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Abstract. PHCpack is a software package for Polynomial Homotopy Continuation,
to numerically solve systems of polynomial equations. The executable program “phc”
produced by PHCpack has several options (the most popular one “-b” offers a blackbox
solver) and is menu driven. PHClab is a collection of scripts which call phc from within
a MATLAB or Octave session. It provides an interface to the blackbox solver for finding
isolated solutions. We executed the PHClab functions on our cluster computer using
the MPI ToolBox (MPITB) for Octave to solve a list of polynomial systems. PHClab
also interfaces to the numerical irreducible decomposition, giving access to the tools to
represent, factor, and intersect positive dimensional solution sets.

1. Introduction. Polynomial systems arise in various fields of science
and engineering, e.g.: the design of a robot arm [13] so its hands passes
through a prescribed sequence of points in space requires the solution of
a polynomial system. Homotopy continuation methods are efficient nu-
merical algorithms to approximate all isolated solutions of a polynomial
system [10]. Recently homotopies have been developed to describe positive
dimensional solution sets [20].

This paper documents an interface PHClab to use the functionality
provided by PHCpack [21] from within a MATLAB or Octave session.
The main executable program provided by PHCpack is phc, available for
downloading on a wide variety of computers and operating systems. The
program phc requires no compilation. Its most popular mode of operation
is via the blackbox option, i.e.: as phc -b input output. Recently the
program has been updated with tools to compute a numerical irreducible
decomposion [18].

The main motivation for PHClab is to make it easier to use phc by
automatic conversions of the formats for polynomial systems (on input)
and solutions (on output). Manual or adhoc conversions can be tedious
and lead to errors. As PHCpack has no scripting language on its own, the
second advantage of PHClab is help the user to systematically use the full
capabilities of PHCpack. As MATLAB (and its freely available counterpart
Octave) is a very popular scientific software system, PHClab will be a useful
addition to PHCpack.
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Another feature of PHClab is the possibility of developing parallel code
at a high level, when using the MPI ToolBox (MPITB [2]) for Octave.

2. The design of PHClab. The first interface from a C program to
phc was written by Nobuki Takayama and is still available via the PHCpack
download web site. Via this interface, phc became part of OpenXM [11]
(see also [12]). We used the same idea to build PHCmaple [7, 8], defining a
Maple interface to PHCpack.

All that is needed to make the interface work is the executable form of
phc. PHClab is a collection of scripts written in the language of MATLAB
and Octave. These scripts call phc with the appropriate options and menu
choices.

3. Downloading and installing. PHClab was tested on Matlab 6.5
and Octave 2.1.64 on computers running Windows and Linux. On an Apple
laptop running Mac OS X version 10.3.7, we executed PHClab in Octave
2.1.57.

The most recent version of PHCpack and PHClab can be retrieved
from

http://www.math.uic.edu/∼jan/download.html

which we from now on call the download web site. To install and use
PHClab, execute the following steps:

1. From the download web site, either download the source code for
phc (a makefile is provided with the code), or select an executable
version of phc. Currently, phc is available in executable form on
Windows, workstations from IBM (running AIX 5.3) and SUN
(running SunOS 5.8), and PCs running Linux and Mac OS X 10.3.
Except for Windows (which comes just as a plain phc.exe), one
has to run gunzip followed by tar xpf on the downloaded file.

2. The PHClab distribution is available as PHClab.tar.gz from the
download web site. To install PHClab in the directory /tmp, save
PHClab.tar.gz first in /tmp, and then execute the following se-
quence of commands:
cd /tmp; mkdir PHClab; mv /tmp/PHClab.tar.gz PHClab;
cd /tmp/PHClab; gunzip PHClab.tar.gz; tar xpf PHClab.tar.

3. Either launch MATLAB or Octave in the directory PHClab, or
add the name of the directory which contains PHClab to the path
of MATLAB or Octave.

The first command of PHClab to be executed is set phcpath. This
command takes one argument: the full path name of the file name which
contains the executable program phc. For example, if phc was saved in
/tmp, then a session with PHClab starts with set phcpath(‘/tmp/phc’).

4. Solving polynomial systems. In this section we define the basic
commands to solve polynomial systems using PHClab. We first define the
input/output formats, introducing the function make system to convert a
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matrix format for a polynomial system into a symbolic input format to phc.
The blackbox solver of PHCpack is called by the command solve system.
Besides the solution vectors, the solver returns extra diagnostical informa-
tion about the quality of each solution.

