Introduction to Computational Algebraic Geometry

Jan Verschelde

University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science
http://www.math.uic.edu/~jan
jan@math.uic.edu

UIC ASCEND Workshops, 24 July 2008

Computational Algebraic Geometry

an introduction to a modern mathematical discipline
The big picture:

- What is algebraic geometry?

Algebraic geometry studies solutions of polynomial systems.
Polynomial systems occur in a wide variety of applications.

- Using computers to discover theorems.

Computer algebra software offers implementations of algorithms to solve polynomial systems.
We will use SAGE, an open source software system.
Problem of today:
How do two circles intersect?

Outline

(1) SAGE: Software for Algebra and Geometry Experimentation

- Try it online!
(2) An Intersection Problem
- plotting and solving specific instances
- looking at the general problem formulation
(3) Determinants, Resultants and Discriminants
- Jacobian matrices and singular solutions
- eliminating variables with resultants
- computing discriminants using resultants

Using SAGE
 Software for Algebra and Geometry Experimentation

SAGE is open source mathematical software
(1) compilation both of original Python, C, C++, and SageX code
(2) interfaces to computational algebraic geometry software: Singular
(3) the GUI is your web browser, try it before installation

Three steps to getting started:
(1) Go to http://www.sagemath.org
(2) click on Try it online!
(3) Sign up for a new SAGE notebook account.

Plotting Two Circles

Consider two circles, how do they intersect?


```
sage: c1 = circle( (1,2) , 3 , rgbcolor=(1,0,0) )
sage: c2 = circle( (-1,1) , 2 , rgbcolor=(0,0,1) )
sage: c12 = c1 + c2
sage: c12.show(aspect_ratio=1)
```


Computing the Intersection Points

algebraic problem formulation: solve a polynomial system

We solve a system of two polynomial equations in two unknowns:

$$
\begin{aligned}
& \text { sage }: x, y=\operatorname{var}\left(^{\prime} x, y^{\prime}\right) \\
& \text { sage: } p 1=(x-1)^{\wedge} 2+(y-2)^{\wedge} 2-3^{\wedge} 2==0 \\
& \text { sage: } p 2=(x+1)^{\wedge} 2+(y-1)^{\wedge} 2-2^{\wedge} 2==0 \\
& \text { sage: sols }=\text { solve }([p 1, p 2], x, y) \\
& \text { sage: sols }
\end{aligned}
$$

We obtain two solutions in symbolic form:

$$
\begin{aligned}
{[[x} & =(-2 * \operatorname{sqrt}(5)-5) / 5, y= \\
{[x=} & =(2 * \operatorname{sqrt}(5)-5) / 5, y==(5-4 * \operatorname{sqrt}(5)) / 5]]
\end{aligned}
$$

Verifying the Solutions

```
sage: print sols[1]
sage: vx = sols[1][0].rhs()
sage: print n(vx,200)
sage: vy = sols[1][1].rhs()
sage: s = pl.substitute(x=vx,y=vy)
sage: print s
sage: s.expand()
```

$[x==(2 * \operatorname{sqrt}(5)-5) / 5, y==(5-4 * \operatorname{sqrt}(5)) / 5]$
$-0.105572809000084121436330532507489505823752656155389$
2 sqrt (5) - 5 2 - $4 \operatorname{sqrt(5)} 2$
(------------- 1) $+(-------------2)-9=0$
$0=0$

Likewise we do it for the second solution and also for p2.

Choice of Coordinate System

With out loss of generality we may choose

- the origin is center of the first circle
- the radius of the first circle to be one
\rightarrow first circle is the unit circle:

$$
f=x^{2}+y^{2}-1
$$

We may choose the orientation of the x-axes

- through the center of the second circle: $(c, 0)$
- let r be the radius of the second circle
\rightarrow two parameters for the second circle:

$$
g=(x-c)^{2}+y^{2}-r^{2}
$$

Our problem is governed by two parameters: c and r.

A General Solution

symbolic computation manipulates symbols as numbers

We declare c and r as variables and solve:

$$
\begin{aligned}
& \text { sage }: c, r=\operatorname{var}\left(\prime c, r^{\prime}\right) \\
& \text { sage }: f=x^{\wedge} 2+y^{\wedge} 2-1 \\
& \text { sage }: g=(x-c)^{\wedge} 2+y^{\wedge} 2-r^{\wedge} 2 \\
& \text { sage }: \operatorname{solve}([f==0, g==0], x, y)
\end{aligned}
$$

We obtain a symbolic solution:

$$
\left[x=\frac{-r^{2}+c^{2}+1}{2 c}, y= \pm \frac{\sqrt{-r^{4}+2 c^{2} r^{2}+2 r^{2}-c^{4}+2 c^{2}-1}}{2 c}\right]
$$

but how general is this solution?

