Introduction to Computational Algebraic Geometry

Jan Verschelde

University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/~jan jan@math.uic.edu

UIC ASCEND Workshops, 24 July 2008

Jan Verschelde (UIC)

Computational Algebraic Geometry

24 July 2008 1 / 22

Computational Algebraic Geometry

an introduction to a modern mathematical discipline

The big picture:

• What is algebraic geometry?

Algebraic geometry studies solutions of polynomial systems. Polynomial systems occur in a wide variety of applications.

• Using computers to discover theorems.

Computer algebra software offers implementations of algorithms to solve polynomial systems.

We will use SAGE, an open source software system.

Problem of today:

How do two circles intersect?

(日)

Outline

SAGE: Software for Algebra and Geometry ExperimentationTry it online!

An Intersection Problem

- plotting and solving specific instances
- looking at the general problem formulation

Determinants, Resultants and Discriminants

- Jacobian matrices and singular solutions
- eliminating variables with resultants
- computing discriminants using resultants

Using SAGE

Software for Algebra and Geometry Experimentation

SAGE is open source mathematical software

- compilation both of original Python, C, C++, and SageX code
- interfaces to computational algebraic geometry software: Singular
- the GUI is your web browser, try it before installation

Three steps to getting started:

- Go to http://www.sagemath.org
- Click on Try it online!
- Sign up for a new SAGE notebook account.

A (10) A (10)

Plotting Two Circles

Consider two circles, how do they intersect?

sage: c1 = circle((1,2) , 3 , rgbcolor=(1,0,0))
sage: c2 = circle((-1,1) , 2 , rgbcolor=(0,0,1))
sage: c12 = c1 + c2
sage: c12.show(aspect_ratio=1)

A B F A B F

Computing the Intersection Points

algebraic problem formulation: solve a polynomial system

We solve a system of two polynomial equations in two unknowns:

We obtain two solutions in symbolic form:

$$[[x == (-2*sqrt(5) - 5)/5, y == (4*sqrt(5) + 5)/5], [x == (2*sqrt(5) - 5)/5, y == (5 - 4*sqrt(5))/5]]$$

Verifying the Solutions

```
sage: print sols[1]
sage: vx = sols[1][0].rhs()
sage: print n(vx,200)
sage: vy = sols[1][1].rhs()
sage: s = pl.substitute(x=vx,y=vy)
sage: print s
sage: s.expand()
```

Likewise we do it for the second solution and also for p2.

Jan Verschelde (UIC)

Choice of Coordinate System

With out loss of generality we may choose

- the origin is center of the first circle
- the radius of the first circle to be one
- \rightarrow first circle is the unit circle:

$$f = x^2 + y^2 - 1$$

We may choose the orientation of the x-axes

- through the center of the second circle: (*c*, 0)
- let r be the radius of the second circle

 \rightarrow two parameters for the second circle:

$$g = (x - c)^2 + y^2 - r^2$$

Our problem is governed by two parameters: c and r.

A General Solution

symbolic computation manipulates symbols as numbers

We declare *c* and *r* as variables and solve:

We obtain a symbolic solution:

$$\left[x = \frac{-r^2 + c^2 + 1}{2c}, y = \pm \frac{\sqrt{-r^4 + 2c^2r^2 + 2r^2 - c^4 + 2c^2 - 1}}{2c}\right]$$

but how general is this solution?

(日)

Singular Solutions

- double solutions: two circles touching each other,
- a solution set: two overlapping circles.

At a singular solution the determinant of the Jacobian matrix vanishes. The Jacobian matrix collects all partial derivatives:

The Determinant

when does a linear system have a singular solution?

Given a linear system $A\mathbf{x} = b$:

$$\left\{ \begin{array}{l} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{array} \left[\begin{array}{l} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right] \left[\begin{array}{l} x_1 \\ x_2 \end{array} \right] = \left[\begin{array}{l} b_1 \\ b_2 \end{array} \right].$$

The system $A\mathbf{x} = b$ has a unique solution $\Leftrightarrow \det(A) \neq 0$.

We have explicit formulas to compute a determinant:

$$\det(A) = \det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11}a_{22} - a_{21}a_{12}.$$

Generalization to more than two equations:

- recursive: expansion along row or column;
- alternative: elimination via row reduction.

The Discriminant

generalizes the determinant to polynomial systems

We will compute the discriminant of the circle problem.

The discriminant is a polynomial in c and r which will vanish whenever the solutions to the circle problem are singular.

Adding the determinant of the Jacobian matrix to the system, we solve

$$\begin{cases} x^2 + y^2 - 1 = 0\\ (x - c)^2 + y^2 - r^2 = 0\\ 4cy = 0 \end{cases}$$

Looking long enough at the system will lead to the solutions...

Our aim is to illustrate a general approach.

Definition of the Resultant

a tool to solve polynomial systems

Given two polynomials p and q with general coefficients:

$$p(x) = a_2 x^2 + a_1 x + a_0$$

$$q(x) = b_2 x^2 + b_1 x + b_0$$

For which values of the coefficients do p and q have a common factor?

The resultant

- is a polynomial in the coefficients of p and q
- is zero for those coefficients for which p and q have a common factor

Application: eliminate x.

