial of type (p1, p2; dp). The signs
of p1, p2 are chosen so that dp > 0. Suppose that the two edge vertices
of Γ(f) are simple. Assume that the two end monomials are

zµ2

2 z̄ν22 , z
µ′

1

1 z̄
ν′
1

1

with µ1 + ν1 < µ′
1 + ν ′1 and µ2 + ν2 > µ′

2 + ν ′2.
Let F = f−1(1) ⊂ C2, Fz1 = F ∩ {z2 = 0} and Fz2 = F ∩ {z1 = 0}.

Note that

Fz1 = {(z1, 0) | z
µ′

1
−ν′

1

1 = 1}, Fz2 = {(0, z2) | z
µ2−ν2
2 = 1}.

The monodromy map is defined by

h : F → F, (z1, z2) 7→ (z1ω
p1, z2ω

p2), ω = exp(
2πi

dp
)
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Note that p1(µ
′
1 − ν ′1) = p2(µ2 − ν2) = dp. Therefore the fixed points

set Fix(hj) of hj is non-empty only for j = |µ′
1 − ν ′1|, |µ2 − ν2|, or dp

and their multiples. Thus using the calculation through exp ζ(t) as in
[12], we get

Lemma 35. Let f(z, z̄) be a polar weighted convenient polynomial as

above. Let z
µ′

1

1 z̄
ν′
1

1 , z
µ2

2 z̄ν22 be the end monomials and let dp be the po-
lar degree. Then the Euler-Poincaré characteristic χ(F ) and the zeta
function of the monodromy h : F → F are given as

χ(F ) = χ(F ∗) + |µ′
1 − ν ′1| + |µ2 − ν2|, µ = 1 − χ(F )

ζ(t) =
(1 − tdp)−χ(F ∗)/dp

(1 − t|µ
′

1
−ν′

1
|) (1 − t|µ2−ν2|)

7.1.1. Simplicial polar weighted polynomial. Let

f(z, z̄) =

m∑

j=1

cj z
µj z̄νj .

The associated Laurent polynomial g(z) is defined by

g(z) =
m∑

j=1

cj z
µj−νj .

Recall that f(z, z̄) is called simplicial polar weighted homogeneous if
m = n and the two matrices have a non-zero determinant [17]:

M =



µ11 + ν11 . . . µ1n + ν1n

... · · ·
...

µn1 + νn1 . . . µnn + νnn


 , N =



µ11 − ν11 . . . µ1n − ν1n

... · · ·
...

µn1 − νn1 . . . µnn − νnn




where µj = (µj1, . . . , µjn) and νj = (νj1, . . . , νjn), j = 1, . . . , n respec-
tively. If f is a simplicial polar weighted homogeneous polynomial, we
have shown that the two fibrations defined by f(z, z̄) and g(w):

f : C∗n \ f−1(0) → C∗, g : C∗n \ g−1(0) → C∗

are equivalent ([17]). Thus the topology of the Milnor fibration is

determined by the mixed face ∆̂ where ∆ is the unique face of Γ(f).
In particular, the zeta function of h : F ∗ → F ∗ is given as ζ(t) =
(1− tdp)(−1)nd/dp where d = | det(N)| ([17]). On the other hand, if f is

not simplicial, the topology is not even a combinatorial invariant of ∆̂
(§6.2.5). Therefore there does not exist any direct connection with the
topology of the associated Laurent polynomial g(z). However here is a
useful lemma.
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Lemma 36. Suppose that ft(z, z̄), 0 ≤ t ≤ 1 is a family of convenient,
non-degenerate polar weighted homogeneous polynomials with the same
radial and the polar weights, and assume that Γ(ft) is constant. Then
the Milnor fibration ft : Cn \ f−1

t (0) → C∗ and its restriction C∗n \
f−1
t (0)) → C∗ are homotopically equivalent to f0 : Cn \ f−1

0 (0) → C∗

and f0 : C∗n \ f−1
0 (0) → C∗ respectively.

Example 37. Consider the family of polar weighted mixed polynomi-
als in two variables:

ft(z, z̄) = −2z2
1 z̄1 + z2

2 z̄2 + t z2
1 z̄2, t ∈ C

and let Ct = f−1
t (0). The radial and polar weight types are (1, 1; 3)

and (1, 1; 1) respectively. Thus the critical points of ft : C2 → C are
the solutions of

|α| = 1,





−4z1 z̄1 + 2t̄ z̄1 z2 = −2α z2
1

2z2 z̄2 = α (z2
2 + t z2

1)

−2z2
1 z̄1 + z2

2 z̄2 + t z2
1 z̄2 = 0.

