Variation on the skein relation

Luis PARIS

Institut de Mathématiques de Bourgogne Université de Bourgogne

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition $\mathcal{L} = \mathcal{L}(\mathbb{S}^3)$ is the set of links in \mathbb{S}^3 . An invariant is a map $I : \mathcal{L} \to A$.

Definition $\mathcal{L} = \mathcal{L}(\mathbb{S}^3)$ is the set of links in \mathbb{S}^3 . An invariant is a map $I : \mathcal{L} \to A$.

Theorem (H.-O.-M.-F.-L.-Y-P.-T.) There exists a unique invariant $I : \mathcal{L} \to \mathbb{C}(t, x)$ such that

- $\blacktriangleright I(trivial knot) = 1;$
- $t^{-1} \cdot I(L_+) t \cdot I(L_-) = x \cdot I(L_0).$

Definition $\mathcal{L} = \mathcal{L}(\mathbb{S}^3)$ is the set of links in \mathbb{S}^3 . An invariant is a map $I : \mathcal{L} \to A$.

Theorem (H.-O.-M.-F.-L.-Y-P.-T.) There exists a unique invariant $I : \mathcal{L} \to \mathbb{C}(t, x)$ such that

- I(trivial knot) = 1;
- $t^{-1} \cdot I(L_+) t \cdot I(L_-) = x \cdot I(L_0).$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ■ のへで

Definition An invariant $I : \mathcal{L} \to \mathbb{C}(t, x)$ satisfies the skein relation if

 $t^{-1} \cdot I(L_+) - t \cdot I(L_-) = x \cdot I(L_0)$

Definition An invariant $I : \mathcal{L} \to \mathbb{C}(t, x)$ satisfies the skein relation if

 $t^{-1} \cdot I(L_+) - t \cdot I(L_-) = x \cdot I(L_0)$

Definition Skein(\mathcal{L}) is the $\mathbb{C}(t, x)$ -vector space of invariants satisfying the skein relation.

Definition An invariant $I : \mathcal{L} \to \mathbb{C}(t, x)$ satisfies the skein relation if

$$t^{-1} \cdot I(L_+) - t \cdot I(L_-) = x \cdot I(L_0)$$

Definition Skein(\mathcal{L}) is the $\mathbb{C}(t, x)$ -vector space of invariants satisfying the skein relation.

Corollary $\widetilde{\text{Skein}}(\mathcal{L})$ is of dimension 1.

Now \mathcal{L} is a knot-like category.

Now \mathcal{L} is a knot-like category.

Example 1: Links in a 3-manifold.

Now \mathcal{L} is a knot-like category.

Example 1: Links in a 3-manifold.

Example 2: Singular links. Links that admit singular crossings

Reidemeister moves

Reidemeister moves

Singular Reidemeister moves (Kauffman)

Example 3: Virtual links (Kauffman) Links that admit virtual crossings

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Example 3: Virtual links (Kauffman) Links that admit virtual crossings

Virtual Reidemeister moves (Kauffman)

Definition Let \mathcal{L} be a knot-like category.

The Skein module of \mathcal{L} , denoted by $\text{Skein}(\mathcal{L})$, is the quotient of $\mathbb{C}(x, t)[\mathcal{L}]$ by the relations

$$t^{-1} \cdot L_{+} - t \cdot L_{-} = x \cdot L_{0}$$

Definition Let \mathcal{L} be a knot-like category.

The Skein module of \mathcal{L} , denoted by $\operatorname{Skein}(\mathcal{L})$, is the quotient of $\mathbb{C}(x, t)[\mathcal{L}]$ by the relations

$$t^{-1} \cdot L_+ - t \cdot L_- = x \cdot L_0$$

Note: The space $\underline{Skein}(\mathcal{L})$ of invariants $I : \mathcal{L} \to \mathbb{C}(x, t)$ which satisfies the skein relation is

 $L(\operatorname{Skein}(\mathcal{L}), \mathbb{C}(x, t))$

Skein relation:

 $t^{-1} \cdot I(L_{+}) - t \cdot I(L_{-}) = x \cdot I(L_{0})$

Theorem (Przytycki) Let *F* be a surface and let \mathcal{L} the category of links in $F \times I$. Skein(\mathcal{L}) is an algebra. It is isomorphic to the symmetric tensor algebra $S\mathbb{C}(x, t)[\hat{\pi}^0]$. $\hat{\pi}^0$ is the set of conjugacy classes of nontrivial elements in $\pi_1(F)$.

Theorem (Przytycki) Let *F* be a surface and let \mathcal{L} the category of links in $F \times I$. Skein(\mathcal{L}) is an algebra. It is isomorphic to the symmetric tensor algebra $S\mathbb{C}(x, t)[\hat{\pi}^0]$. $\hat{\pi}^0$ is the set of conjugacy classes of nontrivial elements in $\pi_1(F)$.

Theorem (P, Rabenda) Let \mathcal{L} be the category of singular links in the sphere. Skein(\mathcal{L}) is an algebra. It is isomorphic to $\mathbb{C}(x, t)[X, Y]$.

Question Let \mathcal{L} be the category of virtual links in the sphere. Determine $\operatorname{Skein}(\mathcal{L})$.

Goal now: To present an approach to the study of skein modules by means of generalizations of Hecke algebras. (Ocneanu, Jones, Lambropoulou, Przytycki, P, Rabenda).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Goal now: To present an approach to the study of skein modules by means of generalizations of Hecke algebras. (Ocneanu, Jones, Lambropoulou, Przytycki, P, Rabenda).

