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The Lipschitz category

Topic:

The metric theory of complex analytic (or algebraic) germs.

The Lipschitz category is the appropriate category for this.

Definition (The Lipschitz category)

A map f : Y → Z of metric spaces is Lipschitz if ∃K :

1

K
dY (p, q) ≤ dZ (f (p), f (q)) ≤ KdY (p, q).

Bi-Lipschitz means bijective and Lipschitz.

Two metrics on X are Lipschitz equivalent if the identity map
(X , d1)→ (X , d2) is bi-Lipschitz.
In the Lipschitz category we consider them to be “the same.”
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Metrics on germs

Let (X , p) be a complex algebraic germ, x1, . . . , xN generators of
local ring OX ,p.

Then (x1, . . . , xN) : (X , p)→ CN is an embedding.

Definition

• Outer metric on X is given by distance in CN .

• Inner metric on X is arc length in X (Riemannian metric).

Proposition

Inner metric is determined by outer metric. In the Lipschitz
category these metrics on X are independent of choices.

If you change generating set of OX ,p, the identity map
(X , old metric)→ (X , new metric) is bi-Lipschitz.
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The inner metric on (X , p) is usually non-trivial.

The inner metric on (X , p) is usually non-trivial (hence also the
outer metric). . . . What do we mean by “non-trivial”?

A germ (Y , p) is metrically trivial if it is equivalent to a metric
cone:

(Y , p) ∼= ({ry : y ∈ Σ, r ∈ [0, 1]}, 0) where Σ ⊂ Sn−1 ⊂ Rn

The first example of non-triviality of complex germs was found by
Birbrair and Fernandes: for k > 1 and odd, the Ak surface
singularity Ak = {(x , y , z) ∈ C3 : x2 + y2 + zk+1 = 0}, has a
separating set, and is hence non-trivial.

Later we showed, using mostly other techniques, that for weighted
homogeneous surface singularities non-triviality is very common.

It appears now that separating sets are very common.
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Separating set

Let (X , p) be a real k-dimensional semialgebraic germ. A
separating set (Y , p) ⊂ (X , p) is a subgerm of zero (k − 1)–density
which (locally) separates (X , p) into pieces of positive k–density.

A Y B

p



Introduction Separating sets Theorem 1 Theorem 2 Theorem 3

k–Density

If (X , 0) ⊂ (Rn, 0) is a rectifiable subset, the k–density of (X , p) is

Θk (X , p) := lim
ε→0

Hk
(
X ∩ Bn(ε)

)
vol
(
Bk (ε)

) .

Here Hk is k-dimensional Hausdorff measure.

In the situations that interest us the limit exists.

But, more generally, use lim inf and lim sup to define lower and
upper k-density and define a separating set to be a set of zero
upper (k − 1)–density that locally divides (X , p) into sets of
positive lower k–density.
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Fact
In the semi-algebraic category, separating sets are preserved by
bi-Lipschitz maps (inner metric)

The reason is that separating sets can be defined equally well in
the inner metric, and so long as things are semi-algebraic, one gets
the same definition. This follows from:

Pancake Decomposition Theorem (Kurdyka)

A semialgebraic set has a finite semi-algebraic decomposition into
pieces whose inner and outer metrics are Lipschitz equivalent.
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Of course, implicit in our discussion so far is that separating sets
detect metric non-triviality:

Theorem
If Σ is a compact manifold, the metric cone C Σ on Σ has no
separating set.

In particular, an isolated singularity germ which has a separating
set is metrically non-trivial (not bi-Lipschitz homeomorphic to a
metric cone).

Our theme is that separating sets are ubiquitous in germs of
isolated complex singularities; so the metric structure of
singularities is rich.
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Theorem 1

Theorem 1
Let (X , 0) ⊂ (C3, 0) be an isolated weighted homogeneous
singularity with weights w1 ≥ w2 > w3. Suppose X ∩ {z = 0} is
reducible. Then (X , 0) has a separating set.

Example (Ak again)

Ak := {(x , y , z) ∈ C3 : x2 + y2 + zk+1}
has weights (k + 1, k + 1, 2) or ( k+1

2 , k+1
2 , 1).

{z = 0} is the union of two lines: {x = ±iy}. So Ak has a
separating set if k > 1.

Example (More generally:)

V (p, q, r) := {(x , y , z) ∈ C3 : xp + y q + z r} has a separating set if
p ≤ q < r and gcd(p, q) > 1.
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Briançon Speder example

Example (Briançon Speder family)

BSt := {(x , y , z) ∈ C3 : x5 + z15 + y7z + txy6 = 0}, t ∈ C

Weighted homogeneous with weights (3, 2, 1).

