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Plan of the Talk

1. Central Problem: compute an irreducible decomposition of the

solution set of a polynomial system.

2. Key Data Structure: “witness set” uses notion of generic points

in algebraic geometry.

3. Algorithms: embeddings and numerical homotopies to

decompose and factor positive dimensional solution sets.

4. Two Connections with Symbolic Computation: straight-line

programs and approximate multivariate factorization.

5. Applications from Mechanical Design.

Joint work with Andrew Sommese (University of Notre Dame) and

Charles Wampler (General Motors Research Laboratories).
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Overview of Data Structures

A witness set is a numerical representation of a k-dimensional

solution set of degree d. It contains d generic points on k

random hyperplanes.

A sequence of witness sets represents the decomposition of a

solution set into components of the same dimension.

A sequence of partitioned witness sets is our data structure

to represent a numerical irreducible decomposition.
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Overview of Algorithms

To compute a witness set, we embed the polynomial system

and apply a blackbox solver.

For sequences of witness sets, a cascade of homotopies

allows to recycle solutions, pealing off hyperplane sections in

going from the top to lower dimensions.

To partition witness sets, a factorization is predicted by

monodromy and certified by linear traces.
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Complete Intersections – Slicing

f(x1, x2, x3) =


 x2 − x2

1

x3 − x3
1


 = 0

twisted

cubic

general

slice





f(x1, x2, x3) = 0

c0 + c1x1 + c2x2 + c3x3 = 0

random c0, c1, c2, c3

three complex roots

special

slice





f(x1, x2, x3) = 0

c0 + c1x1 + c2x2 + 0x3 = 0

random c0, c1, c2

two complex roots

“numerical elimination methods”
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Application: Spatial Six Positions

Planar Body Guidance (Burmester 1874)

Given five placements of a moving body in the plane, find the

points of the moving body that lie on a common circle.

• 5 positions determine 6 circle-point/center-point pairs

• 4 positions give cubic circle-point & center-point curves

Spatial Body Guidance (Schoenflies 1886)

Given seven placements of a moving body in space, find the

points of the moving body that lie on a common sphere.

• 7 positions determine 20 sphere-point/center-point pairs

• 6 positions give 10th-degree sphere-point & center-point

curves
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Spatial Six Positions: Solution

Polynomial system of five quadrics in six unknowns (x,y) defines

curve of degree 20.

curve y

curve x
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Projection onto x or y-space gives curves of degree 10.
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General Intersections – Embedding

f(x1, x2, x3) =




(x2
1 − x2)(x1 − 0.5)

(x3
1 − x3)(x2 − 0.5)

(x1x2 − x3)(x3 − 0.5)


 = 0

twisted cubic

and

four isolated points

Problem: Adding a hyperplane to f ⇒ overconstrained system!

Solution: Use a slack variable z1, with random γ1, γ2, γ3 ∈ C:

E(f)(x, z1) =







(x2
1 − x2)(x1 − 0.5)

(x3
1 − x3)(x2 − 0.5)

(x1x2 − x3)(x3 − 0.5)


 +




γ1

γ2

γ3


 z1

c0 + c1x1 + c2x2 + c3x3 + z1



= 0

Solutions of E(f)(x, z1) = 0 with z1 = 0 lie on the twisted cubic.

Solutions of E(f)(x, z1) = 0 with z1 6= 0 lead to the isolated points.
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A Cascade of Homotopies

Denote Ei as an embedding of f(x) = 0 with i random hyperplanes

and i slack variables z = (z1, z2, . . . , zi).

Theorem (Sommese - Verschelde): J. Complexity 16(3):572–602, 2000

1. Solutions with (z1, z2, . . . , zi) = 0 contain degW generic

points on every i-dimensional component W of f(x) = 0.

2. Solutions with (z1, z2, . . . , zi) 6= 0 are regular; and

solution paths defined by

Hi(x, z, t) = tEi(x, z) + (1− t)


 Ei−1(x, z)

zi


 = 0

starting at t = 1 with all solutions with zi 6= 0

reach at t = 0 all isolated solutions of Ei−1(x, z) = 0.
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A refined version of Bézout’s theorem

Observe: The linear equations added to f(x) = 0 in the cascade of

homotopies do not increase the total degree.