Singular Solutions

(1) double solutions: two circles touching each other,
(2) a solution set: two overlapping circles.

At a singular solution the determinant of the Jacobian matrix vanishes. The Jacobian matrix collects all partial derivatives:

```
    sage: J = matrix([[diff(f,x), diff(f,y)],\
    [diff(g,x),diff(g,y)]])
    sage: print J
    sage: dJ = det(J)
    sage: print dJ
[ 2*x 2*y]
[2* (x-c) 2*y]
\[
4 x y-4(x-c) y
\]
```


The Determinant

when does a linear system have a singular solution?
Given a linear system $A \mathbf{x}=b$:

$$
\left\{\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{array} \quad\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] .\right.
$$

The system $A \mathbf{x}=b$ has a unique solution $\Leftrightarrow \operatorname{det}(A) \neq 0$.
We have explicit formulas to compute a determinant:

$$
\operatorname{det}(A)=\operatorname{det}\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=a_{11} a_{22}-a_{21} a_{12}
$$

Generalization to more than two equations:

- recursive: expansion along row or column;
- alternative: elimination via row reduction.

The Discriminant

generalizes the determinant to polynomial systems

We will compute the discriminant of the circle problem.
The discriminant is a polynomial in c and r which will vanish whenever the solutions to the circle problem are singular.

Adding the determinant of the Jacobian matrix to the system, we solve

$$
\left\{\begin{array}{r}
x^{2}+y^{2}-1=0 \\
(x-c)^{2}+y^{2}-r^{2}=0 \\
4 c y=0
\end{array}\right.
$$

Looking long enough at the system will lead to the solutions...
Our aim is to illustrate a general approach.

Definition of the Resultant

a tool to solve polynomial systems

Given two polynomials p and q with general coefficients:

$$
\begin{aligned}
& p(x)=a_{2} x^{2}+a_{1} x+a_{0} \\
& q(x)=b_{2} x^{2}+b_{1} x+b_{0}
\end{aligned}
$$

For which values of the coefficients do p and q have a common factor?
The resultant

- is a polynomial in the coefficients of p and q
- is zero for those coefficients for which p and q have a common factor

Application: eliminate x.

Resultants to Eliminate Variables

Suppose p and q do have a factor $f: p=P f, q=Q f$.
Observe: $Q p=Q P f$ and $P q=P Q f$ imply $Q p=P q$.

$$
\begin{array}{ll}
p(x)=a_{2} x^{2}+a_{1} x+a_{0} & P(x)=\alpha_{1} x+\alpha_{0} \\
q(x)=b_{2} x^{2}+b_{1} x+b_{0} & Q(x)=\beta_{1} x+\beta_{0}
\end{array}
$$

Elaborate the condition $Q p=P q$ and consider

$$
\begin{aligned}
\left(\beta_{1}+\beta_{0}\right)\left(a_{2} x^{2}+a_{1} x+a_{0}\right) & =\left(\alpha_{1} x+\alpha_{0}\right)\left(b_{2} x^{2}+b_{1} x+b_{0}\right) \\
x^{3}: \beta_{1} a_{2} & \\
x^{2}: \beta_{1} a_{1}+\beta_{0} a_{2} & =\alpha_{1} b_{2} b_{1}+ \\
x^{1}: \beta_{1} a_{0}+\beta_{0} a_{1} & =\alpha_{1} b_{0}+ \\
x^{0}: & \beta_{0} a_{0} b_{2} \\
& =
\end{aligned}
$$

Resultants as Determinants

We solve a linear system in $\beta_{1}, \beta_{0}, \alpha_{1}$, and α_{0} :

$$
\left\{\begin{aligned}
\beta_{1} a_{2} & =\alpha_{1} b_{2} \\
\beta_{1} a_{1}+\beta_{0} a_{2} & =\alpha_{1} b_{1}+\alpha_{0} b_{2} \\
\beta_{1} a_{0}+\beta_{0} a_{1} & =\alpha_{1} b_{0}+\alpha_{0} b_{1} \\
\beta_{0} a_{0} & =
\end{aligned}\right.
$$

In matrix form:

$$
\left[\begin{array}{cccc}
a_{2} & 0 & b_{2} & 0 \\
a_{1} & a_{2} & b_{1} & b_{2} \\
a_{0} & a_{1} & b_{0} & b_{1} \\
0 & a_{0} & 0 & b_{0}
\end{array}\right]\left[\begin{array}{c}
\beta_{1} \\
\beta_{0} \\
-\alpha_{1} \\
-\alpha_{0}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Condition for nonzero solution: determinant of matrix is zero.