Treat the case of singular links. **BUT** the tools exist for many other categories (links in 3-manifolds, virtual links, so on). **Definition** A singular braid is a n-tuple $\beta = (b_1, \ldots, b_n)$, $b_i : [0,1] \rightarrow \mathbb{R}^2 \times [0,1]$, such that

- ▶ $b_i(0) = (i, 0, 0), b_i(1) = (\chi(i), 0, 0), \text{ where } \chi \in \text{Sym}_n;$
- $b_i(t) = (*, *, t);$
- ▶ b₁ ∪ · · · ∪ b_n has finitely many singularities (ordinary double points).

Definition A singular braid is a n-tuple $\beta = (b_1, \ldots, b_n)$, $b_i : [0, 1] \rightarrow \mathbb{R}^2 \times [0, 1]$, such that

- ▶ $b_i(0) = (i, 0, 0), b_i(1) = (\chi(i), 0, 0), \text{ where } \chi \in \text{Sym}_n;$
- $b_i(t) = (*, *, t);$
- b₁ ∪ · · · ∪ b_n has finitely many singularities (ordinary double points).

The set of singular braids form a monoid, SB_n .

Observation SB_n is generated by $\sigma_1^{\pm 1}, \ldots, \sigma_{n-1}^{\pm 1}, \tau_1, \ldots, \tau_{n-1}$,

Observation SB_n is generated by $\sigma_1^{\pm 1}, \ldots, \sigma_{n-1}^{\pm 1}, \tau_1, \ldots, \tau_{n-1}$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Definition From a singular braid β one can construct a closed braid, $\hat{\beta}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Theorem (Alexander, Birman) Every singular link is a closed singular braid.

Theorem (Alexander, Birman) Every singular link is a closed singular braid.

Definition Set $\sqcup SB = \sqcup_{n=1}^{+\infty} SB_n$. $(\alpha, n), (\beta, m) \in \sqcup SB$ are connected by a Markov move if either $\blacktriangleright n = m, \ \alpha = \gamma_1 \gamma_2, \ \beta = \gamma_2 \gamma_1$, where $\gamma_1, \gamma_2 \in SB_n$; or $\blacktriangleright n = m + 1$ and $\alpha = \beta \sigma_n^{\pm 1}$; or $\blacktriangleright m = n + 1$ and $\beta = \alpha \sigma_m^{\pm 1}$.

Theorem (Alexander, Birman) Every singular link is a closed singular braid.

Definition Set $\sqcup SB = \sqcup_{n=1}^{+\infty} SB_n$. $(\alpha, n), (\beta, m) \in \sqcup SB$ are connected by a Markov move if either $\blacktriangleright n = m, \alpha = \gamma_1 \gamma_2, \beta = \gamma_2 \gamma_1$, where $\gamma_1, \gamma_2 \in SB_n$; or $\blacktriangleright n = m + 1$ and $\alpha = \beta \sigma_n^{\pm 1}$; or $\blacktriangleright m = n + 1$ and $\beta = \alpha \sigma_m^{\pm 1}$.

Theorem (Markov, Gemein) Let $(\alpha, n), (\beta, m) \in \sqcup SB$. We have $\hat{\alpha} = \hat{\beta}$ if and only if (α, n) and (β, m) are connected by finitely many Markov moves.

Definition The singular Hecke algebra, denoted by $\mathcal{H}(SB_n)$, is the quotient of $\mathbb{C}(q)[SB_n]$ by the relations

$$\sigma_i^2 = (q-1)\sigma_i + q, \quad i = 1, \dots, n-1$$
 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition The singular Hecke algebra, denoted by $\mathcal{H}(SB_n)$, is the quotient of $\mathbb{C}(q)[SB_n]$ by the relations

$$\sigma_i^2 = (q-1)\sigma_i + q, \quad i = 1, \dots, n-1.$$

Observe that the inclusion $SB_n \subset SB_{n+1}$ gives rise to a homomorphism $\iota_n : \mathcal{H}(SB_n) \to \mathcal{H}(SB_{n+1})$.

Definition The Markov module (of singular braids), denoted by $Markov(\sqcup SB)$, is the quotient of

 $\oplus_{n=1}^{\infty}(\mathbb{C}(z)\otimes\mathcal{H}(SB_n))$

by the relations

- ab = ba for all $a, b \in \mathcal{H}(SB_n)$ and all $n \ge 1$;
- $a = \iota_n(a)$ for all $a \in \mathcal{H}(SB_n)$ and all $n \ge 1$;
- $z \cdot a = \iota_n(a)\sigma_n$ for all $a \in \mathcal{H}(SB_n)$ and all $n \ge 1$.

Definition The Markov module (of singular braids), denoted by $Markov(\sqcup SB)$, is the quotient of

 $\oplus_{n=1}^{\infty}(\mathbb{C}(z)\otimes\mathcal{H}(SB_n))$

by the relations

- ▶ ab = ba for all $a, b \in \mathcal{H}(SB_n)$ and all $n \ge 1$;
- $a = \iota_n(a)$ for all $a \in \mathcal{H}(SB_n)$ and all $n \ge 1$;
- $z \cdot a = \iota_n(a)\sigma_n$ for all $a \in \mathcal{H}(SB_n)$ and all $n \ge 1$.

Theorem (Folklore, P, Rabenda) Let \mathcal{L} be the category of singular links. Then $\text{Skein}(\mathcal{L})$ is isomorphic to $\text{Markov}(\sqcup SB)$.