Let f = (f1, f2, . . . , fn) be a system of n polynomial equations

in N variables, x = (x1, x2, . . . , xN ).

Bézout bound:

n∏

i=1

deg(fi) ≥

N∑

j=0

µj deg(Wj),

where Wj is a j-dimensional solution component

of f(x) = 0 of multiplicity µj .

Note: j = 0 gives the “classical” theorem of Bézout.
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Example of a Homotopy in the Cascade

To compute numerical representations of the twisted cubic and the

four isolated points, as given by the solution set of one polynomial

system, we use the following homotopy:

H(x, z1, t) =







(x2
1 − x2)(x1 − 0.5)

(x3
1 − x3)(x2 − 0.5)

(x1x2 − x3)(x3 − 0.5)


 + t




γ1

γ2

γ3


 z1

t (c0 + c1x1 + c2x2 + c3x3) + z1



= 0

At t = 1: H(x, z1, t) = E(f)(x, z1) = 0.

At t = 0: H(x, z1, t) = f(x) = 0.

As t goes from 1 to 0, the hyperplane is removed from the system,

and z1 is forced to zero.
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#paths in twisted cubic + 4 isolated points example

The flow chart below summarizes the number of solution paths

traced in the cascade of homotopies.

13 paths - 0 paths to infinity

3 solutions with z1 = 0

10 solutions with z1 6= 0

- W1 witness set

?

10 paths - 1 path to infinity

9 converging paths - Ŵ0 witness superset

The set Ŵ0 contains, in addition to the four isolated roots, also

points on the twisted cubic. The points in Ŵ0 which lie on the

twisted cubic are considered junk and must be filtered out.
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Membership Test

Does the point p belong to a component?

Given: a point in space p ∈ CN ; a system f(x) = 0;

and a witness set W , W = (Z,L):

for all w ∈ Z : f(w) = 0 and L(w) = 0.

1. Let Lp be a set of hyperplanes through p, and define

H(x, t) =





f(x) = 0

Lp(x)t+ L(x)(1− t) = 0

2. Trace all paths starting at w ∈ Z, for t from 0 to 1.

3. The test (p, 1) ∈ H−1(0)? answers the question above.
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Membership Test – an example

L Lp f−1(0)

sp 6∈ f−1(0)

H(x, t) =





f(x) = 0

Lp(x)t+ L(x)(1− t) = 0
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Witness Sets

A witness point is a solution of a polynomial system which lies

on a set of generic hyperplanes.

• The number of generic hyperplanes used to isolate a point from

a solution component

equals the dimension of the solution component.

• The number of witness points on one component cut out by the

same set of generic hyperplanes

equals the degree of the solution component.

A witness set for a k-dimensional solution component consists of

k random hyperplanes and the set of isolated solutions

comprising the intersection of the component with those

hyperplanes.
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Witness Sets and Straight-line Programs

A witness set is data in the usual sense. To make the description of

a positive dimensional solution set more complete (or better: more

useful), we need to add two functions to the witness set:

1. Functions to evaluate and differentiate the system to

sample the positive dimensional component.

2. The homotopy membership test to determine whether a

given point belongs to a component.

In some applications – like the determinantal conditions arising in

the numerical Schubert calculus – we have better ways to evaluate

the system, ways that are numerically better than just plugging in

values in a sequence of expanded polynomials.
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Application: Assembling a Seven-Bar Mechanism

A  

B C

  D

a
0

b
0

c
0

E  
F

  G

a
2

b
2

G’  
H

  I

a
5

b
5

A’    E’
a

1

B’    F’
a

3

C’    H’
a

4

D’    I’
a

6

Problem: Find all possible assemblies of these pieces.
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A

B
C

D

E

F

G

H
I

One possible assembly

• Generally, 18 solutions. (This example, 8 real, 10 complex.)

• Intersection of two four-bar coupler curves.
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A Moving Seven-Bar Mechanism

A

B,C D

E

F

H

I

Roberts cognate 7-bar moves on a degree-6 curve (coupler curve)

AND . . .
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A

B,C
D

E
F

G

H

I

AND . . . has six isolated solutions

• two at each double point of coupler curve

• here, only 1 of 3 double points is real
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Computational Summary for 7-bar Mechanism

On input is system of 12 equations in 12 unknowns.

