SMOOTH SUBVARIETIES THROUGH SINGULARITIES OF A NORMAL VARIETY

M. R. GONZALEZ-DORREGO

Departamento de Matemáticas Universidad Autónoma de Madrid 28049 Madrid, Spain

Let k be an algebraically closed field.

We would like to thank the Department of Mathematics at the University of Toronto for its hospitality during the preparation of this manuscript.

MSC: 14H45, 14J17, 14B05, 13F30

Let X be a normal variety over k which admits resolution of singularities. Let $\pi : \tilde{X} \to X$ be a desingularization of X, (this means that π is a proper birational morphism and \tilde{X} is non-singular). Let $X_{\text{reg}} = X - \text{Sing}(X)$ be the nonsingular locus of X.

We assume that π induces an isomorphism between $\pi^{-1}(X_{\text{reg}})$ and X_{reg} .

Definition 1. A formal subvariety of dimension r on X is a morphism

$$\phi_r: Spec \ k[[x_1, \dots, x_r]] \to X.$$

Let us denote by η the generic point of Spec $k[[x_1, \ldots, x_r]]$ and by ξ the closed point.

Consider a formal curve ϕ_1 as above. Let $P = \phi_1(\xi)$. Let \mathcal{M} denote the maximal ideal of $\mathcal{O}_{X,P}$.

Definition 2. We say that ϕ_1 is smooth if $ord_t\phi_1^*\mathcal{M} = 1$, where ord_t denotes the *t*-adic valuation in k[[t]].

Let \mathcal{L}_r be the set of formal subvarieties Y of X containing a formal nonsingular curve ϕ_1 on X such that $\phi_1(\xi) = P \in \operatorname{Sing}(X), \phi_1(\eta) \in X_{\operatorname{reg}}$ and ϕ_1 is transversal to $\operatorname{Sing}(X)$, that is, ϕ_1 intersects $\operatorname{Sing}(X)$ transversally in a smooth point of $\operatorname{Sing}(X)$. This means, by definition, that $\operatorname{ord}_t \mathcal{J} = 1$ where \mathcal{J} is the ideal defining $\operatorname{Sing}(X)$.

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}\mathrm{T}_{\!E}\!\mathrm{X}$

1

Definition 3. We call the special cycle $Z_{\tilde{X}}$ the cycle $Z_{\tilde{X}} = \sum m_i E_i$, defined by the divisorial part of $\mathcal{JO}_{\tilde{X}}$, \mathcal{J} is as above. The E_i are the irreducible components of codimension 1 of the exceptional fiber $\pi^{-1}(Sing(X))$ and the m_i are nonnegative integers. A component E_j such that $m_j = 1$ is called a reduced component of the cycle.

Proposition 4. Let $\pi : \tilde{X} \to X$ be a desingularization of X. Let $\phi_1 \in \mathcal{L}_1$. Let $SuppZ_{\tilde{X}}$ be the support of the special cycle of π . Let us take a point $R \in SuppZ_{\tilde{X}}$. The point R is the intersection of the strict transform \tilde{C} of C with $\pi^{-1}(Sing(X))$ if and only if there exists $\phi_1 \in \mathcal{L}_1$ such that $R = \pi^{-1}(Sing(X)) \cap Im\phi_1$ and such that there exists a regular system of parameters $\{t_1, \ldots, t_s\}$ of $\mathcal{O}_{\tilde{X},R}$ such that $\mathcal{J} = (t_1)$.