BSt ∩ {z = 0} is the curve {x(x4 + ty6) = 0}.
This has 3 components if t 6= 0, so

BSt has separating sets if t 6= 0.

Theorem (Lipschitz non-triviality in a topological trivial family)

BS0 has no separating set.
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Proof of Theorem 1
Theorem 1
X ⊂ C3 is a weighted homogeneous germ with weights
w1 ≥ w2 > w3. X ∩ {z = 0} is reducible. Then (X , 0) has a
separating set.

• Σ := X ∩ S5, the link of the singularity, is a 3-manifold.

• Σ ∩ {z = 0} = V ∪W , disjoint closed sets.

• In Σ, let Y0 be the conflict set
Y0 = {x ∈ Σ : d(x ,V ) = d(x ,W )}.

• Y := R∗Y0 ∪ {0} using R∗ in the C∗–action.
Y divides X into pieces A and B.

• Tangent cone T0Y ⊂ z–axis. So it has real dimension ≤ 2. It
follows that the 3–density Θ3(Y , 0) is zero.

• T0A and T0B each contains a complex plane. It follows that
Θ4(A) > 0, Θ4(B) > 0.
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Theorem 2

Theorem 2
Let (X , p) be a complex isolated singularity of complex dimension
n. Suppose that the tangent cone TpX is separated by an analytic
subset S of dimension < n. Then (X , p) has a separating set with
tangent cone in S.

Example (Dimension n)

The Brieskorn singularity
V (p0, . . . , pn) := {(x0, . . . , xn) : xp0

0 + · · ·+ xpn
n }

with 2 ≤ p0 = p1 < p2 ≤ p3 · · · ≤ pn has tangent cone consisting
of p0 intersecting planes. So it has separating sets.
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Example: Quotient singularities

If G ⊂ GL2 C is a finite subgroup which acts freelly on C2, then
the tangent cone of X = C2/G is irreducible only for:
• the homogeneous cyclic quotients C2/µr with µr ⊂ C∗ acting
diagonally, and
• the simple singularities of type D and E.
Thus all other quotient singularities have separating sets.

This is a rich class of examples: Cyclic quotients are classified by
pairs (r , s), with 0 < s < r and gcd(r , s) = 1.
There are examples with arbitrarily many separating sets.

The other quotients are classified by tuples (n; p1, q1; p2, q2; p3, q3)
with (p1, p2, p3) = (2, 2, p), (2, 3, 3), (2, 3, 4), or (2, 3, 5) and
0 < qi < pi , gcd(pi , qi ) = 1, n +

∑ qi
pi
> 0.
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Thus all other quotient singularities have separating sets.

This is a rich class of examples: Cyclic quotients are classified by
pairs (r , s), with 0 < s < r and gcd(r , s) = 1.
There are examples with arbitrarily many separating sets.

The other quotients are classified by tuples (n; p1, q1; p2, q2; p3, q3)
with (p1, p2, p3) = (2, 2, p), (2, 3, 3), (2, 3, 4), or (2, 3, 5) and
0 < qi < pi , gcd(pi , qi ) = 1, n +

∑ qi
pi
> 0.
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The above examples show that Theorem 2 is quite powerful. Could
it be that every separating set arises through this theorem?

Answer: No: The Briançon-Speder singularity BSt has tangent
cone C 2, but has separating sets if t 6= 0.

We will describe a resolution.

Proof of Theorem 2.
. . .
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Theorem 3

Theorem 3
A semialgebraic germ (X , p) has a semialgebraic separating set if
and only if its metric tangent cone has a semialgebraic separating
subset of codimension > 1.
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Metric Tangent Cone

The metric tangent cone TpX of a semialgebraic germ (X , p) was
studied in depth by Bernig and Lytchak (the definition goes back
to Gromov, and versions are used in many fields).

Definition

TpX := lim
t→∞

Gromov−Hausdorff (X , p,
1

t
d)

Note that TpX is metrically a strict cone. But even if (X , p) is a
complex germ, TpX may not be a complex cone; in fact it is not
clear that it always admits a complex structure (probably not).

Example

The D4 singularity V (2, 3, 3) is metrically conical [BFN], from
which follows: T0D4

∼= D4. But D4 is not a complex cone, since
then its link would be the total space of an S1–bundle (it is not).
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Proof of Theorem 3

Theorem 3
A semialgebraic germ (X , p) has a semialgebraic separating set if
and only if its metric tangent cone has a semialgebraic separating
subset of codimension > 1.

Proof.

• [Birbrair-Mostowski] Normal embedding theorem

• For an normally embedded semialgebraic set TpX = TpX

• A semi-algebraic separating set in a normally embedded
singularity induces a separating set in the tangent cone.
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Thank You
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