48 paths - 0 paths to infinity

6 solutions with z1 = 0

42 solutions with z1 6= 0

- W1 witness set

?

42 paths - 32 path to infinity

6 converging paths - Ŵ0 witness superset

1. solve top embedding 8.2 cpu seconds ← bottleneck!

2. run cascade of homotopies 3.3 cpu seconds

3. filter Ŵ0 to Ŵ0 1.1 cpu seconds

on 1 Ghz PowerBook G4 Mac OS X 10.3.4 with gcc 3.3
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Further Reading

We have new methods to compute witness sets faster.

A.J. Sommese, J. Verschelde, and C.W. Wampler: Homotopies

for intersecting solution components of polynomial

systems. To appear in SIAM J. Numer. Anal.

A.J. Sommese, J. Verschelde, and C.W. Wampler: An intrinsic

homotopy for intersecting algebraic varieties. Accepted

for publication in J. Complexity.

If we can intersect varieties, we will be able to solve systems

equation by equation, in a similar fashion like in the software of

Grégoire Lecerf.
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Factoring Solution Components

Input: f(x) = 0 polynomial system with a positive dimensional

solution component, represented by witness set.

coefficients of f known approximately, work with limited precision

Wanted: decompose the component into irreducible factors,

for each factor, give its degree and multiplicity.

Symbolic-Numeric issue: essential numerical information

(such as degree and multiplicity of each factor),

is obtained much faster than the full symbolic representation.
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The Riemann Surface of z3 − w = 0:

-2

-1

0 Re(z)

1-1.5
-2

-1

-1

-0.5

Re(z^1/3)

0

0

1
2

0.5

2Im(z)

1

1.5

R.M. Corless and D.J. Jeffrey: Graphing elementary Riemann surfaces.

SIGSAM Bulletin 32(1):11–17, 1998.
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Monodromy to Decompose Solution Components

Given: a system f(x) = 0; and W = (Z,L):

for all w ∈ Z : f(w) = 0 and L(w) = 0.

Wanted: partition of Z so that all points in a subset of Z

lie on the same irreducible factor.

Example: does f(x, y) = xy − 1 = 0 factor?

Consider H(x, y, θ) =





xy − 1 = 0

x+ y = 4eiθ
for θ ∈ [0, 2π].

For θ = 0, we start with two real solutions. When θ > 0, the

solutions turn complex, real again at θ = π, then complex until at

θ = 2π. Back at θ = 2π, we have again two real solutions, but their

order is permuted ⇒ irreducible.
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Connecting Witness Points

1. For two sets of hyperplanes K and L, and a random γ ∈ C

H(x, t,K, L, γ) =





f(x) = 0

γK(x)(1− t) + L(x)t = 0

We start paths at t = 0 and end at t = 1.

2. For α ∈ C, trace the paths defined by H(x, t,K, L, γ = α) = 0.

For β ∈ C, trace the paths defined by H(x, t, L,K, γ = β) = 0.

Compare start points of first path tracking with end points of

second path tracking. Points which are permuted belong to the

same irreducible factor.

3. Repeat the loop with other hyperplanes.
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Linear Traces – an example

Consider f(x, y(x)) = (y − y1(x))(y − y2(x))(y − y3(x))

= y3 − t1(x)y
2 + t2(x)y − t3(x)

We are interested in the linear trace: t1(x) = c1x+ c0.

Sample the cubic at x = x0 and x = x1. The samples are

{(x0, y00), (x0, y01), (x0, y02)} and {(x1, y10), (x1, y11), (x1, y12)}.

Solve





y00 + y01 + y02 = c1x0 + c0

y10 + y11 + y12 = c1x1 + c0
to find c0, c1.

With t1 we can predict the sum of the y’s for a fixed choice of x.

For example, samples at x = x2 are {(x2, y20), (x2, y21), (x2, y22)}.

Then, t1(x2) = c1x2 + c0 = y20 + y21 + y22.
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Linear Traces – example continued

f−1(0)
x0

s
y00

s
y01

s
y02

x1

s
y10

s
y11

s
y12

x2

s
y20

s
y21

s
y22

Use {(x0, y00), (x0, y01), (x0, y02)} and {(x1, y10), (x1, y11), (x1, y12)}

to find the linear trace t1(x) = c0 + c1x.