(3)

By further calculation, we can see that

–2

–1

1

2

–3 –2 –1 1O

U1 U2

Ξ

Figure 6. Degeneration locus Ξ

lkn(Ct) = 1, χ(F ) = 1, χ(F ∗) = −1, t ∈ U1

lkn(Ct) = 3, χ(F ) = −1, χ(F ∗) = −3, t ∈ U2.

7.2. Zeta function of non-degenerate mixed curves. Let f(z, z̄)
be a convenient non-degenerate mixed polynomial and let ∆1, . . . ,∆s

be the faces of Γ(f). Let Qj = t(qj1, qj2) be the weight vector of ∆j for
j = 1, . . . , s. Assume that each face function f∆j

is also polar weighted
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and the inside monomials corresponding to the vertices Mj = ∆j ∩
∆j+1, j = 1, . . . , s−1 are polar admissible. Let (a1+2b1, 0), (0, a2+2b2)
be the vertices of Γ(f) on the coordinate axes which come from the
monomials za11 |z1|2b1 and za22 |z2|2b2 respectively. We call a1, a2 the polar
sections of Γ(f) on the respective coordinate axes z2 = 0 and z1 = 0.
Let f∆i

(z, z̄) be the face function of ∆i and assume that (pi1, pi2;mi) is
the polar weight type of f∆i

(z, z̄). Let F ∗
i = {z ∈ C∗2 | f∆i

(z, z̄) = 1}.
Then we have the following.

Theorem 38. Assume that f(z, z̄) is a non-degenerate convenient
mixed polynomial such that its face functions f∆j

(z, z̄), j = 1, . . . , s
are polar weighted polynomials. Then the Euler-Poincaré characteris-
tic of the Milnor fiber F of f and the zeta function of the monodromy
h : F → F are given as follows.

χ(F ) =

s∑

i=1

χ(F ∗
i ) + |a1| + |a2|

ζ(t) =

∏s
i=1(1 − tmi)−χ(F ∗

i )/mi

(1 − t|a1|) (1 − t|a2|)

where a1, a2 are the respective polar sections and mj is the polar degree
of the face function f∆i

(z, z̄), j = 1, . . . , s as above (mj > 0).

7.2.1. Resolution of a polar type and the Milnor fibration. Let us con-
sider an admissible toric modification π̂ : X → C2 with respect to
the regular fan Σ∗ with vertices {P0, P1, . . . , P`+1} and we assume
that Qj = Pνj

, j = 1, . . . , s and P0 = E1 = t(1, 0) and P`+1 =
E2 = t(0, 1). Then we take the polar modification ωp : PX → X

along Ê(P1), . . . , Ê(P`). Put Φp : PX → C2 be the composite with
π̂ : X → C2. Consider the second Milnor fibration

f ◦ Φp : Φ−1
p (E(r, δ)∗) → D(δ)∗

on the resolution space PX. Take Pj for 1 ≤ j ≤ `. There are two
toric coordinate charts of X which contain the vertex Pj:

σj−1 = Cone(Pj−1,Pj) gives the coordinate chart (Uj−1, (uj−1, vj−1))

σj = Cone(Pj,Pj+1) gives the coordinate chart (Uj, (uj, vj)).

Put M = (Pj, Pj+1)
−1(Pj−1, Pj). It takes the form:

M =

(
γj 1
−1 0

)
.

Then the two coordinate systems are connected by the relation

uj = u
γj

j−1vj−1, vj = u−1
j−1.(4)
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Put Pj = t(cj, dj), j = 1, . . . , `. The inverse image Ũj := ω−1
p (Uj) has

the polar coordinates (rj, θj, sj, ηj) which corresponds to (uj, vj) with
uj = rj exp(i θj) and vj = sj exp(i ηj). The relation (4) says that

sj = r−1
j−1, ηj = −θj−1.(5)

We do not take a normal polar modification along the two non-compact
divisors u0 = 0 and v` = 0. Thus the coordinates of Ũ0 and Ũ` are
(u0, s0, η0) and (r`, θ`, v`) respectively. Recall that the exceptional di-

visor Ẽ(Pj) is defined by rj = 0 in Ũj and by sj−1 = 0 in Ũj−1 for
1 ≤ j ≤ `. Note that u0 = 0 in U0 corresponds bijectively to the axis
z1 = 0 in the base space C2 and

(P0, P1) =

(
1 c1
0 1

)
, d1 = 1, z1 = u0v

c1
0 , z2 = v0.

Similarly on Ũ`, v` = 0 corresponds to z2 = 0 and

z1 = u`, z2 = ud`

` v`, c` = 1.