Path tracking typically starts from a generic system (without any sin-
gular solutions) to a more specific system. We use the system we first
solved by the blackbox solver as start system to solve a system with spe-
cific coefficients, using the function track. Because of our specific choice
of the coefficients, we generated a polynomial system with a double solu-
tion, i.e.: of multiplicity two. Via the function refine sols and deflation,
we respectively refine a solution and deflate its multiplicity into a regular
problem.

The last function we introduce in this section is mixed volume, to
compute the mixed volume for a polynomial system and (optionally) create
and solve a random coefficient start system. The mixed volume equals the
number of roots without zero components of a polynomial system with suf-
ficiently generic coefficients. The function mixed volume calls the trans-
lated form of the code MixedVol [3].

4.1. I/O formats and the blackbox solver. The input to the
solver is a system of multivariate equations with complex floating-point
coefficients. For example, consider the system g(x) = 0:

g(x1, x2) =

{

1.3x2
1 + 4.7x2

2 − 3.1 + 2.3i = 0
2.1x2

2 − 1.9x1 = 0
, with i =

√
−1. (4.1)

This system is encoded as a matrix, with in its rows the terms of each
polynomial. A zero row in the matrix marks the end of a polynomial
in the system. A nonzero row in the matrix represents a term as the
coefficient followed by the exponents for each variable. For example 4.7x2

2

is represented by the row 4.7 0 2. If n is the number of variables and m

the total number of terms, then the matrix encoding the system has m+n

rows and n + 1 columns.
To solve the system g(x) = 0 using PHClab, we may execute the

following sequence of instructions:

% tableau input for a system :

t = [1.3 2 0; 4.7 0 2; -3.1 + 2.3*i 0 0; 0 0 0;

2.1 0 2; -1.9 1 0; 0 0 0];

make_system(t) % shows symbolic format of the system

s = solve_system(t); % call the blackbox solver

ns = size(s,2) % check the number of solutions

s3 = s(3) % look at the 3rd solution

Then we see the following output on screen:

ans =

‘ + 1.3*x1**2 + 4.7*x2**2 + (-3.1+2.3*i)’
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‘ + 2.1*x2**2 -1.9*x1’

ns =

4

s3 =

time: 1

multiplicity: 1

err: 4.0340e-16

rco: 0.1243

res: 2.7760e-16

x1: -3.9180 + 0.3876i

x2: 0.0930 + 1.8851i

We see the coordinates of the solution are in the last fields (displayed
by default in short format, we may see more in format long) and extra
diagnostics in the first five fields, briefly explained below.

time is the end value of the continuation parameter. If this value is not
equal to one, then it means that the path tracker did not manage to
reach the end of the path. This may happens with paths diverging
to infinity or with highly singular solutions.

multiplicity is the multiplicity of the solution. A solution is regular when
the multiplicity is one. When the approximation for a solution
is not yet accurate enough, then the multiplicity might still be
reported as one, although the value for rco might be close to the
threshold.

err is the magnitude of the last update Newton’s method made to the
solution. At singular solutions, the polynomial functions exhibit a
typical “flat” behavior. Although the residual may then be already
very small, the value for this err can be still large.

rco is an estimate for the inverse of a condition number of the Jacobian ma-
trix evaluated at the approximate solution. A solution is deemed
singular when this number drops below the threshold value of 10−8.
Multiple solutions are singular. The condition number C of the Ja-
cobian matrix measures the forward error, i.e.: if the coefficients
are given with D digits precision, then the error on the approxi-
mate solution can be as large as C × 10−D.

res is the residual, or the magnitude of the polynomial system evaluated
at the approximate solution. This residual measures the backward
error: how much one should change the coefficients of the given
system to have the computed approximation as the exact solution.

The values of the coordinates of the solutions are by default displayed in
MATLAB’s (or Octave’s) format short. By format long e we can see
the full length in scientific format. For the solution above, the values of
err, rco, and res indicate an excellent quality of the computed solution.
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4.2. Path tracking from a generic to a specific system. The
four solutions of the system we solved are all very well conditioned, so we
may use them as start solutions to solve a system with the same coefficient
structure, but with more specific coefficients:

f(x1, x2) =

{

x2
1 + 4x2

2 − 4 = 0
−2x2

2 + x1 − 2 = 0
, with i =

√
−1. (4.2)

Geometrically, the polynomials in the system f(x) = 0 respectively de-
fine an ellipse and a parabola, positioned in such a way that their real
intersection point is a double solution.