• • = • • = •

Resultants to Eliminate Variables

Suppose *p* and *q* do have a factor *f*: p = Pf, q = Qf. Observe: Qp = QPf and Pq = PQf imply Qp = Pq.

$$p(x) = a_2 x^2 + a_1 x + a_0 \qquad P(x) = \alpha_1 x + \alpha_0 q(x) = b_2 x^2 + b_1 x + b_0 \qquad Q(x) = \beta_1 x + \beta_0$$

Elaborate the condition Qp = Pq and consider

$$(\beta_{1} + \beta_{0})(a_{2}x^{2} + a_{1}x + a_{0}) = (\alpha_{1}x + \alpha_{0})(b_{2}x^{2} + b_{1}x + b_{0})$$

$$x^{3}: \beta_{1}a_{2} = \alpha_{1}b_{2}$$

$$x^{2}: \beta_{1}a_{1} + \beta_{0}a_{2} = \alpha_{1}b_{1} + \alpha_{0}b_{2}$$

$$x^{1}: \beta_{1}a_{0} + \beta_{0}a_{1} = \alpha_{1}b_{0} + \alpha_{0}b_{1}$$

$$x^{0}: \beta_{0}a_{0} = \alpha_{0}b_{0}$$

Resultants as Determinants

We solve a linear system in β_1 , β_0 , α_1 , and α_0 :

$$\begin{cases} \beta_1 a_2 &= \alpha_1 b_2 \\ \beta_1 a_1 &+ \beta_0 a_2 &= \alpha_1 b_1 &+ \alpha_0 b_2 \\ \beta_1 a_0 &+ \beta_0 a_1 &= \alpha_1 b_0 &+ \alpha_0 b_1 \\ & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & &$$

In matrix form:

$$\begin{bmatrix} a_2 & 0 & b_2 & 0 \\ a_1 & a_2 & b_1 & b_2 \\ a_0 & a_1 & b_0 & b_1 \\ 0 & a_0 & 0 & b_0 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_0 \\ -\alpha_1 \\ -\alpha_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Condition for nonzero solution: determinant of matrix is zero.

▲ 同 ▶ ▲ 国 ▶

Discriminants as Resultants

Solving the quadratic equation: $ax^2 + bx + c = 0...$

```
sage: R.<x,a,b,c> = QQ[]
sage: p = a*x^2 + b*x + c
sage: dp = diff(p,x)
sage: disc = singular.resultant(p,dp,x)
sage: print disc
sage: print factor(R(disc))
```

The discriminant is a polynomial in the coefficients and vanishes whenever the polynomial and its derivative have a common solution. The output:

```
-a*b^2+4*a^2*c
a * (-b^2 + 4*a*c)
```

Computing Resultants

We first declare a polynomial ring with rational coefficients

```
sage: R.<x,y,c,r> = QQ[]
sage: F = R(f)
sage: G = R(g)
sage: D = R(dJ)
```

We can now eliminate x using the resultant from Singular.

sage: rFG = singular.resultant(F,G,x)
sage: print rFG
sage: rGD = singular.resultant(G,D,x)
sage: print rGD

The result:

```
4*y^2*c^2+c^4-2*c^2*r^2+r^4-2*c^2-2*r^2+1
16*y^2*c^2
```

The Discriminant of our Circle Problem

an algebraic condition on the parameters of the problem

sage: discriminant = singular.resultant(rFG,rGD,y)
sage: print discriminant

256*c^12-1024*c^10*r^2+1536*c^8*r^4-1024*c^6*r^6 +256*c^4*r^8-1024*c^10+1024*c^8*r^2+1024*c^6*r^4 -1024*c^4*r^6+1536*c^8+1024*c^6*r^2+1536*c^4*r^4 -1024*c^6-1024*c^4*r^2+256*c^4

Geometric interpretation:

 \rightarrow the discriminant gives the relation between center (*c*, 0) and radius *r* of the second circle for which the solutions are singular, i.e.:

- double solutions: circles touch each other
- a solution set: overlapping circles

イロン 不得 とくほ とくほ とうほう

Factoring the Discriminant

to simplify the condition on the parameters

To factor the discriminant, we must convert to an element of the ring R.

sage: print type(discriminant)
sage: factor(R(discriminant))

<class 'sage.interfaces.singular.SingularElement'>
(256) * (c - r - 1)^2 * (c - r + 1)^2
 * (c + r - 1)^2 * (c + r + 1)^2 * c^4

So the discriminant for our problem looks as follows:

$$256(c-r-1)^2(c-r+1)^2(c+r-1)^2(c+r+1)^2c^4$$

メポト イヨト イヨト 二日

Collecting all Formulas

The system

$$\begin{cases} x^2 + y^2 - 1 = 0\\ (x - c)^2 + y^2 - r^2 = 0 \end{cases}$$

has exactly two solutions

$$\left[x = \frac{-r^2 + c^2 + 1}{2c}, y = \pm \frac{\sqrt{-r^4 + 2c^2r^2 + 2r^2 - c^4 + 2c^2 - 1}}{2c}\right]$$

except for those *c* and *r* satisfying

$$256(c-r-1)^2(c-r+1)^2(c+r-1)^2(c+r+1)^2c^4 = 0.$$

The Discriminant Variety plot of $256(c-r-1)^2(c-r+1)^2(c+r-1)^2(c+r+1)^2c^4 = 0$

Considering only the positive values for c and r, we classify the regular solutions in four different configurations.

Jan Verschelde (UIC)

Computational Algebraic Geometry

24 July 2008 21 / 22

Some variations of the problem we considered:

- Replace the second circle by a general ellipse.
- Use a polynomial of degree three in the second equation.
- Onsider the problem of intersecting two ellipses.
- Examine the intersection of three spheres.