Proof. Let a be the greatest common divisor of the elements in \mathcal{J} . Since $\mathcal{O}_{\tilde{X},R}$ is a UFD, $\mathcal{J} = aI$, for some ideal I in $\mathcal{O}_{\tilde{X},R}$ with $htI \geq 2$. Let $R = \pi^{-1}(\operatorname{Sing}(X)) \cap \operatorname{Im} \tilde{\phi_1}$, for some $\phi_1 \in \mathcal{L}_1$. Then ϕ_1 factors through a local homomorphism $\tilde{\phi_1} : \mathcal{O}_{\tilde{X},R} \to k[[t]]$ such that $\operatorname{ord}_t \mathcal{J} = 1$, since ϕ_1 intersects $\operatorname{Sing}(X)$ transversally. Since $R \in \operatorname{Supp} Z_{\tilde{X}}$, a is not a unit. We have

$$1 \leq \operatorname{ord}_t a \leq \operatorname{ord}_t a + \operatorname{ord}_t I = 1.$$

Thus, $\operatorname{ord}_t a = \operatorname{ord}_R a = 1$, $\operatorname{ord}_t I = \operatorname{ord}_R I = 0$, the function a is a part of a regular system of parameters of $\mathcal{O}_{\tilde{X},R}$ and we have that $\mathcal{J} = (a)$. Conversely, if there exists a regular system of parameters $\{t_1, \ldots, t_s\}$ of $\mathcal{O}_{\tilde{X},R}$ such that $\mathcal{J} = (t_1)$ the projection on X of any formal curve $\tilde{\phi}_1$ on \tilde{X} through R whose parametrization sends t to t_1 is a smooth curve on X through P. By taking $\tilde{\phi}_1$ such that its generic point lies in $\pi^{-1}(X_{\operatorname{reg}})$, we get a curve in \mathcal{L}_1 .

Note II. Consider a formal curve ϕ : Spec $k[[t]] \to X$. Let us denote by η the generic point of Spec k[[t]] and by ξ the closed point. Let $P = \phi(\xi)$. Let \mathcal{M} denote the maximal ideal of $\mathcal{O}_{X,P}$.

Note that any formal curve ϕ factors through $Spec \ \hat{\mathcal{O}}_{X,P}$. If ϕ is a smooth formal curve, the natural image of $Spec \ k[[t]]$ in $Spec \ \hat{\mathcal{O}}_{X,P}$ is a regular subscheme of $Spec \ \hat{\mathcal{O}}_{X,P}$, but the converse is not true since the map ϕ might be composed with a map of $Spec \ k[[t]]$ to itself, such as $t \to t^2$.

Let \mathcal{L} be the set of formal nonsingular curves ϕ on X such that $\phi(\xi) = P$ and $\phi(\eta) \in X_{\text{reg}}$.

Assume that P is an isolated singularity. We have a map of sets $f_{\tilde{X}} : \mathcal{L} \to \pi^{-1}(P)$ which sends $\phi \in \mathcal{L}$ to the intersection point of the strict transform \tilde{C} with $\pi^{-1}(P)$, where $C = \text{Im}(\phi_1)$.

Definition II.1. We call the **maximal cycle** $Z_{\tilde{X}}$ the cycle $Z_{\tilde{X}} = \sum m_i E_i$, defined by the divisorial part of $\mathcal{MO}_{\tilde{X}}$, where \mathcal{M} is the maximal ideal of $\mathcal{O}_{X,P}$; the E_i are the irreducible components of codimension 1 of the exceptional fiber $\pi^{-1}(P)$ and the m_i are nonnegative integers. A component E_j such that $m_j = 1$ is called a **reduced component** of the cycle.

In this case, Proposition 4 becomes

Corollary II.2. Let $\pi : X \to X$ be a desingularization of X. Let $SuppZ_{\tilde{X}}$ be the support of the maximal cycle of π . If $R \in SuppZ_{\tilde{X}}$ then $R \in f_{\tilde{X}}(\mathcal{L})$ if and only if there exists a regular system of parameters $\{t_1, \ldots, t_r\}$ of $\mathcal{O}_{\tilde{X}, P}$ such that $\mathcal{MO}_{\tilde{X}, R} = (t_1)$.

Proof. This is a special case of Proposition 4 when P = Sing(X).