In the sequence of instructions below we use the function track, using
the new system double (the system f(x) = 0) as target system and the
system t we solved as start system (we called it g(x) = 0). Note that
before calling track, we must set the value of time in every solution to
zero, so s contains proper start solutions.

double = [1.0 2 0; 4.0 0 2; -4.0 0 0; 0 0 0;

-2.0 0 2; +1.0 1 0; -2.0 0 0; 0 0 0];

make_system(double) % shows system

s(1).time = 0; s(2).time = 0; % initialize time for every

s(3).time = 0; s(4).time = 0; % start solution to zero

sols = track(double,t,s); % call the path trackers

ns = size(sols,2) % check number of solutions

s2 = sols(2) % look at the 2nd solution

The choice of the second solution was done on purpose because this solution
needs extra processing. In general however, we have no control over the
order in which the solutions are computed, i.e.: while every run should give
the same four solutions back, the order of solutions could be permuted.

The output we see on screen of the sequence above is

ans =

‘x1**2 + 4*x2**2 -4’

‘ -2*x2**2 + x1 -2’

ns =

4

s2 =

time: 1

multiplicity: 1

err: 4.373000000000000e-07

rco: 3.147000000000000e-07

res: 7.235000000000000e-13

x1: 2.000000000000000e+00 - 5.048709793414480e-29i

x2: -2.493339146012010e-07 - 1.879166705634450e-07i

Recall that we constructed the equations in our second system f(x) = 0 so
that there is a double solution at (2, 0). However, since we are not yet close
enough to the actual double solution (2, 0), the magnitude of the condition
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number is about 107, below the threshold of 108, so phc does not recognize
the solution as a double root. We will next see how to get closer to the
actual solution.

4.3. Refining and reconditioning singular solutions. To refine
the solution we save in s2, we execute 10 addition Newton steps, applying
refine sols to the second solution s2:

r2 = refine_sols(double,s2,1.0e-16,1.0e-08,1.0e-16,10)

We allow 10 iterations (last parameter of refine sols) of Newton’s method,
requiring that either the magnitude of the correction vector (err) or the
residual (res) is less or equal than 10−16, as specified respectively by the
third and fifth parameter of refine sols.

Below, on the output we see the estimate for the inverse condition
number has decreased, along with the value for x2:

r2 =

time: 1

multiplicity: 1

err: 3.300000000000000e-09

rco: 3.885000000000000e-09

res: 6.427999999999999e-17

x1: 2.000000000000000e+00 + 4.309100000000000e-41i

x2: -2.999062183346541e-09 - 3.017695139191104e-10i

Now that the estimate for the inverse condition number has dropped
from 10−7 to 10−9, below the threshold of 10−8, we expect this solution to
be singular. To deflate the multiplicity [9] and recondition the solution, we
execute

def_sols = deflation(double,sols);

def_sols{4,1}

and then we see on screen

ans =

time: 1

multiplicity: 2

err: 2.186000000000000e-07

rco: 1.242000000000000e-01

res: 1.003000000000000e-13

x1: 2.000000000000010e+00 + 1.929286255918420e-14i

x2: -1.742621478521780e-14 + 8.266179457715231e-15i

lm_1_1: 3.077939801899640e-01 + 6.678691166401400e-01i

lm_1_2: -6.737524546080300e-01 - 2.946929268111410e-01i

Notice the value rco which has increased dramatically from 3.885e-09 to
1.242e-01, as a clear indication that the solution returned by deflation is
well conditioned. Yet the multiplicity is two as a solution of the original
system. The deflation procedure has constructed an augmented system for
which the double solution of the original system is a regular root. The
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values for lm 1 1 and lm 1 2 are the values of the multipliers λ1,1 and λ1,2

used in the first deflation of the system. The number of multipliers used
equals the one plus the numerical rank of the given approximate solution
evaluated at the Jacobian matrix of the original system. The augmented
system is returned in def sols{3,1}.

4.4. Mixed volumes and random coefficient systems. In order
to solve the system (4.2) we used the output of the blackbox solver on a
more general system. The blackbox solver uses polyhedral homotopies [5] to
solve a system with the same sparse structure but with random coefficients.
Such random coefficient system has exactly as many isolated solutions as its
mixed volume [10]. The function mixed volume in PHClab gives access
to the code MixedVol [3] as it is available as translated form in PHCpack.