O

E2

E1

Pj−1

Pj
Pj+1

σj−1

σj

Figure 7. Regular fan Σ∗

7.3. Decomposition of the fiber. Recall that

E(r, δ)∗ = {(z1, z2) | 0 < |f(z1, z2, z̄1, z̄2)| ≤ δ, ‖(z1, z2)‖ ≤ r}

φ(z) :=
√

|z1|2 + |z2|2, B̃r = φ−1(Br)

Fδ = {(z1, z2) | f(z1, z2, z̄1, z̄2) = δ, (z1, z2) ∈ Br} : Milnor fiber.
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We denote the pull-back of a function h on C2 to PX by h̃ for simplicity.
On PX, we consider the subsets

Wj(r, ρ) = {x̃ = (rj, θj, sj, ηj) ∈ Ũj | 1/ρ ≥ sj ≥ ρ}

Tj−1(ρ) = {(rj−1, θj−1, sj−1, ηj−1) ∈ Ũj−1 | rj−1 ≤ ρ, sj−1 ≤ ρ}

WTj(ρ) = {(rj, θj, sj, ηj) ∈ Ũj | sj = ρ, rj ≤ ρ}

TWj(ρ) = {(rj−1, θj−1, sj−1, ηj−1) ∈ Ũj−1 | rj−1 = ρ, sj−1 ≤ ρ}

and

T0(ρ) := {(u0, s0, η0) ∈ Ũ0 | |u0| ≤ ρ, s0 ≤ ρ}

W0(r, ρ) := {(u0, s0, η0) ∈ Ũ0 | φ̃(u0, s0, η0) ≤ r, |u0| ≥ ρ, s0 ≥ ρ}

T`(ρ) := {(r`, θ`, v`) ∈ Ũ` | r` ≤ ρ, |v`| ≤ ρ}

W`(r, ρ) := {(r`, θ`, v`) ∈ Ũ`, | r` ≥ ρ, |v`| ≥ ρ, φ̃(r`, θ`, v`) ≤ r}

{rj−1 = 0}

{sj−1 = 0} ∪ {rj = 0}
Wj(r, ρ)

Tj−1(ρ) {sj = 0}

Tj(ρ)

Figure 8. Decomposition of PX

Note that

φ̃(u0, s0, η0) = s0

√
1 + |u0|2s

2c1−2
0 = s0 + o(s0)

φ̃(r`, θ`, v`) = r`

√
1 + |v`|r

2d`−2
` = r` + o(r`)

Here o(s0) implies o(s0)/s0 → 0 when s0 → 0. Put

A(r, ρ) =

`+1⋃

j=0

Wj(r, ρ) ∪
⋃̀

j=0

Tj(ρ).

Put Ẽ(r, δ)∗ = Φ−1
p (E(r, δ)∗) with δ � r and A(r, ρ, δ)∗ = A(r, ρ) ∩

f̃−1(D∗
δ) with δ � r, ρ. It is easy to see that A(r, ρ, δ)∗ = Ẽ(r, δ)∗ as

long as ρ � r and δ � ρ, r. We see that the choice of ρ does not
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give any effect on A(r, ρ, δ)∗, as long as δ � ρ � r. Thus we can use

A(r, ρ, δ)∗ as the total space of the Milnor fibration: f̃ : A(r, ρ, δ)∗ →
D∗
δ . We decompose A(r, ρ, δ)∗ into monodromy invariant subspaces as

follows.

A(r, ρ, δ)∗ ∩Wj(r, ρ), A(r, ρ, δ)∗ ∩ Tj(ρ)

A(r, ρ, δ)∗ ∩ TWj(ρ), A(r, ρ, δ)∗ ∩WTj(ρ), j = 0, . . . , `.

7.3.1. Transversality. Assume that ∆(Pj) = ∆t ∩ ∆t+1 = {Mt} and
that Mt comes from the monomial zαt1

1 |z1|2βt1 zαt2

2 |z2|2βt2. By the defi-
nition we can write

f̃(rj, θj, sj, ηj) ≡ r
d(Pj)
j s

d(Pj+1)
j exp((αt1 cj + αt2 dj)θj i)

× exp((αt1 cj+1 + αt2 dj+1)ηj i) + O(r
d(Pj)+1
j ).

Thus it is easy to see that f̃−1(ξ), |ξ| = δ intersects transversely with

WTj(ρ) if δ is sufficiently small and δ � r, ρ. Similarly f̃−1(ξ) intersects
transversely with TWj(ρ) under the same assumptions.
Fix such r, δ, ρ. Under the above decomposition of A(r, ρ, δ)∗, the Mil-

nor fiber F̃δ := f̃−1(δ) ∩ B̃ decomposes into the following strata:

F̃δ ∩Wj(r, ρ), F̃δ ∩ Tj(ρ), F̃δ ∩WTj(ρ), F̃δ ∩ TWj(ρ), j = 0, . . . , `.