At {(x2, y20), (x2, y21), (x2, y22)}: c0 + c1x2 = y20 + y21 + y22?
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Validation of Breakup with Linear Trace

Do we have enough witness points on a factor?

• We may not have enough monodromy loops to connect all

witness points on the same irreducible component.

• For a k-dimensional solution component, it suffices to consider

a curve on the component cut out by k − 1 random

hyperplanes. The factorization of the curve tells the

decomposition of the solution component.

• We have enough witness points on the curve if the value at the

linear trace can predict the sum of one coordinate of all points

in the set.

Notice: Instead of monodromy, we may enumerate all possible

factors and use linear traces to certify. While the complexity of this

enumeration is exponential, it works well for low degrees.
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Adjacent minors of a general 2-by-(n + 1) matrix

n = 3 :


 x11 x12 x13 x14

x21 x22 x23 x24


 f(x) =





x11x22 − x21x12 = 0

x12x23 − x22x13 = 0

x13x24 − x23x14 = 0

P. Diaconis, D. Eisenbud, and B. Sturmfels. Lattice walks and

primary decomposition. In Mathematical Essays in Honor of

Gian-Carlo Rota, ed. B.E. Sagan and R.P. Stanley, pages 173–193,

Birkhäuser, 1998.

S. Hoşten and J.Shapiro. Primary decomposition of lattice basis

ideals. J. Symbolic Computation 29(4&5): 625–639.
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Computational results

n d #f witness set #loops factorization

3 8 3 1.4 s 9 6.8 s

4 16 5 4.5 s 3 9.4 s

5 32 8 23.9 s 4 41.6 s

6 64 13 56.4 s 2 1 m 17.0 s

7 128 21 3 m 39.5 s 4 6 m 42.0 s

8 256 34 8 m 22.6 s 5 16 m 54.7 s

9 512 55 25 m 19.2 s 7 1 h 48 m 52.9 s

10 1024 89 1 h 9 m 27.0 s 5 2 h 9 m 5.1 s

on 1 Ghz PowerBook G4 Mac OS X 10.3.4 with gcc 3.3
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Application: Architecturally Singular Platforms

Special Griffis-Duffy type

• Base and endplate are equilateral triangles.

• Legs connect vertices to midpoints.
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Results of Husty and Karger

Self-motions of Griffis-Duffy type parallel manipulators. In Proc. 2000

IEEE Int. Conf. Robotics and Automation (CDROM), 2000.

The special Griffis-Duffy platforms move:

• Case 1: Plates not equal, legs not equal.

– Curve is degree 20 in Euler parameters.

– Curve is degree 40 in position.

• Case 2: Plates congruent, legs all equal.

– Factors are degrees (4+ 4)+ 6+ 2 = 16 in Euler parameters.

– Factors are degrees (8 + 8) + 12 + 4 = 32 in position.

Question: Can we confirm these results numerically?
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Components of Griffis-Duffy Platforms

Solution components by degree

Husty & Karger SVW

Euler Position Study Position

General Case

20 40 28 40

Legs equal, Plates equal

6 8

4 8 6 8

4 8 6 8

6 12 6 12

2 4 4 4

16 32 28 40
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Griffis-Duffy Platforms: Factorization

Case A: One irreducible component of degree 28 (general case).

Case B: Five irreducible components of degrees 6, 6, 6, 6, and 4.

user cpu on 800Mhz Case A Case B

witness points 1m 12s 480ms

monodromy breakup 33s 430ms 27s 630ms

Newton interpolation 1h 19m 13s 110ms 2m 34s 50ms

32 decimal places used to interpolate polynomial of degree 28

linear trace 4s 750ms 4s 320ms

Linear traces replace Newton interpolation:

⇒ time to factor independent of geometry!
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Summary

• We can now deal numerically with positive dimensional

solution sets – originally bad for Newton & path trackers –

by embedding and cascade of homotopies.

• Numerical results can be certified

+ condition numbers

+ root counts

+ linear traces

• Promising performance on realistic applications.

→ the software demo by Anton Leykin on PHCmaple!
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