If we continue our session with in double the tableau input for the
system (4.2), then we can compute its mixed volume and solve a random
coefficients start system via the following sequence of commands:

[v,g,s] = mixed_volume(double,1); % compute mixed volume

v % check the mixed volume

ns = size(s,2) % check number of solutions

g % random coefficient system

The output to these command is

v = 4

ns = 4

g =

{

[1,1] =

+( 9.51900029533701E-01 + 3.06408769087537E-01*i)*x1^2

+( 9.94012861166580E-01 + 1.09263131180786E-01*i)

[2,1] =

+( 6.10442645118414E-01 - 7.92060462982993E-01*i)*x2^2

+(-5.76175858933274E-01 - 8.17325748757804E-01*i)

}

5. Solving many systems. Using PHCpack from within a MATLAB
or Octave session provides novel opportunities to solve polynomial systems.
In this section we show how the scripting environments can help to control
the quality of the developed software. The high level parallel programming
capabilities of MPITB will speed up this process in a convenient manner.

5.1. Automatic testing and benchmarking. The scripting lan-
guage of MATLAB and Octave lends itself very directly to automatically
solving many polynomial systems, as one would do for benchmarking pur-
poses.

We introduce another PHClab function: read system which reads a
polynomial system from file. The value returned by this function can be
passed to the blackbox solver. The system on file must have the following
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format. On the first line we have two numbers: the number of equations
and variables. Thereafter follow the polynomials, each one is terminated
by a semicolon. For example, the system g(x) = 0 is represented as

2 2

1.3*x1**2 + 4.7*x2**2 + (-3.1+2.3*i);

2.1*x2**2 -1.9*x1;

Note that i (and I) may not be used to denote variables, as they both
represent the imaginary unit

√
−1. Because e and E are used to denote

floating-point numbers, e and E may not by used as the start of names of
variables.

If /tmp/Demo contains the polynomial systems in the files with names
ku10, cyclic5, /tmp/Demo/fbrfive4, /tmp/Demo/game4two, (taken from
the demonstration database1 at [21]), then the script with contents

f = {‘/tmp/Demo/ku10’

‘/tmp/Demo/cyclic5’

‘/tmp/Demo/fbrfive4’

‘/tmp/Demo/game4two’};

for k= 1:size(f,1)

p = read_system(f{k});

t0 = clock;

s = solve_system(p);

et = etime(clock(),t0);

n = size(s,2);

fprintf(‘Found %d solutions for %s in %f sec.\n’,

n,f{k},et);

end;

will produce the following statistics:

Found 2 solutions for /tmp/Demo/ku10 in 1.819892 sec.

Found 70 solutions for /tmp/Demo/cyclic5 in 11.094403 sec.

Found 36 solutions for /tmp/Demo/fbrfive4 in 18.750158 sec.

Found 9 solutions for /tmp/Demo/game4two in 1.630962 sec.

5.2. Parallel scripting with MPITB. MPITB for Octave [2] ex-
tends Octave environment by using DLD functions. It allows Octave users
in a computer cluster to build message-passing based parallel applications,
by the means of installing the required packages and adding MPI calls to
Octave scripts. To use MPITB for Octave, dynamically linked LAM/MPI
libraries are required. All nodes in the cluster need to be able to access the
custom-compiled Octave that supports DLD functions.

Our choice of MPITB for Octave was motivated primarily by its func-
tionality and availability through open source. In our testing environment,
the latest MPITB for Octave was compiled against LAM/MPI 7.1.2 and

1available at http://www.math.uic.edu/∼jan/demo.html.
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Octave 2.1.64. To illustrate conducting parallel computation with the com-
bination of MPITB, PHClab and Octave, we used origami equations [1].
The main script is small enough to be included here:

function origami

%

% mpirun -c <nprocs> octave-2.1.64 -q --funcall origami

%

% The manager distributes the systems to the worker nodes

% using dynamic load balancing. Every node writes the

% solutions to file when its job is done and sends a

% message to the manager asking % for the next job.