Discriminants as Resultants

Solving the quadratic equation: $a x^{2}+b x+c=0 \ldots$

```
sage: R.<x,a,b,c> = QQ[]
sage: p = a* x^2 + b*x + c
sage: dp = diff(p,x)
sage: disc = singular.resultant (p,dp,x)
sage: print disc
sage: print factor(R(disc))
```

The discriminant is a polynomial in the coefficients and vanishes whenever the polynomial and its derivative have a common solution. The output:

$$
\begin{aligned}
& -a^{\star} b^{\wedge} 2+4^{\star} a^{\wedge} 2 \star c \\
& a \star\left(-b^{\wedge} 2+4 * a * c\right)
\end{aligned}
$$

Computing Resultants

We first declare a polynomial ring with rational coefficients

$$
\begin{aligned}
& \text { sage }: R .\langle x, Y, C, r>=Q Q[] \\
& \text { sage }: F=R(f) \\
& \text { sage }: G=R(g) \\
& \text { sage }: D=R(d J)
\end{aligned}
$$

We can now eliminate x using the resultant from Singular.

```
sage: rFG = singular.resultant (F,G,x)
sage: print rFG
sage: rGD = singular.resultant (G,D,x)
sage: print rGD
```

The result:

$$
\begin{aligned}
& 4^{\star} Y^{\wedge} 2{ }^{\star} C^{\wedge} 2+c^{\wedge} 4-2 *^{\star} C^{\wedge} 2{ }^{*} r^{\wedge} 2+r^{\wedge} 4-2 *^{\star} C^{\wedge} 2-2 *^{\wedge} r^{\wedge} 2+1 \\
& 16^{\star} Y^{\wedge} 2{ }^{\star} C^{\wedge} 2
\end{aligned}
$$

The Discriminant of our Circle Problem

an algebraic condition on the parameters of the problem

$$
\begin{aligned}
& \text { sage: discriminant = singular.resultant(rFG,rGD,y) } \\
& \text { sage: print discriminant } \\
& 256 * c^{\wedge} 12-1024 * c^{\wedge} 10 * r^{\wedge} 2+1536 * c^{\wedge} 8 * r^{\wedge} 4-1024 \text { * }^{\wedge} \text { ^ } 6 * r^{\wedge} 6
\end{aligned}
$$

$$
\begin{aligned}
& -1024{ }^{*} C^{\wedge} 4{ }^{*} r^{\wedge} 6+1536 * C^{\wedge} 8+1024{ }^{*} C^{\wedge} 6^{*} r^{\wedge} 2+1536 * C^{\wedge} 4{ }^{*} r^{\wedge} 4 \\
& -1024 \text { * }^{\wedge} \text { 6-1024* } C^{\wedge} 4 * r^{\wedge} 2+256 * C^{\wedge} 4
\end{aligned}
$$

Geometric interpretation:
\rightarrow the discriminant gives the relation between center $(c, 0)$ and radius r of the second circle for which the solutions are singular, i.e.:
(1) double solutions: circles touch each other
(2) a solution set: overlapping circles

Factoring the Discriminant

to simplify the condition on the parameters

To factor the discriminant, we must convert to an element of the ring R .

```
sage: print type(discriminant)
sage: factor(R(discriminant))
<class 'sage.interfaces.singular.SingularElement'>
(256) * (c - r - 1)^2 * (c - r + 1)^2
    * (c+r-1)^2 * (c+r + 1)^2 * c^4
```

So the discriminant for our problem looks as follows:

$$
256(c-r-1)^{2}(c-r+1)^{2}(c+r-1)^{2}(c+r+1)^{2} c^{4}
$$

Collecting all Formulas

The system

$$
\left\{\begin{array}{r}
x^{2}+y^{2}-1=0 \\
(x-c)^{2}+y^{2}-r^{2}=0
\end{array}\right.
$$

has exactly two solutions

$$
\left[x=\frac{-r^{2}+c^{2}+1}{2 c}, y= \pm \frac{\sqrt{-r^{4}+2 c^{2} r^{2}+2 r^{2}-c^{4}+2 c^{2}-1}}{2 c}\right]
$$

except for those c and r satisfying

$$
256(c-r-1)^{2}(c-r+1)^{2}(c+r-1)^{2}(c+r+1)^{2} c^{4}=0
$$

The Discriminant Variety

 plot of $256(c-r-1)^{2}(c-r+1)^{2}(c+r-1)^{2}(c+r+1)^{2} c^{4}=0$

Considering only the positive values for c and r, we classify the regular solutions in four different configurations.

Suggested Explorations

Some variations of the problem we considered:
(0) Replace the second circle by a general ellipse.
(2) Use a polynomial of degree three in the second equation.
(3) Consider the problem of intersecting two ellipses.
(9) Examine the intersection of three spheres.