By the above transversality, we see that (after choosing a suitable vec-

tor field to define the characteristic diffeomorphisms) F̃δ ∩ Wj(r, ρ),

F̃δ ∩ Tj(ρ), F̃δ ∩ TWj(ρ) and F̃δ ∩WTj(ρ) are invariant by the mon-

odromy h : F̃δ → F̃δ. Now the proof of Theorem 38 follows from the
following observations.

(1) The zeta functions of h restricted on F̃δ ∩ Tj(ρ) are trivial for
1 ≤ j ≤ `− 1.

(2) The zeta functions of h restricted on F̃δ ∩ Wj(r, ρ) with j 6=
ν1, . . . , νs are trivial.

(3) The zeta functions of h restricted on F̃δ ∩ WTj(ρ) and F̃δ ∩
TWj(ρ) are trivial.

(4) The zeta functions of h on F̃δ ∩T0(ρ) and F̃δ ∩T`(ρ) are respec-
tively given by

1

(1 − t|a2|)
,

1

(1 − t|a1|)
.

(5) (Face contribution) The zeta function of h : F̃δ ∩Wνj
(ρ) is

(1− tmj )−χ(F ∗

j )/mj where F ∗
j = f−1

∆j
(1)∩C∗2 and mj is the polar

degree of f∆j
.
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7.4. Topology of a polar weighted polynomial and Kouchnirenko

type formula. Let (p1, p2;m∆) be the polar weight type. Let F∆ =
f−1

∆ (1) be the fiber of the global fibration, F ∗
∆ = F∆ ∩ C∗2 and let

K∆ = f−1
∆ (0) ∩ S3. Note that F∆ is diffeomorphic to the fiber of the

Milnor fibration We consider the Wang sequence of the Milnor fibra-
tion:

0 → H2(S
3 −K∆) → H1(F∆)

h∗−id
−→H1(F∆) → H1(S

3 −K∆) → Z → 0.

Put r∗∆ = lkn∗(f−1
∆ (0)). Let µ∆ and µ′

∆ be the multiplicities of the
factor (t− 1) in P1(t) and ζ(t) respectively. Then

µ∆ = µ′
∆ + 1, µ′

∆ = −χ(F ∗
∆)/m∆ − 2 + ε(∆).

On the other hand by the Alexander duality, we have the isomorphism:

H2(S
3 −K∆) ∼= H1(S3, K∆) ∼= H̃0(K∆).

As the monodromy map h∗ is periodic, we have

r∗∆ + ε(∆) − 1 = dim Ker {h∗ − id : H1(F∆) → H1(F∆)} = µ∆.

Thus we obtain

Lemma 39. The Euler-Poincaré characteristic and the link component
number satisfy the following equality:

r∗∆ = −χ(F ∗
∆)/m∆.

Usually it is easier to compute r∗∆ and we can compute χ(F ∗
∆) by

Lemma 39. Now we can state our Kouchnirenko type formula:

Theorem 40. Let f(z, z̄) be a non-degenerate convenient mixed poly-
nomial as in Theorem 38. Let ∆1, . . . ,∆s be faces of Γ(f) and we
assume that f∆j

(z, z̄) is a polar weighted homogeneous polynomial with

polar degree mj. Let rj = lkn∗(f−1
∆j

(0)) for j = 1, . . . , s. Then the

Milnor number µ(F ) = b1(F ) is given by the formula:

µ(F ) =
s∑

j=1

rjmj − |a1| − |a2| + 1.

Here mj is the polar degree of f∆j
and we assume that mj > 0. a1, a2

are the polar sections of Γ(f) on the respective coordinate axes.

As a special case, the following is a formula for a good polar weighted
mixed polynomial (see §6.2.3 for the definition) which corresponds to
the Orlik-Milnor formula [13] for a weighted homogeneous isolated sin-
gularity.
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Corollary 41. Assume that f(z, z̄) is a good polar weighted polynomial
which is factored as

f(z, z̄) = c
∏k

j=1(z
a
2 |z2|

2a′ − λj z1
b |z1|2b

′

), c 6= 0(6)

with a 6= 0, b 6= 0. Let r = gcd(|a|, |b|). The polar weight is given by
P = t(p1ε1, p2ε2) where p1 = |a|/r, p2 = |b|/r, ε1 = b/|b|, ε2 = a/|a|
and the polar degree dp is given as dp = |a| |b| k/r, lkn(f−1(0)) = r k
and

µ = |a| |b| k2 − k (|a| + |b|) + 1 = (k |a| − 1) (k |b| − 1) and

ζ(t) =
(1 − tdp)rk

(1 − t|a|)(1 − t|b|)
.

Conjecture.
1. Is the Milnor fiber F of a non-degenerate mixed function (n− 1)-

dimensional CW complex?
2. Is F (n− 2)-connected?
For detail, See “M. Oka: Non-degenerate mixed functions”, to ap-

pear in Kodai J. Math.
http://www.ma.kagu.tus.ac.jp/ oka
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