%

tic % start the timer

info = MPI_Init; % MPI startup

[info rank] = MPI_Comm_rank(MPI_COMM_WORLD);

[info nprc] = MPI_Comm_size(MPI_COMM_WORLD);

path(LOADPATH,‘/huis/phcpack/PHClab’);

set_phcpath(‘/huis/phcpack/PHCv2/bin/phc’);

if rank == 0 % code for the manager

origamisys = extract_sys(‘alignmentequations.txt’);

distribute_tasks(nprc,origamisys);

fprintf(‘elapsed time = %.3f s\n’,toc);

else

worker_solves_system(); % code for the workers

end

info = MPI_Finalize;

LAM_Clean;

quit

end

Each origami system described in [1] has 4 inhomogeneous equations
in 4 variables and other free parameters. The mixed volume of Newton
Polytopes serve as a sharp upper bound for the number of solutions of
these origami systems because of the generic parameters. The output of a
run on our Rocketcalc cluster configuration with 13 workers is below:

prompt$ mpirun -c 13 octave-2.1.64 -q --funcall origami

Task tallies:

n0 18 (local)

n01 14

n02 14

n03 14

n04 11

n05 12

n06 13

n07 13
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n08 12

n09 15

n10 15

n11 17

n12 15

sum 183 (SIZE 183)

elapsed time = 371.603 s

6. A numerical irreducible decomposition. There is not (yet) a
blackbox solver in PHCpack to compute a numerical irreducible decompo-
sition. In the subsections below we describe the functions which call the
tools of phc. We start by defining how we represent positive dimensional
solution set.

6.1. Witness sets. To obtain a numerical representation of a posi-
tive dimensional solution set, we add as many random hyperplanes as the
expected top dimension. Extra slack variables are introduced to turn the
augmented system into a square system (i.e.: having as many equations as
unknowns) for which we may then apply the blackbox solver.

We illustrate our methods on a special Stewart-Gough platform, which
are “architecturally singular” like the so-called Griffis-Duffy platform [4],
analyzed in [6]; also see [17]. Once a witness set has been computed, the
numerical irreducible decomposition in PHCpack applies monodromy [15]
and linear traces [16].

A witness set consists of a polynomial system and a set of solutions
which satisfy this system. The polynomial system contains the original
polynomial system augmented with hyperplanes whose coefficients are ran-
domly chosen complex numbers. The number of hyperplanes added to the
original system equals the dimension of the solution set. The number of
solutions in the witness set equals the degree of the solution set.

There are two methods to compute witness sets. The (chronologically)
first method is to work top down, starting at the top dimensional solution
component and using a cascade [14] of homotopies to compute (super)
witness sets as numerical representations of solution sets of all dimensions.
The second method works top down, processing equation by equation [19].

6.2. Top down computation using a cascade. The input to em-
bed is a system of 8 equations2 and the number 1, which is the expected
top dimension. We solve the embedded system with solve system and
then run cascade to look for isolated solutions.

S = read_system(‘gdplatB’); % read the system from file

E = embed(S,1); % embed with 1 extra hyperplane

sols = solve_system(E); % call the blackbox solver

size(sols,2) % see candidate witness #points

2Maple code to generate the equations is at http://www.math.uic.edu/

∼jan/FactorBench/grifdufAe1.html.
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[sw,R] = cascade(E,sols) % perform a cascade

The blackbox solver returns 40 solutions of the embedded system,
which turns out the degree of the one dimension curve, because cascade
finds no other isolated solutions. This can be read from the output shown
on screen:

ans =

40

sw =

[]

[1x40 struct]

R =

[]

{9x1 cell}

The function cascade returns two arrays. The first array contains the
solutions, while the second one contains the embedded systems. A witness
set for a k-dimensional solution is defined by the (k + 1)-th entries of the
arrays returned by cascade.

The top down approach has the disadvantage that it requires the user
to enter an expected top dimension. While in many practical applications
one can guess this top dimension from the context in which the application
arises, the default value – taking it as high as the number of variables minus
one – is often too expensive.