Corollary II.3. Let $\pi : \tilde{X} \to X$ be a desingularization of X. For any irreducible component E of $\pi^{-1}(P)$, let ord_E be the divisorial valuation of the function field of X given by the filtration of $\mathcal{O}_{\tilde{X},E}$ by the powers of its maximal ideal. Let

$$\mathcal{L}_E = \{ \phi \in \mathcal{L} : f_{\tilde{X}}(\mathcal{L}) \in E \}.$$

Then,

- (1) The components E such that $\mathcal{L}_E \neq \emptyset$ are those for which $ord_E \mathcal{MO}_{\tilde{X},E} = 1$.
- (2) The set \mathcal{L} is the disjoint union of the \mathcal{L}_E .
- *Proof.* Immediate consequence of Corollary II.2, [1, 1.2].

We generalize [1, 1.3] as follows:

Definition II.4.

- (1) A family of formal nonsingular curves on X through P is any of the nonempty subsets \mathcal{L}_E defined in Corollary II.3, (a).
- (2) A general hyperplane section H of X through P is a Cartier divisor of X with local equation $f = 0, f \in \frac{\mathcal{M}_P}{\mathcal{M}_P^2}$, such that H intersects transversally $Supp Z_{\tilde{X}}$ and such that $H \cap Sing X = \emptyset$.
- (3) A first order family is a family which contains an irreducible component of a general hyperplane section of X through P.

Proposition II.5. Let \mathcal{L}_E be a family of formal nonsingular curves on X through P. Let $\pi : \tilde{X} \to X$ be the desingularization of X at P. If \mathcal{L}_E is a first order family, there exists a reduced component F such that $f_{\tilde{X}}(\mathcal{L}_E) = F \cap (\tilde{X})_{\text{Reg}} \cap \text{Supp } Z_{\tilde{X}}$. Otherwise, there exists a singular point $Q \in \tilde{X}$ such that $f_{\tilde{X}}(\mathcal{L}_E) = Q$.

Proof. By Corollary II.2, $f_{\tilde{X}}(\mathcal{L}_E)$ is contained in a single reduced component E of Supp $Z_{\tilde{X}}$. If dim E = 1, \mathcal{MO}_X is invertible at any $Q \in f_{\tilde{X}}(\mathcal{L}_E)$. \mathcal{L}_E is a first order family if and only if $\pi(E)$ is a curve. By II.2, $f_{\tilde{X}}(\mathcal{L}_E) = F \cap (\tilde{X})_{\text{Reg}} \cap \text{Supp } Z_{\tilde{X}}$.

Note III. Let \mathcal{L}_s be the set of formal nonsingular subvarieties

 $\phi_s: \operatorname{Spec} k[[x_1, \ldots, x_s]] \to X$ of dimension s (see Definition 1) on X containing a formal nonsingular curve ϕ_1 on X such that $\phi_1(\xi) = P \in \operatorname{Sing}(X), \phi_1(\eta) \in X_{\operatorname{reg}}$ and ϕ_1 is transversal to $\operatorname{Sing}(X)$. There exists $Y \in \operatorname{Spec} k[[x_1, \ldots, x_s]]$ such that $\phi_s(Y) \in X_{\operatorname{reg}}$. Assume that $\pi: \tilde{X} \to X$ is a birational map. If $Y \in \mathcal{L}_s, C = \operatorname{Im}(\phi_1)$ and $R \in \operatorname{Supp}Z_{\tilde{X}} \cap \tilde{C}$ then a formal parametrization of Y factors through a local homomorphism $\mathcal{O}_{\tilde{X},R} \to k[[t_1, \ldots, t_s]]$. Note that $t_1 = x_1$ $t_i = f_i(x_1, \ldots, x_s)$, where $f_i, 2 \leq i \leq s$, is a rational function of the form $t_i = \frac{P_i(x_1, \ldots, x_s)}{t_1^{d_i}}, 2 \leq i \leq s$.

M. R. GONZALEZ-DORREGO

References

 G. González-Sprinberg and M. Lejeune-Jalabert, Families of smooth curves on singularities and wedges, Ann. Pol. Math. LXVII.2 (1997), 179-190.