6.3. Bottom up computation: Equation-by-equation. The new
equation-by-equation solver [19] relieves the user from submitting a top
dimension and seems more flexible. A disadvantage of the solver is that its
performance depends on the order of equations. For the equation describing
our Griffis-Duffy platform, we move the simplest equations first.

p = read_system(‘gdplatBa’)

[sw,R] = eqnbyeqn(p)

p =

‘ g0*h0+g1*h1+g2*h2+g3*h3’

‘ g0^2+g1^2+g2^2+g3^2-h0^2-h1^2-h2^2-h3^2’

[1x102 char]

[1x308 char]

[1x333 char]

[1x333 char]

[1x308 char]
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[1x308 char]

sw =

[]

[1x40 struct]

R =

[]

{9x1 cell}

6.4. Factoring into irreducible components. We continue with
the output (sw,R), computed either with cascade or eqnbyeqn.

dc = decompose(R{2},sw{2,1})

ans =

40

irreducible factor 1:

ans =

1x28 struct array with fields:

time

multiplicity

err

rco

res

h0

h1

h2

h3

g3

g1

g2

g0

zz1

irreducible factor 2:

ans =

time: 1

multiplicity: 1
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err: 5.103000000000000e-15

rco: 1

res: 3.598000000000000e-15

h0: -3.091000000000000e-01 - 2.563000000000000e-01i

h1: -4.439300000000000e-01 + 5.353800000000000e-01i

h2: 2.563000000000000e-01 - 3.091000000000000e-01i

h3: -5.353800000000000e-01 - 4.439300000000000e-01i

g3: 4.766100000000000e-01 + 8.732700000000000e-01i

g1: 1.164500000000000e+00 - 2.351500000000000e-01i

g2: -3.360600000000000e-01 + 4.145700000000000e-01i

g0: -3.643000000000000e-03 + 8.404300000000000e-01i

zz1: 8.171700000000000e-16 + 5.026400000000000e-16i

.. % 12 more similar linear factors not shown to save space

dc =

[1x28 struct]

[1x1 struct]

.. % 12 more similar structs not shown to save space

The output of decompose shows one irreducible component of degree 28
and 12 lines.
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APPENDIX

A. Alphabetic List of PHClab Functions. Below is an alphabetic
list of the functions offered by PHClab.

cascade executes a sequence of homotopies, starting at the top dimen-
sional solution set to find super witness sets. The input consists
of an embedded system (the output of embed) and its solutions
(typically obtained via solve system. The output of this function
is a sequence of super witness sets. A witness set is a numerical
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representation for a positive dimensional solution set. The “su-
per” means that the k-th super witness set may have junk points
on solutions sets of dimension higher than k.

decompose takes a witness set on input and decomposes it into irreducible
factors. The witness set is represented by two input parameters:
an embedded system and solutions which satisfy it. The number
of solutions equal the degree of the pure dimensional solution set
represented by the witness set. On return is a sequence of witness
sets, each witness set in the sequence corresponds to one irreducible
component.

deflation reconditions isolated singular solutions. The input consists of
two parameters: a polynomial system and a sequence of approx-
imate solutions to the system. Typically these solutions are ob-
tained via the blackbox solver or as the output of the function
track. On return is a list of reconditioned solutions, along with
the augmented systems which have as regular solution the multiple
solution of the original system.

embed adds extra hyperplanes and slack variables to a system, as many
as the expected top dimension of the solution set. There are two
input parameters: a polynomial system and the number of hy-
perplanes which have to be added. Typically, this number is the
top dimension of the solution set. If nothing is known about this
top dimension, a default value for this number is the number of
variables minus one.

eqnbyeqn solves polynomial systems equation by equation. For the poly-
nomial system on input, this function returns a sequence of witness
sets. The kth witness set in the sequence is a numerical represen-
tation of the solution set of dimension k.

make system converts the matrix format of a system into a symbolic
format acceptable to phc. A polynomial system of N equations
in n variables, with a total of m terms, is represented by a matrix
with N+m rows and n+1 columns. Each polynomial is terminated
by a zero row in the matrix. Each row represents one term in a
polynomial, starting with its (complex) coefficient and continuing
with the values of the exponents for each variable.

mixed volume computes the mixed volume for a system of n equations
in n variables. There are two input parameters: the system and
a flag to indicate whether a random coefficient system must be
created and solved. If the flag on input is one, then on return is a
start system which has as many solutions as the mixed volume.

phc filter removes from a super witness set those junk points while lie
on a higher dimensional solution set. The third and last input
parameter is a set of points to be filtered. The first two param-
eters represent a witness set, given by an embedded system and
a sequence of solutions which satisfy the embedded system. On
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return are those points of the third input that do not lie on the
component represented by the witness set.

read system reads a polynomial system from file. There is only one input
parameter: a file name. The format of the polynomial system
on file must follow the input format of PHCpack. The function
returns an array of strings, each string in the array is a multivariate
polynomial in symbolic format.

refine sols applies Newton’s method to refine a solution. There are six in-
put parameters: a polynomial system, an approximate solution, a
tolerance for the magnitude of the correction vector err, a thresh-
old for to decide whether a solution is singular (relative to rco), a
tolerance for the residual res, and finally a natural number with
the maximal number of Newton iterations that are allowed. On
return is an array of refined approximate solutions.

set phcpath defines the directory where the executable version of phc
is. For example, if the program phc is in the directory /tmp,
then set phcpath(‘/tmp/phc’) must be executed at the start of a
PHClab session. On Windows, ‘/tmp/phc’ could be replaced by
‘C:/Downloads/phc’ if phc.exe is in the directory Downloads on
the C drive.

solve system calls the blackbox solver of phc. On input is a polyno-
mial system in matrix format, see the input description for the
command make system. An alternative input format is the cell
array returned by read system. The output is an array of struc-
tures. Every element in the array contains one solution at the end
of a solution path. In addition to the values for the coordinates of
the solution, an estimate for the condition number of the solution
which leads to a measure for the forward error, while the residual
measures the backward error.

track applies numerical continuation methods for a homotopy between
start and target system, for a specified set of start solutions. The
three arguments for track are respectively the target system, the
start system and the solutions of the start system. The target and
start system must be given in matrix format. If the start solutions
are singular, then the path tracker will fail to start. The output of
track is an array of the same length as the array of start solutions,
containing the values at the end of the solution paths.

B. Exercises.

1. Use the blackbox solver to solve (the phc input format is on the
right):

{

x2 + y2 − 1 = 0
x3 + y3 − 1 = 0

2

x̂ 2 + ŷ 2− 1;
x̂ 3 + ŷ 3− 1;

(B.1)
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The exact solutions are (1,0), (0,1), (−1 + i
√

2

2
,−1 − i

√
2

2
) and

(−1 − i
√

2

2
,−1 + i

√
2

2
).

How many solutions does solve system return? Verify whether
the output matches the exact solutions. Use refine sols to dis-
cover what the multiplicities of the solutions (0,1) and (1,0) are.

2. If we have to solve repeatedly a polynomial system with the same
structure, we may want to save a start system. To solve systems
with the same monomials as in (B.1), we could use

g(x, y) =

{

x2 + 1.232y2 + 1.1211i = 0
y3 − 0.872y2 − 0.6231 + 1.032i = 0

(B.2)

Since the coefficients are random complex numbers (feel free to
make other random choices) all solutions of the system g(x, y) = 0
will be regular.
(a) Solve the system g(x, y) = 0, using solve system. Verify

that all solutions are regular.
(b) Use track to solve the system in (B.1).

Check whether you find the same solutions, eventually com-
puted in a different order.

3. The following system has multiple roots:

{

x2 + y − 3 = 0
x + 0.125y2 − 1.5 = 0

(B.3)

(a) Use solve system to find approximate roots. Can you see
which roots are multiple?

(b) Apply deflation to the approximate roots.
Observe the values of the field rco of the solutions before and
after the deflation.

(c) What is the multiplicity of each solution?
4. All adjacent minors of an indeterminate 2-by-4 matrix for a system

of 3 equations in 8 variables:







x11x22 − x21x12 = 0
x12x23 − x22x13 = 0
x13x24 − x23x14 = 0.

(B.4)

(a) Use embed to add 5 random hyperplanes.
(b) Solve the embedded system. What is the degree of this 5-

dimensional solution set?
(c) Apply decompose to factor the solution set. How many

irreducible factors do you find?
(d) Repeat the process for larger instances of this problem, for

n = 5, 6, . . ..
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5. Consider the system






(x2
1 − x2)(x1 − 0.5) = 0

(x3
1 − x3)(x2 − 0.5) = 0

(x1x2 − x3)(x3 − 0.5) = 0.

(B.5)

Solving this system means to compute witness sets for all irre-
ducible factors.
(a) Use embed to add 1 random hyperplane.
(b) Solve the embedded system with solve system.

Among the solutions, can you see the three witness points on
the twisted cubic?
Look for solutions with a slack variable close to zero.

(c) Apply cascade to find candidate isolated solutions.
(d) Use phc filter to filter the candidate isolated solutions.

How many isolated solutions does the system have?
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